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ABSTRACT

One fascinating aspect of pre-trained vision-language models (VLMs) learning
under language supervision is their impressive zero-shot generalization capabil-
ity. However, this ability is hindered by distribution shifts between the training
and testing data. Previous test time adaptation (TTA) methods for VLMs in zero-
shot classification rely on minimizing the entropy of model outputs, tending to be
stuck in incorrect model predictions. In this work, we propose TTA with feedback
to rectify the model output and prevent the model from becoming blindly confi-
dent. Specifically, a CLIP model is adopted as the reward model during TTA and
provides feedback for the VLM. Given a single test sample, the VLM is forced
to maximize the CLIP reward between the input and sampled results from the
VLM output distribution. The proposed reinforcement learning with CLIP feed-
back (RLCF) framework is highly flexible and universal. Beyond the classification
task, with task-specific sampling strategies and a proper reward baseline choice,
RLCF can be easily extended to not only discrimination tasks like retrieval but
also generalization tasks like image captioning, improving the zero-shot general-
ization capacity of VLMs. According to the characteristics of these VL tasks, we
build different fully TTA pipelines with RLCF to improve the zero-shot gener-
alization ability of various VLMs. Extensive experiments along with promising
empirical results demonstrate the effectiveness of RLCF. The code is available at
https://github.com/mzhaoshuai/RLCF.

1 INTRODUCTION

Pre-trained vision-language models (VLMs) learning under language supervision (Radford et al.,
2021; Jia et al., 2021; Yuan et al., 2021) exhibit promising zero-shot transferability. This encourages
researchers to explore the capabilities of VLMs across a number of tasks in a zero-shot fashion. For
example, Hong et al. (2022) employ CLIP for zero-shot text-driven avatar generation, Sain et al.
(2023) adapt CLIP for zero-shot sketch-based image retrieval, and Li et al. (2023) achieve zero-shot
image captioning without images. Nonetheless, the large domain gap between training and test data
is still challenging for VLMs in a zero-shot circumstance. In this work, we investigate how to fulfill
the domain gap during test time in various tasks without task-specific training corpus, namely, test
time adaptation (TTA) for VLMs with a zero-shot prerequisite.

One pioneer TTA work in improving the zero-shot classification ability of VLMs is test time prompt
tuning (TPT) (Manli et al., 2022). Given a single test sample, TPT optimizes the learnable prefix
tokens by minimizing the entropy of model outputs to bootstrap its generalization capacity. Never-
theless, making the model confident in its predictions is a double-edged sword. It does reduce the
test error and close the domain gap at a certain level (Wang et al., 2021a), but it makes the model
stick to its incorrect predictions and unable to get out of the dilemma by itself as shown in the top of
Figure 1a. Entropy minimization tends to make the model blindly confident.

∗Part of this work is done during an internship at Baidu Inc. Yi Yang is the corresponding author.
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(b) Examples of CLIP reward. The average score of an image and all sentences is the reward baseline.

Figure 1: Feedback mechanism in zero-shot generalization with CLIP as the reward model.

Inspired by the success of the feedback mechanism in language and vision tasks (Ouyang et al.,
2022; OpenAI, 2023; Pinto et al., 2023), we introduce feedback during test time to rectify the VLM
output as shown in the bottom of Figure 1a. Previous feedback methods leverage labeled preference
data to train a reward model (Ouyang et al., 2022; Lee et al., 2023) or use labels to calculate the
reward (Cho et al., 2022; Pinto et al., 2023). Without ground truth, we refer to the well-recognized
CLIP (Radford et al., 2021) model as the feedback resource. CLIP shows powerful generalization
capacity across many VL tasks. The outputs of CLIP are also well-calibrated (without fine-tuning on
a specific dataset) (Minderer et al., 2021), i.e., the score from CLIP accurately reflects its uncertainty
about the input sample. This makes CLIP a reliable reward model. One more question is why
feedback rather than directly tuning with CLIP supervision? Ouyang et al. (2022) demonstrate that
model learning with feedback has better generalization abilities than a supervised fine-tuning model.
We get the same conclusion from our empirical results. Furthermore, CLIP supervision cannot be
directly used in generation tasks like image captioning, while the feedback mechanism is versatile.

Our proposed framework, coined as reinforcement learning with CLIP feedback (RLCF), is flexible
and universal for TTA with different VLMs in various tasks. With task-specific sampling strategies
and a proper reward baseline choice, RLCF is applicable across zero-shot classification, text-image
retrieval, and image captioning. In these tasks, the model is given a single test sample, we then
sample K candidates from the output distribution. For discrimination tasks like classification and
retrieval, the top-K sampling is applied; for the caption generalization task, a beam search method
is adopted. Assuming the input is an image, like Figure 1b, the CLIP model first gives the CLIP-
Score (Hessel et al., 2021) between the image and all candidate sentences. As CLIPScore is always
non-negative, the average score is subtracted from the calculated scores. This average baseline aims
to distinguish which model behaviors are encouraged and which are discouraged. Then the learnable
parameters in the TTA model are optimized by REINFORCE (Williams, 1992) algorithm.

While the reward design and learning algorithm remain consistent across various tasks, the TTA
pipelines are tailored to each specific task. For classification, we inherit the data augmentation and
confidence selection pipeline from TPT (Manli et al., 2022), making it work for not only prefix
tuning but also backbone adaptation. For retrieval, considering a large number of candidate entries,
we only update the parameters w.r.t. the query for efficiency. For instance, we only tune the branch
w.r.t. the input modality for a two-branch VLM like CLIP. For image captioning, we construct the
TTA pipeline with two methods (Mokady et al., 2021; Nukrai et al., 2022) built upon large language
models (LLMs). During TTA, we only tune the projector which projects the image into the LLM
token embedding space. Plus, several task-agnostic practical tricks are applied, i.e., multiple reward
models, episodic TTA (Wang et al., 2021a), and momentum buffer for incremental learning.
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To summarize our contributions: 1) To the best of our knowledge, RLCF is the first universal fully
TTA framework for improving the zero-shot generalization capacity of VLMs across different tasks.
2) We develop a novel reward function for test time RL with CLIP. It is simple yet effective. Com-
pared to previous methods (Cho et al., 2022) in the training stage, it demonstrates that CLIP can be
used as a practical reward model alone, even with a single test sample. 3) We design task-specific
TTA pipelines for three VL tasks with RLCF. Extensive experiments with promising results validate
the effectiveness of RLCF in boosting the zero-shot performance of different VLMs.

