
A Proof of Theorem 2.1

In this section, we prove the Theorem 2.1, which states a problem P and its’ orthogonal transformed
problem Q(P) = {{Qxi}Ni=1,f} have identical optimal solutions if Q is orthogonal matrix: QQT =
QTQ = I .

As we mentioned in Section 2.2, reward R is a function of a1:T (solution sequences),
||xi − xj ||i,j∈{1,...N} (relative distances) and f (nodes features).

For simple notation, let denote ||xi − xj ||i,j∈{1,...N} as ||xi − xj ||. And Let R∗(P) is optimal value
of problem P : i.e.

R∗(P) = R(π∗;P) = R (π∗; {||xi − xj ||,f})

Where π∗ is an optimal solution of problem P . Then the optimal value of transformed problem
Q(P), R∗(Q(P)) is invariant:

R∗(Q(P)) = R(π∗;Q(P))

= R (π∗; {||Qxi −Qxj ||,f})

= R

(
π∗; {

√
(Qxi −Qxj)T (Qxi −Qxj),f}

)
= R

(
π∗; {

√
(xi − xj)TQTQ(xi − xj),f}

)
= R

(
π∗; {

√
(xi − xj)T I(xi − xj),f}

)
= R (π∗; {||xi − xj ||,f}) = R(π∗;P) = R∗(P)

Therefore, problem transformation of orthogonal matrix Q does not change the optimal value.

Then, the remaining proof is to show Q(P) has an identical solution set with P .

Let optimal solution set Π∗(P) = {πi(P)}Mi=1, where πi(P) indicates optimal solution of P and
M is the number of heterogeneous optimal solution.

For any πi(Q(P)) ∈ Π∗(Q(P)), they have same optimal value with P :

R(πi(Q(P));Q(P)) = R∗(Q(P)) = R∗(P)

Thus, πi(Q(P)) ∈ Π∗(P).

Conversely, For any πi(P) ∈ Π∗(P), they have sample optimal value with Q(P):

R(πi(P);P) = R∗(P) = R∗(Q(P))

Thus, πi(P) ∈ Π∗(Q(P)).

Therefore, Π∗(P) = Π∗(Q(P)), i.e., P
sym←−→ Q(P).

15

B Implementation of Baselines

We directly reproduce competitive DRL-NCO methods: POMO [23] and AM [21] and PointerNet
[10, 20].

PointerNet. The PointerNet is early work of DRL-NCO using LSTM-based encoder-decoder
architecture trained with actor-critic manner. We follow the instruction of open source code 1 by [21]
following hyperparmeters.

REINFORCE baseline Rollout baseline [21]
Learning rate 1e-4
The Number of Encoder Layer 3
Embedding Dimension 128
Batch-size 512
Epochs 100
Epoch size 1,280,000
The Number of Steps 250K
Table 4: Hyperparameter Setting for AM for all tasks.

AM. The AM is a general-purpose DRL-NCO, a transformer-based encoder-decoder model that
solves various routing problems such as TSP, CVRP, PCTSP, and OP. We follow the instruction of
open source code, same with the PointerNet with the following hyperparameters.

REINFORCE baseline Rollout baseline [21]
Learning rate 1e-4
The Number of Encoder Layer 3
Embedding Dimension 128
Attention Head Number 8
Feed Forward Dimension 512
Batch-size 512
Epochs 100
Epoch size 1,280,000
The Number of Steps 250K
Table 5: Hyperparameter Setting for AM for all tasks.

POMO. The POMO is a high-performance DRL-NCO for TSP and CVRP, implemented on the top
of the AM. We follow the instruction of open source code 2 with the following hyperparameters.

TSP CVRP
REINFORCE baseline POMO shared baseline [23]
Learning rate 1e-4
Weight decay 1e-6
The Number of Encoder Layer 6
Embedding Dimension 128
Attention Head Number 8
Feed Forward Dimension 512
Batch-size 64
Epochs 2,000 8,000
Epoch size 100,000 10,000
The Number of Steps 3.125M 1.25M

Table 6: Hyperparameter Setting for POMO in TSP and CVRP.

1https://github.com/wouterkool/attention-learn-to-route
2https://github.com/yd-kwon/POMO

16

C Implementation Details of Proposed Method

C.1 Training Hyperparameters

Sym-NCO is a training scheme that is attached to the top of the existing DRL-NCO model. We
set the same hyperparameters with PointerNet, AM, and POMO Appendix B except REINFORCE
baseline (we set the proposed Sym-NCO baseline introduced in Section 3).

Sym-NCO has additional hyperparameters. First of all, we set identical hyperparameters for Pointer-
Net and AM for all tasks:

α 0.1
β 0
K 1
L 10

Table 7: Hyperparameter Setting of Sym-NCO for PointerNet and AM.

Note that the design choice of β = 0 is to show high applicability of Lps, and is because AM with
Lss is just similar to the POMO.

For POMO, we set β = 1 to force solution symmetricity on the top of POMO’s baseline. Note that
we follow POMO’s first node restriction only in TSP, which is a reasonable bias as we mentioned in
Section 3. The hyperparameter setting is as follows:

TSP CVRP
α 0.1 0.2
β 1 1
K 100 100
L 2 2

Table 8: Hyperparameter Setting of Sym-NCO for POMO.

Note that the design choice of β = 1 and K = 100 is based on POMO’s baseline setting. We just set
L = 2, because of training efficiency. We suggest to set L > 4 if training resources and time-budget
is sufficient;; it may increase performance further.

C.2 Integration of Lss and Lps

The Lps is an extension of Lss where it can both leverage problem symmetricity and solution
symmetricity. Therefore, we can simply use LRL-Sym = Lps. However, some specific CO problem
such as TSP has cyclic nature, which contains pre-identifiable solution symmetricity, and some
method already exploit the cyclic nature. For example, the POMO [23] which is a powerful NCO
model already utilizes pre-identified solution symmetricity in the training process for specific CO
tasks. Therefore, we provide a general loss term LRL-Sym = Lps + βLss that can be used with POMO
or similar methods for specific CO problems (TSP and CVRP). If the problem has pre-identified
solution symmetricity (TSP) or has a strong cyclic nature (CVRP), we can set β = 1 to leverage
solution-symmetricity more. If we do not have specific domain knowledge for the target task, then
we leave β = 0, to leverage problem-symmetricity and solution-symmetricity simultaneously using
only Lps.

C.3 Multi-start Post-processing

To sample multi solutions from one solver Fθ we suggest instance augmentation method following
[23]. As suggested in [23], we can generate multiple samples to ablate first node selection of decoding
step by N . Moreover we can generate 8 samples to rotate with 0, 90, 180, 270 degrees with reflection:
4×2 = 8. To comparison with Sym-NCO and POMO as shwon in Fig. 5 (three markers), we conduct
these multi state post processing with sampling width: 1, 100, 100× 8.

We, on the other hand, suggest an extended version of the instance augmentation method of [23],
using random orthogonal matrix Q. By transforming input problem P with Q1, ..., QM which are

17

orthogonal matrices, we can sample multiple sample solutions from the M symmetric problems. We
used these strategies in PCTSP and OP by setting M = 200.

C.4 Details of Projection Head

The projection head introduced in Section 3.2 is a simple two-layer perception with the ReLU activa-
tion function, where input/output/hidden dimensions are equals to encoder’s embedding dimension
(i.e. 128).

C.5 Computing Resources and Computing Time

For training Sym-NCO, we use NVIDIA A100 GPU. Because POMO implementation does not
support GPU parallelization, we use a single GPU for the POMO + Sym-NCO. It takes approximately
two weeks to finish training POMO + Sym-NCO. For training AM + Sym-NCO, we use 4× GPU,
which takes approximately three days to finish training.

As mentioned in Section 5.2, we use NVIDIA RTX2080Ti single GPU at the test time.

18

D Additional Experiments

D.1 Hyperparameter Tuning of α in CVRP

We did not tune hyperparameter much in this work because training resources were limited where
Sym-NCO must be verified on several tasks and DRL-NCO architectures. Therefore, we only contain
simple hyperparameter ablation for α in CVRP (POMO + SymNCO setting).

0 2000 4000 6000 8000
Epoch

16

17

18

19

20

O
bj

ec
ti

ve

α = 0.2
α = 0.1

Figure 8: Alblation Study for α ∈ {0.1, 0.2}

This validation results shows α = 0.2 give slightly better performances than α = 0.1, but tuning of α
semms to be not sensitive.