2 RELATED WORK

Reinforcement learning in language and vision The most well-known application of RL in natu-
ral language process is reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022;
OpenAI, 2023). A reward model is trained with preference data collected from humans, and it is
used to fine-tune the LLM via proximal policy optimization (PPO, Schulman et al. (2017)). Sim-
ilar approaches are applied in (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Glaese
et al., 2022). In prompt engineering for language models, RLPrompt (Deng et al., 2022) and TEM-
PERA (Zhang et al., 2023) search for discrete text prompts by RL. RL has also been widely applied
in vision and multi-modal research. A comprehensive study of deep RL in computer vision can be
found at (Le et al., 2022). Recently, Pinto et al. (Pinto et al., 2023) optimize vision task metrics
using RL and achieve promising results, demonstrating the effectiveness of RL in vision. In the
multi-modal area, ImageReward (Xu et al., 2023) collects preference data and trains a reward model
for text-to-image generation tasks, similar to RLHF in GPT models. SCST (Rennie et al., 2017)
apply CIDEr metric as a reward function with REINFORCE (Williams, 1992) algorithm to improve
the generation quality in image captioning during training. Cho et al. (Cho et al., 2022) explore the
possibility of using CLIPScore (Hessel et al., 2021) as the reward in image captioning. Their empir-
ical results show that CLIPScore cannot be an independent reward function and should be combined
with a grammar regularization or CIDEr metric. Nevertheless, the training of the grammar head and
calculation of CIDEr metric both need reference text, which is unavailable at test time.

Test-time adaptation Test-time adaptation (TTA) aims to address the distribution shift between
training and test data during test time (Sun et al., 2020; Liu et al., 2021; Wang et al., 2021a). Test-
time training (TTT, Sun et al. (2020)) allows modifications to the training pipeline. In such cases,
self-supervised auxiliary tasks are incorporated to help the model adapt to the distribution of test
data (Sun et al., 2020; Liu et al., 2021; Lin et al., 2023). For example, TTT+ (Liu et al., 2021) utilizes
instance discrimination tasks from contrastive learning (Chen et al., 2020). On the other hand, fully
TTA assumes that the training pipeline cannot be modified as the training data is unavailable (Wang
et al., 2021a). Two popular techniques in fully TTA are normalization layer adaptation and entropy
minimization. Normalization layer adaptation updates data statistics or parameters of the normaliza-
tion layer based on batched test samples (Wang et al., 2021a; Schneider et al., 2020; Niu et al., 2023)
or augmented data views from a single test sample (Zhang et al., 2022a). Entropy minimization aims
to make the model confident in its predictions to reduce generalization error (Wang et al., 2021a;
Zhang et al., 2022a; Manli et al., 2022; Niu et al., 2022; 2023). There is also a retrieval-augmented
TTA method (Zancato et al., 2023), which uses CLIP to retrieve informative data from an external
large dataset and update the decision boundary during test time.

3 METHOD

3.1 PRELIMINARIES

Fully test-time adaptation in vision-language tasks Let fθ(·) represent a VLM trained on image-
text pairs Dtrain = {(ti,vi)}Ni=1 with parameter θ, where ti ∈ Ttrain (training text space) and
vi ∈ Vtrain (training image space). The objective of TTA (Sun et al., 2020; Wang et al., 2021a) is to
boost fθ(t) or fθ(v) on domain-shifted test samples Dtest = {(tj}Mj=1 or Dtest = {(vj}Mj=1, where
tj ∈ Ttest (testing text space), vj ∈ Vtest (testing image space), Ttest ̸= Ttrain, and Vtest ̸= Vtrain.
We assume that the VLM takes either text or image as input and outputs the other modality. In
fully TTA, the training data are unavailable, and the training pipeline cannot be modified. Following
TPT (Manli et al., 2022) and MEMO (Zhang et al., 2022a), the adaptation is conducted with a single
test point, i.e., the VLM is exposed to only one tj or vj .
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Contrastive Language-Image Pre-training (CLIP) CLIP (Radford et al., 2021) comprises an im-
age encoder g(·) and a text encoder h(·). CLIP is pre-trained using a contrastive loss that encourages
similarity between feature vectors of paired images and text, aligning them in a shared embedding
space. Once pre-trained, CLIP can assess the similarity between the text t and image v as follows:

CLIP(t,v) = cos(h(t), g(v)), (1)

where cos(·, ·) represents the cosine similarity. For image classification with CLIP, the input text
consists of the prompt plus the class names, i.e., t = {pt; "dog"}, where prompt pt = "a photo of a".

3.2 TEST-TIME ADAPTATION WITH CLIP REWARD

3.2.1 REINFORCEMENT LEARNING WITH CLIP FEEDBACK

Without loss of generality, we first consider the case where the VLM fθ(·) takes an image v as input
and maps it to text t. During TTA, our goal is to learn a conditional distribution P (t|v, θ) = fθ(v)
that maximizes a reward functionR(·, ·). Formally, the optimization problem during TTA is:

max
θ

Et∼P (·|v,θ)R(t,v). (2)

Different from previous methods (Rennie et al., 2017; Cho et al., 2022; Pinto et al., 2023) which
maximizes the expected reward over batched training samples, here we only maximize the expected
reward over a single test sample v ∈ Vtest.
Policy gradient with REINFORCE To compute the gradient of the non-differentiable reward func-
tion, REINFORCE (Williams, 1992) is adopted to calculate ∇θEt∼P [R(t,v)]. It uses the so-called
"log-derivative trick" to estimate the gradient of the expected reward for a given input:

∇θEt∼P [R(t,v)] = Et∼P [R(t,v)∇θ logP (t|v; θ)]. (3)

In a VL task, the input and output modalities are closely related, e.g., the input is an image and
the output is the description of the image. Therefore, we can use CLIP to evaluate the similarity
between the input and output, and the model can maximize this similarity to align with task goals.
Similar to Cho et al. (2022), we use CLIPScore (Hessel et al., 2021) as the reward:

CLIP-S(t,v) = w ×max(CLIP(t,v), 0), (4)

where w = 2.5 is a constant. CLIPScore is always non-negative, which means it encourages all
model behaviors. However, for an irrelevant sampled image-text pair in Figure 1b, we expect the
reward model to provide negative feedback to discourage such behavior. Cho et al. (Cho et al.,
2022) adopt a greedy search baseline which needs to be combined with a grammar regularization
or CIDEr metric to be a practical reward function. In this work, we demonstrate that with proper
sampling strategies and baseline, CLIPScore can also be used as the sole reward function in different
VL tasks. Specifically, we set the reward baseline as the average CLIPScore of sampled image-text
pairs. The reward function with baseline becomes:

R(t,v) = CLIP-S(t,v)− Et∼P [CLIP-S(t,v)]. (5)

It is straightforward to get the reward function for a VLM which takes text t as input and return an
image v according to Eq. (5). The sampling strategies will be presented in the next section.