19

D.2 Performance Evaluation on TSPLIB

This section gives Sym-NCO performance evaluation in the TSPLIB (N < 250). Sym-NCO and
the POMO is pre-trained model in N = 100 that is evaluated in Table 1. In this experiment, we
conduct multi-start sampling with sample width M = N × 20 where the N indicates multi initial
city sampling of problem size (ex., the “eil51" has N = 51). The 20 indicates multi-sampling using
random orthogonal matrix as we introduced in Appendix C.5. As shown in the below table, our
Sym-NCO outperforms POMO, having a 1.62% optimal gap, which is extremely high performance
in real-world TSPLIB evaluation compared with other NCO evaluations [19].

Table 9: Performance comparison in real-world instances in TSPLIB.

Instance Opt. POMO [23] Sym-NCO (ours)

Cost Gap Cost Gap

eil51 426 429 0.82% 432 1.39%
berlin52 7,542 7,545 0.04% 7,544 0.03%
st70 675 677 0.31% 677 0.31%
pr76 108,159 108,681 0.48% 108,388 0.21%
eil76 538 544 1.18% 544 1.18%
rat99 1,211 1,270 4.90% 1,261 4.17%
rd100 7,910 7,912 0.03% 7,911 0.02%
KroA100 21,282 21,486 0.96% 21,397 0.54%
KroB100 22,141 22,285 0.65% 22,378 1.07%
KroC100 20,749 20,755 0.03% 20,930 0.87%
KroD100 21,294 21,488 0.91% 21,696 1.89%
KroE100 22,068 22,196 0.58% 22,313 1.11%
eil101 629 641 1.84% 641 1.84%
lin105 14,379 14,690 2.16% 14,358 0.54%
pr124 59,030 59,353 0.55% 59,202 0.29%
bier127 118,282 125,331 5.96% 122,664 3.70%
ch130 6,110 6,112 0.03% 6,118 0.14%
pr136 96,772 97,481 0.73% 97,579 0.83%
pr144 58,537 59,197 1.13% 58,930 0.67%
kroA150 26,524 26,833 1.16% 26,865 1.28%
kroB150 26,130 26,596 1.78% 26,648 1.98%
pr152 73,682 74,372 0.94% 75,292 2.18%
u159 42,080 42.567 1.16% 42,602 1.24%
rat195 2,323 2,546 9.58% 2,502 7.70%
kroA200 29,368 29,937 1.94% 29,816 1.53%
ts225 126,643 131,811 4.08% 127,742 0.87%
tsp225 3,919 4,149 5.87% 4,126 5.27%
pr226 80,369 82,428 2.56% 82,337 2.45%

Avg Gap 0.00% 1.87% 1.62%

20

D.3 Performance Evaluation of Transferability to Large Scale Problems

This section verifies that the pre-trained model using the Sym-NCO has powerful transferability on
large-scale problems. We use the efficient-active-search (EAS) [44] as a transfer learning algorithm for
large-scale TSP 3. In transfer learning, the number of iterations is an important factor for adaptation.
We set the iteration K = 200 as default; we provide an ablation study for few-shot learning
K ∈ {1, 2, 5, 10} to show Sym-NCO’s few-shot adaptation capability. Note that the pre-trained
model is trained on CVRP (N = 100).

As shown in Table 10, our method outperforms the POMO [23] in large-scale CVRP, having only a
small performance gap with LKH3. Furthermore, our method increase few shot adaptation capabilities
for large-scale tasks, where our model achieved better performances than POMO with 5 × reduced
training shot K. To sum up, our Sym-NCO can be positioned with an effective pretraining scheme
that approximately imposes symmetricity and is further transferred to larger-scale tasks.

Table 10: Performance comparison in large scale CVRP. The performance is evaluated on ten random
generated CVRP data.

CVRP (N = 500) CVRP (N = 1, 000)

Cost Gap Cost Gap

LKH3 [40] 60.37 0.00% 115.74 0.00%

POMO [23] + EAS [44] 63.30 4.85% 126.56 9.34%
Ours + EAS [44] 62.41 3.37% 121.85 5.92%

Table 11: Performance evaluation of few shot adaptation to large scale CVRP.
CVRP (N = 500) CVRP (N = 1, 000)

K = 1 K = 2 K = 5 K = 10 K = 1 K = 2 K = 5 K = 10

POMO [23] + EAS [44] 136.91 116.77 77.57 69.90 366.61 311.41 189.26 162.64
Sym-NCO + EAS [44] 75.85 69.71 67.26 66.33 192.12 163.92 139.66 134.61

3All the hyperparameters are the same with https://github.com/ahottung/EAS

21

D.4 Comparison with Deep Improvement Heuristic Methods

In this section, we provide performance comparison with state-of-the-art deep improvement heuristics.
As shown in Table 12, our method outperformed state-of-the-art deep improvement heuristics with
the fastest speed. Note that constructive heuristics (which include our method) and improvement
heuristics are complementary and can support each other.

Table 12: Performance comparison with deep improvement heuristics. The I indicates the number of
iterations, and the s indicates the number of samples per instance.

TSP (N = 100) TSP (N = 100)

Cost Gap Cost Gap

Wu et al. (I = 5K) [16] (I=5K) 1.42% 2h 2.47% 5h
DACT (I = 1K) [25] 1.62% 48s 3.18% 2m
DACT (I = 5K) [25] 0.61% 4m 1.55% 8m
Ours (s.100) 0.39% 12s 1.46% 16s
Ours (s.800) 0.14% 1m 0.90% 2m

We remark that the speed evaluation of Wu et al. [16] and DACT [25] is referred to by [25] where the
speed is evaluated with NVIDIA TITAN RTX. The speed of our method is evaluated with NVIDIA
RTX 2080Ti.

22

D.5 Comparison with Symmetric NCO models

Previous Symmetricitcy Considered NCO methods vs. Sym-NCO. Several studies exploited the
symmetric nature of CO. Ouyang et al. [37] have a similar purpose to Sym-NCO in that both are
DRL-based constructive heuristics, but they give rule-based input transformation (relative position
from first visited city) to satisfy equivariance. However, our method learns to impose symmetricity
approximately into the neural network with regularization loss term. We believe our approach is
a more general approach to tackling symmetricity (see Table 14) because not every task can be
represented as a relative position with the first visited city.

The Hudson et al. [38] is the extended work of Joshi et al. [11] where graph neural network (GNN)
makes a sparse graph from a fully connected input graph, and the search method figures out the
feasible solution from the sparse graph. This method is based on the supervised learning scheme that
requires expert labels. Moreover, this method does not guarantee to generate feasible solutions in
hard-constraint CO tasks because the pruning process of the GNN may eliminate feasible trajectory
(In TSP, it may work, but in other tasks, this method must address feasibility issues). Regardless of
this limitation, we view the line graph transformation suggested by Hudson et al. [38] as novel and
helpful in terms of symmetricity.

Ma et al. [25] proposed a DRL-based improvement heuristic, exploiting the cyclic nature of TSP
and CVRP. The purpose of Ma et al.[25], and our Sym-NCO is different: the objective of Sym-NCO
is approximately imposing symmetricity nature, but the objective of Ma et al. [25] is to improve
the iteration process of improvement heuristic with fined designed positional encoding for TSP and
CVRP. Note that Sym-NCO (constructive method) and Ma et al. [25] (Improvement method) are
complementary and can support each other. For example, pretrained constructive model can generate
an initial high-quality solution, whereas an improvement method can iteratively improve solution
quality.

Experimental Comparison.

Our Sym-NCO outperforms all the relevant related baselines as shown in Table 13. Furthermore,
Table 14 shows our method covers the widest arrange of CO tasks, where it does not needs labeled
data.

Table 13: Performance comparison with symmetric NCO methods
Optimal Gap Time GPU resources

Ouyang et al. [37] 2.61% 1.3m GTX1080Ti
Hudson et al. [38] 0.698% 28h Tesla P100
Ma et al. [25] 1.62% 48s Titan RTX
Ours 0.39% 12s RTX 2080Ti

Table 14: Performance comparison with symmetric NCO methods
Learning Methods Verified Tasks

Ouyang et al. [37] Reinforcement Learning TSP
Hudson et al. [38] Supervised Learning TSP
Ma et al. [25] Reinforcement Learning TSP, CVRP
Ours Reinforcement Learning TSP, CVRP, PCTSP, OP

23

	Proof of thm:rotsym
	Implementation of Baselines
	Implementation Details of Proposed Method
	Training Hyperparameters
	Integration of Lss and Lps
	Multi-start Post-processing
	Details of Projection Head
	Computing Resources and Computing Time

	Additional Experiments
	Hyperparameter Tuning of in CVRP
	Performance Evaluation on TSPLIB
	Performance Evaluation of Transferability to Large Scale Problems
	Comparison with Deep Improvement Heuristic Methods
	Comparison with Symmetric NCO models