3.2.2 TASK-SPECIFIC FULLY TEST-TIME ADAPTATION

RLCF is flexible and applicable across various VL tasks, and we apply RLCF to three different VL
tasks in this work. For all tasks, the VLM solely learns through REINFORCE with Eq. (5) as the
reward function during test time. However, VLMs and sampling strategies vary with tasks. Next,
we introduce our task-specific fully TTA pipelines.

Zero-shot image classification on OOD data Figure 2 illustrates the fully TTA pipeline for zero-
shot image classification with RLCF. Without loss of generality, we also choose CLIP as the classi-
fier. The TTA pipelines include two adaptation manners: prompt tuning and image encoder tuning.
TPT (Manli et al., 2022) shows that entropy minimization for image encoder tuning results in infe-
rior performance compared to prompt tuning. By contrast, RLCF works both with prompt tuning
and image encoder tuning, demonstrating its versatility.
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Figure 2: Fully TTA for zero-shot image classification with CLIP reward. Left: image encoder
tuning. Right: prompt tuning. The pipelines of the two are the same except for the learnable
parameters. A single test image is first augmented to produce multiple views, then only confident
views with low-entropy predictions are selected. For each selected view, we sample the top-K
classes, calculate their rewards, and update the parameters using policy gradient.
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(a) Text-to-Image Retrieval

text
encoder

image 1
image 2

...
image K

text
encoder

sentence 1
sentence 2

...
sentence n

image
encoder

Policy Gradient

CLIP
Reward

sentence 1
sentence 2

...
sentence K

Top-K sampling

Figure 3: Fully TTA for zero-shot text-image retrieval with CLIP reward.

In Figure 2, given a test image v, it is first operated with data augmentors {τ1, τ2, . . . , τn} for
multiple different views. Following TPT (Manli et al., 2022) and SAR (Niu et al., 2023), we only
reserve the confident samples with low-entropy predictions, namely, the entropy H(P (t|τ(v))) of
the selected view should be low. High-entropy predictions are considered unreliable as they lack
confidence in their outputs. In practice, we use the bottom 10th percentile of n = 64 augmented
views with low entropies as TPT (Manli et al., 2022). For each low-entropy view, class names of
the top-K predictions are used to calculate their CLIP rewards according to Eq. (5). The learnable
parameters are then optimized to maximize the expected reward by gradient descent as Eq. (3).

One point that needs to be clarified is why using the CLIP reward as feedback rather than di-
rectly fine-tuning the model with CLIP supervision. For example, methods like knowledge distilla-
tion (KD, Hinton et al. (2015)) or pseudo-label (Lee et al., 2013). InstructGPT (Ouyang et al., 2022)
demonstrates that model learning with feedback has better generalization capabilities compared to a
supervised fine-tuning model. In our context, KD or pseudo-label requires a weak model (student)
to mimic a strong model (teacher). However, it is worth noting that the student may be correct
while the teacher may be incorrect. For instance, given an image of a dog, the top-3 predictions
of the student and teacher models are {dog, horse, tree} and {cat, dog, horse}, respectively. For
KD or pseudo-label, the student will be forced to follow the incorrect behaviors of the teacher. In
contrast, the feedback mechanism only assesses the sampled results from the student, less likely to
alter the correct prediction. In such cases, the feedback mechanism combines the merits of both the
student and the teacher. Another important reason is that CLIP supervision cannot be directly used
in generalization tasks like image captioning, while the feedback mechanism is universal.

Zero-shot text-image retrieval The fully TTA pipeline for zero-shot retrieval with RLCF is pre-
sented in Figure 3. CLIP also serves as the zero-shot retrieval model. For retrieval, the number of
candidates is usually large, so we only update the parameters with respect to the query for efficiency.
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1) A group of zebras swimming in a body of water.
2) A close up of a shark swimming in a body of water.
3) A close up view of a shark swimming in a body of water.
4) A close up view of a whale swimming in a body of water.

...
Policy Gradient

caption model sampling K captions via beam search

Figure 4: Fully TTA for image captioning with CLIP reward.

For text-to-image retrieval, the image encoder remains fixed, while the text encoder is frozen in the
other case. Given a query, top-K sampling is employed to the returned results to calculate the re-
ward. Unlike image classification, no augmentations are used for the input query. The retrieval task
requires a holistic understanding of the input query rather than identifying a single object. Augmen-
tations like crop and flip may lead to corrupt semantics.

Zero-shot and cross-domain image captioning Figure 4 illustrates the fully TTA pipeline for
image captioning with RLCF. The captioning TTA pipeline is built upon two LLM-based methods:
CapDec (Nukrai et al., 2022) and CLIPCap (Mokady et al., 2021). CapDec is trained only with text
and CLIPCap is trained with images. TTA with CapDec is undertaken with a zero-shot prerequisite,
and TTA with CLIPCap is cross-domain. During the test, CapDec and CLIPCap will be given unseen
and domain-shifted images, respectively. Both CapDec and CLIPCap utilize a projector (e.g., an
MLP or transformer (Vaswani et al., 2017)) to project CLIP feature vectors into the token embedding
space of the LLM. Only the projector is updated through policy gradient, while the LLM remains
fixed during TTA. Beam search is employed to sample K generated captions for reward calculation.

3.2.3 TEST-TIME ADAPTATION TRICKS

In this section, we introduce several general TTA techniques applicable across different tasks.

Multiple reward models with weights By default, a single CLIP-ViT-L/14 is used as the reward
model. An ensemble of multiple reward models can be used for better feedback. We assign scores
based on human preference for different CLIP models: {CLIP-ViT-L/14-336: 10, CLIP-ViT-L/14:
5, CLIP-RN50×64: 3}. These scores are then normalized to sum up to 1, serving as weights for the
ensemble. CLIP-RN uses a ResNet (He et al., 2016) as the image encoder, while CLIP-ViT adopts
a vison transformer (Dosovitskiy et al., 2021).

Episodic TTA The model is exposed to only a single test sample once, making the learned knowl-
edge unreliable for other samples. Hence, after each TTA process, the model parameters θ are reset
to the initial state θ⋆ like (Wang et al., 2021a; Manli et al., 2022). It is called episodic TTA.

Momentum buffer While episodic TTA ensures reliability, it limits the incremental learning ability
of the model. To address this issue, we introduce a momentum buffer ξ, initialized as ξ ← θ⋆.
After a TTA process, θ becomes θ, and ξ is updated by ξ ← mξ + (1 − m)θ, where m ∈ [0, 1)
is a momemtum coefficient. Every Bs samples, we update θ⋆ ← ξ. At the start of the next TTA
process, θ ← θ⋆, allowing the utilization of the learned knowledge. The momentum buffer functions
similarly to an ensemble of different models, resembling model soups (Wortsman et al., 2022).

4 EXPERIMENTS

This section presents the experimental TTA results in three tasks. For variants of our method, RLCF
uses a CLIP-ViT-L/14 as the reward model, RLCF-S adopts weighted reward sum of {CLIP-ViT-
L/14-336, CLIP-ViT-L/14, CLIP-RN50×64}, and RLCF-S-M adds the momentum buffer.

4.1 ZERO-SHOT IMAGE CLASSIFICATION ON OOD DATA

Datasets Following CLIP and TPT, we test RLCF on ImageNet (Deng et al., 2009) and its four
variant test sets with distribution shifts: ImageNet-A (Hendrycks et al., 2021b), ImageNet-V2 (Recht
et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and ImageNet-Sketch (Wang et al., 2019).
ImageNet-A consists 7,500 natural adversarial images misclassified by a ResNet-50. ImageNet-V2
contains 10,000 natural images from different sources. ImageNet-R collects 30,000 images with
artistic renditions. ImageNet-Sketch includes 50,000 black and white sketch images.
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Table 1: Top-1 accuracy of zero-shot image classification with TTA on OOD data. KD uses a
CLIP-ViT-L/14 as the teacher. The best and second-best results are highlighted. Improvement in
accuracy of RLCF compared to the baselines (zero-shot CLIP-ViT-B/16 or CoOp) is in (↑blue).

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch OOD Average

Zero-shot baseline
CLIP-ViT-B/16 66.73 47.87 60.86 73.98 46.09 57.20
CLIP-ViT-L/14 73.44 68.82 67.80 85.40 57.84 69.97

Prompt tuning for CLIP-ViT-B/16
CoOp (Zhou et al., 2021) 71.51 49.71 64.20 75.21 47.99 59.28
CoCoOp (Zhou et al., 2022) 71.02 50.63 64.07 76.18 48.75 59.91
TPT (Manli et al., 2022) 68.98 54.77 63.45 77.06 47.94 60.81
TPT + CoOp (Manli et al.) 73.61 57.95 66.83 77.27 49.29 62.84
TPT + CoOp + KD (Hinton et al.) 71.40 63.25 65.28 82.70 55.78 66.75
RLCF 73.23(↑6.50) 65.45(↑17.58) 69.77(↑8.91) 83.35(↑9.37) 54.74(↑8.65) 68.33(↑11.13)
RLCF + CoOp 76.05(↑4.54) 69.74(↑20.03) 70.62(↑6.42) 84.51(↑9.30) 56.49(↑8.50) 70.34(↑11.06)
RLCF-S + CoOp 76.50(↑4.99) 71.11(↑21.40) 70.92(↑6.72) 84.73(↑9.52) 56.97(↑8.98) 70.93(↑11.65)

Image encoder tuning for CLIP-ViT-B/16
Pseudo-label (Lee et al., 2013) 69.11 62.15 63.56 80.03 49.45 63.80
TPT (Manli et al., 2022) 69.42 61.62 63.70 79.74 49.47 63.63
KD (Hinton et al., 2015) 70.92 66.39 65.01 82.12 53.51 66.76
ATKD (Guo et al., 2020) 70.51 70.66 65.54 85.12 53.56 68.72
RLCF 74.85(↑8.12) 73.71(↑25.84) 69.77(↑8.91) 86.19(↑12.21) 57.10(↑11.01) 71.69(↑14.49)
RLCF-S 75.34(↑8.61) 75.00(↑27.13) 70.08(↑9.22) 86.97(↑12.99) 57.75(↑11.66) 72.45(↑15.25)
RLCF-S-M 75.48(↑8.75) 75.16(↑27.29) 70.42(↑9.56) 87.23(↑13.25) 57.73(↑11.64) 72.64(↑15.44)
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Figure 5: ECE and average accuracy on ImageNet-A/V2/R. Prompt tuning with CLIP-ViT-B/16.

Baselines We compare RLCF with few-shot prompt tuning methods for CLIP — CoOp (Zhou
et al., 2021) and CoCoOp (Zhou et al., 2022) (16 shots on ImageNet), state-of-the-art test-time
prompt tuning methods — TPT (Manli et al., 2022), and knowledge distillation (KD (Hinton et al.,
2015), ATKD (Guo et al., 2020)), which use the reward model as the teacher during test time. TPT
+ CoOp means TPT adopts the learned prompts of CoOp as the initialization, otherwise, TPT uses
token embedding of a hard prompt "a photo of a" as initial weights. For all prompt tuning methods,
the length of learnable prompts is 4. Results of Pseudo-label (Lee et al., 2013) are also presented.

Implementation details For prompt tuning, the learning rate is 7e-3, the weight decay value is
5e-4, and the optimizer is AdamW (Loshchilov & Hutter, 2019). For image encoder tuning, the
learning rate is decreased to 1e-5. Given a test sample, the parameters will be optimized for 3
steps to maximize the reward of the top-3 (sampling factor K = 3) predictions. The momentum
coefficient m = 0.9998 and update interval Bs = 64 for the momentum buffer.

Results In Table 1, RLCF largely improves the zero-shot generalization capacity of CLIP-ViT-
B/16 and outperforms previous methods. Notably, on ImageNet-A/V2/R, RLCF with CLIP-ViT-
B/16 surpasses the reward model — CLIP-ViT-L/14. This shows that RLCF effectively combines
the capabilities of both the TTA model and the reward model through the feedback mechanism,
something that KD or pseudo-label cannot achieve. RLCF significantly outperforms the entropy
minimization method — TPT. TPT can only learn from the TTA model itself and lacks awareness
of the correctness of its predictions. Figure 5a presents the expected calibration error (ECE) (Guo
et al., 2017) of TPT and RLCF. The ECE of the two both increases along with the TTA steps, but the
ECE of RLCF is clearly lower. This means the output of RLCF better reflects its uncertainty about
the input and is more reliable. In Figure 1a&8, RLCF provides multiple positive scores for various
objects, preventing the model from becoming blindly confident. In Figure 5b, the top-5 accuracy
of TPT drops with more steps. The model is stuck in its incorrect predictions and pushes away the
ground truth as shown in Figure 1a. By contrast, there is no such issue for RLCF in Figure 5c.

Ablation study about sampling factors and reward model choices can be found in Appendix B.
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Table 2: TTA for zero-shot text-image retrieval. KD uses CLIP-ViT-L/14 as the teacher model.
Improvement in Recall@1 with RLCF compared to the CLIP-ViT-B/16 baseline is in (↑blue).

Method
MS-COCO (5K test images) Flickr30K (1K test images)

text-to-image image-to-text text-to-image image-to-text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot baseline
CLIP-ViT-B/16 33.0 58.2 68.9 52.5 76.8 84.6 62.2 85.7 91.8 81.2 96.4 98.5
CLIP-ViT-L/14 36.1 60.9 71.1 56.2 78.9 86.9 64.6 87.1 92.1 85.3 97.2 99.1
CLIP-ViT-L/14-336 36.6 60.9 71.0 57.3 80.6 87.8 67.1 88.9 93.2 86.6 98.0 99.1

TTA for CLIP-ViT-B/16
Pseudo-label (Lee et al.) 33.0 57.8 68.2 52.4 72.4 81.8 62.2 85.3 91.7 81.1 93.2 97.8
KD (Hinton et al.) (steps: 3) 37.6 61.0 70.7 57.0 79.0 86.3 66.9 87.9 92.9 85.3 97.5 98.5
KD (Hinton et al.) (steps: 5) 34.6 59.7 69.8 53.7 76.6 84.5 61.4 86.0 91.7 83.1 95.9 97.9
RLCF 37.3(↑4.3) 62.7 71.5 59.1(↑6.6) 80.1 86.9 67.1(↑4.9) 89.1 93.2 87.3(↑6.1) 97.2 98.8
RLCF-S 38.3(↑5.3) 63.4 72.5 60.8(↑8.3) 80.8 87.5 68.5(↑6.3) 90.0 93.7 88.3(↑7.1) 97.7 98.9
RLCF-S-M 38.4(↑5.4) 63.5 72.6 60.8(↑8.3) 80.5 87.6 68.5(↑6.3) 90.2 93.7 88.1(↑6.9) 97.7 98.9

4.2 ZERO-SHOT TEXT-IMAGE RETRIEVAL

Implementation details For text-image retrieval, we use the test set of Flickr30K (Plummer et al.,
2015) and test split of MS-COCO (Lin et al., 2014) divided by Karpathy et al. (Karpathy & Fei-Fei,
2015). Each image in the two test sets corresponds to 5 sentences. CLIP-ViT-B/16 is adopted as the
retrieval model. The learning rate is 1e-6, the weight decay value is 5e-4, and AdamW optimizer
is used. For MS-COCO, the sampling factor K = 12 for text-to-image retrieval, and K = 20 for
the other case. For Flickr30K, K = 12 and K = 16 for text-to-image and image-to-text retrieval,
respectively. The adaptation steps are 8. For the momentum buffer, m = 0.9998 and Bs = 64. We
also compare RLCF with knowledge distillation (KD) with CLIP-ViT-L/14 as the teacher.

Results Table 2 presents the retrieval results on MS-COCO and Flickr30K. RLCF demonstrates
significant improvement compared to the zero-shot baseline and even outperforms the most powerful
CLIP-ViT-L/14-336. Similar phenomena are also observed in zero-shot classification. The feedback
mechanism reserves the merits of the TTA model and makes the TTA model improve with the
reward model. In contrast, KD or pseudo-label forces the student to mimic the teacher regardless of
the correctness of the teacher as discussed in Sec. 3.2.2. In KD for supervised classification (Hinton
et al., 2015; Zhao et al., 2022; Wang et al., 2021b), the student is generally worse than the teacher
due to their capacity gap and incomplete learning. Nevertheless, RLCF can surpass the powerful
reward model with the feedback mechanism during test time in a zero-shot circumstance.

4.3 IMAGE CAPTIONING

Datasets To test the adaptation ability of RLCF for captioning models in a zero-shot or cross-
domain condition, we train the captioning model on MS-COCO train set (Lin et al., 2014) and
test it on the test set of Flickr30K (Plummer et al., 2015) and validation set of NoCaps (Agrawal
et al., 2019). NoCaps validation set contains three splits according to whether contains MS-COCO
objects: in domain contains only MS-COCO objects, near domain contains both MS-COCO and
novel objects, and out domain contains only novel objects.

Implementation details CLIPCap (Mokady et al., 2021) and CapDec (Nukrai et al., 2022), two
LLM-based methods, are chosen as the captioning models. The two have the same architecture,
while CLIPCap is trained with CLIP-ViT-B/16 image embedding and CapDec is trained with CLIP-
ViT-B/16 text embedding. The projector in Figure 4 is an 8-layer transformer encoder that contains
about 43M parameters. The LLM is an OPT-125M (Zhang et al., 2022b). During TTA, we only tune
the parameters of the projector. For CLIPCap, the learning rate is 2e-6, and sampling factor K = 10;
for CapDec, the learning rate is 5e-6 on Flickr30K, 3e-6 on NoCaps, and K = 6. No weight decay
is applied. The optimizer is AdamW. The TTA step is 4. After TTA, captions are generated with a
beam search with a width of 5 and the final caption is the one with the highest score.

Results Table 3 presents results for image captioning. A weakly supervised method — MAGIC (Su
et al., 2022) and a zero-shot method —DeCap (Li et al., 2023), are included for reference. The
reported metrics include BLEU@4, CIDEr, SPICE, and RefCLIPScore (Hessel et al., 2021). Ref-
CLIPScore reflects the similarity between generated text and reference captions. The improvements
in CIDEr metric (Vedantam et al., 2015) are highlighted. For all metrics, both CapDec and CLIPCap
with RLCF significantly improve upon the baselines. This demonstrates the strong generalization
ability of RLCF in image captioning, even with a single test sample. It is noteworthy that CLIPCap
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Table 3: TTA for image captioning. B@4 for BLEU@4, C for CIDEr, S for SPICE, and Ref-C for
RefCLIPScore. The gain of well-recognized CIDEr metric is in (↑blue).

Method
MS-COCO =⇒ NoCaps MS-COCO =⇒ Flickr30K

in domain near domain out domain Karpathy’s test split
B@4 C S B@4 C S B@4 C S B@4 C S Ref-C

MAGIC (Su et al., 2022) - - - - - - - - - 5.2 18.3 5.7 -
DeCap (Li et al., 2023) - 72.7 - - 61.9 - - 43.9 - 17.7 42.0 13.8 -

TTA for CapDec (zero-shot)
CapDec (Nukrai et al., 2022) 32.4 62.6 10.3 29.2 54.0 9.6 17.2 31.7 6.4 19.3 37.0 11.7 74.1
+ RLCF 33.3 68.0(↑5.3) 10.7 30.3 57.9(↑3.9) 10.3 17.6 35.5(↑3.8) 6.9 20.3 41.9(↑4.9) 12.7 75.7
+ RLCF-S 34.0 68.3(↑5.7) 10.8 30.3 58.5(↑4.5) 10.3 17.7 35.3(↑3.6) 6.9 20.1 41.6(↑4.6) 12.7 75.7

TTA for CLIPCap (cross-domain)
CLIPCap (Mokady et al., 2021) 36.3 76.9 11.9 34.8 73.5 11.0 22.5 54.6 8.6 21.8 49.3 13.1 76.7
+ RLCF 38.6 84.0(↑7.1) 12.5 36.1 79.6(↑6.1) 11.8 24.7 63.8(↑9.2) 9.6 23.3 56.6(↑7.3) 14.5 79.4
+ RLCF-S 38.7 84.7(↑7.8) 12.6 35.8 79.7(↑6.2) 11.8 24.2 63.1(↑8.5) 9.5 23.6 57.8(↑8.5) 14.6 79.4

1) A dog is walking on a grassy field.
2) A dog is standing in a grassy field.
3) A dog is standing on a grassy field.
4) A man is walking a dog in a field.

...

steps 1

1) A dog is standing in front of a crowd of people.
2) A dog is standing in front of a group of people.
3) A dog is standing in the grass with people.
4) A dog is standing on a grassy field with people watching.

...

steps 4

1) A black motorcycle is parked on the street.
2) A motorcycle parked on the side of a road.
3) A motorcycle parked on the side of a street.
4) A black motorcycle parked on the side of a road.

...

steps 1

1) A black and silver motorcycle parked on a street.
2) A black motorcycle is parked on a street.
3) A black and silver motorcycle is parked on a street.
4) A black and silver motorcycle parked on a sidewalk.

...

steps 4

case 1

case 2

1) A group of people standing around in the snow.
2) A group of people standing around a snow covered field.
3) A group of people that are standing in the snow.
4) A group of people standing in a snow covered field.

...

steps 1

1) A group of people playing a game of ice hockey.
2) A group of people playing a game of hockey.
3) A group of people standing in front of a rink.
4) A group of people standing around a hockey rink.

...

steps 4case 3

1) A woman is wearing a hat and a umbrella.
2) A woman wearing a hat and a umbrella.
3) A woman with a hat and a umbrella in a pool.
4) A woman wearing a hat and a umbrella in a pool.

...

steps 1

1) A woman is wearing a hat and a umbrella.
2) A woman in a hat and sunglasses in a pool.
3) A woman wearing a hat and sunglasses in a pool.
4) A woman with a hat and a umbrella in a pool.

...

steps 4case 4

Figure 6: Intermediate generated captions of CLIPCap and the CLIP reward. The sampling
factor K = 10, only 4 candidates are shown here. The final generated caption is in blue.

achieves greater improvements in CIDEr (up to 9.2) compared to CapDec. CLIPCap can also use a
large sampling factor K. This is possible because CLIPCap can generate higher-quality candidate
captions. The results of RLCF-S-M are not shown as it is no better than RLCF-S.

Qualitative results Figure 6 displays the intermediate-generated captions and their corresponding
rewards. The visualization reveals that the CLIP reward model favors captions that provide a holistic
description of the image. Through feedback, the generation of such captions is encouraged. During
TTA, captions aligned with the preferences of CLIP are given higher priority. Please refer to Figure 7
in Appendix A for more visualization cases.

5 CONCLUSION

In this work, we introduce reinforcement learning with CLIP feedback (RLCF) to improve the zero-
shot generalization ability of VLMs on the fly. A novel reward function with CLIP is developed. We
instantiate three TTA pipelines for image classification, text-image retrieval, and image captioning
with task-specific sampling strategies and parameter tuning manners. With RLCF, the zero-shot gen-
eralization capacity of various VLMs is boosted significantly. We hope RLCF can provide heuristic
information for future research that employs TTA with feedback from large foundation models.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported in part by the Australian Research Council (ARC) under Grant
DP200100938. Thanks Chao Liang for his helpful discussions.

REFERENCES

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra,
Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In ICCV,
2019.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

Jaemin Cho, Seunghyun Yoon, Ajinkya Kale, Franck Dernoncourt, Trung Bui, and Mohit Bansal.
Fine-grained image captioning with clip reward. In Findings of NAACL, 2022.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In EMNLP, 2022. URL https://aclanthology.org/2022.emnlp-main.
222.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.
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APPENDIX

A VISUALIZATION RESULTS

1) A couple of people sleeping on a bed.
2) A couple of kids sleeping on a bed.
3) Two people sleeping together on a bed.
4) A couple of people sleeping together on a bed.

...

steps 1

1) A couple of men sleeping on a bed.
2) A couple of people sleeping on a bed.
3) Two people sleeping together on a bed.
4) A couple of people sleeping together on a bed.

...

steps 2case 1

1) A group of people walking down a city street.
2) A group of people walking down a busy street.
3) A crowd of people walking down a city street.
4) A group of people walking down a street at night.

...

steps 1

1) A crowd of people on a city street at night.
2) A group of people walking down a city street.
3) A crowd of people walking down a city street.
4) A group of people walking down a street at night.

...

steps 2

1) A woman in a dress holding a pink vase.
2) A woman in a pink dress holding a white vase.
3) A woman in a white dress holding a pink vase.
4) A woman wearing a pink dress and a white vase.

...

steps 1

1) A woman wearing a pink dress and a white shirt.
2) A woman wearing a pink dress and a white hat.
3) A woman wearing a pink dress and a white vase.
4) A woman wearing a white dress and a white shirt.

...

steps 2case 3

case 2

1) Two bunk beds in a room with a window.
2) A room with two bunk beds and a window.
3) A bedroom with two bunk beds and a window.
4) A couple of bunk beds in a room.

...

steps 1

1) Two bunk beds in a room with a window.
2) A couple of bunk beds that are in a room.
3) A couple of bunk beds are in a room.
4) A couple of bunk beds in a room..

...

steps 2case 4

1) A couple of people sleeping on a bed.
2) A couple of men sleeping on a bed.
3) Two people sleeping together on a bed.
4) A couple of people sleeping together on a bed.

...

steps 3

1) A couple of men sleeping on a bed.
2) A couple of people sleeping on a bed.
3) Two people sleeping together on a bed.
4) A couple of men sleeping on a couch.

...

steps 4

1) A crowd of people on a city street at night.
2) A crowd of people on a street at night.
3) A crowd of people walking down a street at night.
4) A crowd of people walking down a city street.

...

steps 3

1) A crowd of people on a city street at night.
2) A crowd of people on a street at night.
3) A crowd of people walking down a street at night.
4) A crowd of people at a crosswalk at night.

...

steps 4

1) A woman wearing a pink dress and a white shirt.
2) A woman wearing a pink dress and white shirt.
3) A woman wearing a white dress and a white shirt.
4) A woman wearing a white dress and a pink shirt.

...

steps 3

1) A woman wearing a pink dress and a white shirt.
2) A woman wearing a pink dress and white shirt.
3) A woman in a pink dress and a white shirt.
4) A woman wearing a white dress and a white shirt.

...

steps 4

1) A couple of bunk beds are in a room.
2) A couple of bunk beds that are in a room.
3) A couple of bunk beds in a room.
4) A pair of bunk beds are in a room

...

steps 3

1) A couple of bunk beds are in a room.
2) Two bunk beds that are in a room.
3) Two bunk beds are in a room.
4) A couple of bunk beds that are in a room.

...

steps 4

Figure 7: Generated captions at each TTA step of CLIPCap and the CLIP reward. The sam-
pling factor K = 10, only 4 candidates are shown here. The final generated caption is in blue.

In Figure 7, we show more captioning examples like that in Figure 6. These samples illustrate how
CLIP reward helps the captioning model select a description that matches the picture more closely.
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(0.38) green iguana
(0.13) garter snake
(0.08) fox squirrel
(0.08) American bullfrog
(0.07) grasshopper

GT: goldfinch

(0.78) green iguana
(0.05) American alligator
(0.04) fox squirrel
(0.03) garter snake
(0.03) American bullfrog

(0.79) green iguana
(0.07) American alligator
(0.04) fox squirrel
(0.03) American bullfrog
(0.03) garter snake

(0.74) green iguana
(0.15) American alligator
(0.03) fox squirrel
(0.03) American bullfrog
(0.03) garter snake

TPT

(0.38) [+0.013] green iguana
(0.13) [-0.017] garter snake
(0.08) [+0.066] fox squirrel
(0.08) [-0.101] American bullfrog
(0.07) [+0.039] grasshopper

RLCF

(0.62) [+0.013] green iguana
(0.09) [+0.066] fox squirrel
(0.08) [-0.017] garter snake
(0.04) [+0.039] grasshopper
(0.03) [-0.101] American bullfrog

(0.50) [-0.029] green iguana
(0.20) [+0.024] fox squirrel
(0.07) [-0.059] garter snake
(0.04) [+0.001] American robin
(0.03) [+0.063] goldfinch

(0.52) [+0.027] goldfinch
(0.29) [-0.035] American robin
(0.10) [-0.013] fox squirrel
(0.03) [+0.039] hummingbird
(0.02) [-0.018] junco

Step 0 Step 1 Step 2 Step 5GT: Persian cat

(0.56) umbrella
(0.11) sleeping bag
(0.06) racket
(0.06) bubble
(0.04) parachute

TPT (0.91) umbrella
(0.02) sleeping bag
(0.02) bubble
(0.01) parachute
(0.00) racket

(0.94) umbrella
(0.02) bubble
(0.01) sleeping bag
(0.01) parachute
(0.00) racket

(1.00) umbrella
(0.00) parachute
(0.00) sleeping bag
(0.00) bubble
(0.00) mongoose

(0.58) [+0.000] umbrella
(0.11) [+0.038] Persian cat
(0.10) [+0.024] lynx
(0.07) [-0.051] sleeping bag
(0.02) [-0.011] parachute

(0.47) [+0.000] umbrella
(0.44) [+0.038] Persian cat
(0.02) [+0.024] lynx
(0.02) [-0.051] sleeping bag
(0.02) [-0.012] doormat

(1.00) [+0.038] Persian cat
(0.00) [+0.000] umbrella
(0.00) [+0.024] lynx
(0.00) [-0.012] doormat
(0.00) [-0.051] sleeping bag

RLCF

(Probability) Top-5

(Probability) [Reward] Top-5
(0.56) [+0.045] umbrella
(0.11) [-0.006] sleeping bag
(0.06) [-0.030] racket
(0.06) [-0.043] bubble
(0.04) [+0.034] parachute

Figure 8: Top-5 predictions, probabilities, and rewards with different TTA steps. Prompt tuning
for CLIP-ViT-B/16. For RLCF, sampling factor K = 5. We perform 5 TTA steps and step 0 means
the original prediction. Images from ImageNet-A.

In Figure 8, we provide visualization of top-5 predictions with different TTA steps like Figure 1a. In
Figure 8, the ground truth is not in the top-5 predictions. In such cases, TPT cannot find the object
by minimizing the entropy of model outputs. By contrast, RLCF can discover the ground truth by
pushing away the objects with negative feedback.

B ABLATION STUDY

B.1 SAMPLING FACTOR
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Figure 9: Different sampling factors K in im-
age classification on OOD data.

When using RLCF with TTA for various VL tasks,
we sample K candidates from output distribution
for reward calculations. In this section, we exam-
ine how K affects different tasks and models.

Image classification on OOD data Figure 9
shows the average top-1 and top-5 accuracy on
ImageNet-A, ImageNet-V2, and ImageNet-R for
different K in image classification. RLCF reduces
to pseudo-label (Lee et al., 2013) when K = 1.
A larger K improves top-5 accuracy, but not top-
1. Too many sampled classes may make the opti-
mization process difficult for policy gradient. For
example, when K = 5 and only one class gets
a positive score and other classes get negative
scores, pushing away 4 negative classes may cause
unpredictable behavior and make the model miss
the ground truth after gradient updating.

Zero-shot text-image retrieval Table 4 presents the effect of sampling factor K in zero-shot text-
image retrieval. Similar to image classification, a larger K generally leads to better Recall@5 and
Recall@10 compared to a smaller K. However, a smaller K tends to produce better Recall@1 in
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Table 4: Different sampling factors K in zero-shot text-image retrieval. Kt2i for sampling in
text-to-image retrieval, and Ki2t for sampling in image-to-text retrieval.

Method
MS-COCO (5K test images) Flickr30K (1K test images)

text-to-image image-to-text text-to-image image-to-text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot baseline
CLIP-ViT-B/16 33.0 58.2 68.9 52.5 76.8 84.6 62.2 85.7 91.8 81.2 96.4 98.5

Kt2i Ki2t TTA for CLIP-ViT-B/16 with RLCF
6 14 37.8 61.1 68.1 59.1 80.3 86.5 66.6 87.9 91.5 86.7 97.6 98.6
8 16 37.6 62.1 69.6 59.3 80.4 86.8 66.7 89.0 92.1 87.3 97.2 98.8

10 18 37.4 62.4 70.8 59.5 80.1 86.9 67.0 89.0 92.7 87.1 97.2 98.7
12 20 37.3 62.7 71.5 59.1 80.1 86.9 67.1 89.1 93.2 87.2 97.3 98.6
14 22 37.0 62.5 72.4 59.8 80.2 86.8 66.9 89.0 93.4 87.3 97.3 98.6
16 24 36.8 62.4 72.5 59.5 80.5 87.3 66.9 88.8 93.5 87.6 96.9 98.7
18 26 36.9 62.5 72.5 59.2 80.3 87.0 66.7 88.8 93.5 87.3 96.8 98.6

Table 5: Different sampling factors K in image captioning. Metrics B@4 for BLEU@4, C for
CIDEr, S for SPICE, and Ref-C for RefCLIPScore.

Method
MS-COCO =⇒ NoCaps MS-COCO =⇒ Flickr30K

in domain near domain out domain Karpathy’s test split
B@4 C S B@4 C S B@4 C S B@4 C S Ref-C

TTA for CapDec (zero-shot)
CapDec (Nukrai et al., 2022) 32.4 62.6 10.3 29.2 54.0 9.6 17.2 31.7 6.4 19.3 37.0 11.7 74.1
+ RLCF (K = 4) 32.7 65.5 10.7 30.0 57.5 10.2 17.1 34.6 6.8 20.2 40.8 12.5 75.4
+ RLCF (K = 6) 33.3 68.0 10.7 30.3 57.9 10.3 17.6 35.5 6.9 20.3 41.9 12.7 75.7
+ RLCF (K = 8) 32.7 65.5 10.7 30.0 57.5 10.2 17.1 34.6 6.8 20.2 41.8 12.9 75.8

TTA for CLIPCap (cross-domain)
CLIPCap (Mokady et al., 2021) 36.3 76.9 11.9 34.8 73.5 11.0 22.5 54.6 8.6 21.8 49.3 13.1 76.7
+ RLCF (K = 8) 38.4 83.3 12.5 36.0 78.5 11.6 24.1 61.4 9.3 22.7 55.8 14.3 79.3
+ RLCF (K = 10) 38.6 84.0 12.5 36.1 79.6 11.8 24.7 63.8 9.6 23.3 56.6 14.5 79.4
+ RLCF (K = 12) 38.5 82.0 12.5 35.9 80.2 11.9 24.4 63.1 9.5 23.1 57.5 14.6 79.4

most cases. In MS-COCO and Flickr30K, one image has 5 reference captions, so the sampling
factor for image-to-text retrieval is larger than K for text-to-image retrieval.

Image captioning Table 5 illustrates the effect of different values of sampling factor K in cross-
domain image captioning. The optimal K varies for different image captioning models. CLIPCap
has better captioning capabilities than CapDec, so it can produce better candidates. Therefore, a
larger K is suitable for CLIPCap.

From the ablation study of sampling factor K, we find that the choice of K depends on the tasks
and VLMs. Different tasks and models require various sampling strategies.

B.2 DIFFERENT REWARD MODELS

RLCF relies on the good quality of the CLIP reward models. In this section, we show the influence
of different CLIP reward models in image classification and image captioning.

As shown in Table 6, RLCF is robust to different reward models. Compared to the baseline CoOp,
RLCF can achieve improvements even with a CLIP-RN50×4 as the reward model, which is worse
than the prompt tuning model CLIP-ViT-B/16. When the prompt tuning model and the reward
model are the same, RLCF is also better than the state-of-the-art test-time prompt tuning method —
TPT (Manli et al., 2022). With CLIP-ViT-L/14 as the reward model, RLCF with prompt tuning is
slightly better than the ensemble result. It is worth noting that RLCF with image encoder tuning in
Table 1 is obviously better than the ensemble results in the OOD average performance. Compared
to the ensemble method, RLCF can adapt to the test distribution with the feedback mechanism. This
is why RLCF shows better performance than the ensemble results.

We also test different reward models in image captioning. Results are shown in Table 7. CapDec and
CLIPCap both use CLIP-ViT-B/16 as the image embedding extractor. RLCF with different reward
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Table 6: RLCF with different reward models in image classification. "–" for not available.

Method Reward Model ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch OOD Average

Zero-shot baseline
CLIP-RN50×4 – 39.66 58.72 69.10 42.73 52.55
CLIP-ViT-B/16 – 47.87 60.86 73.98 46.09 57.20
CLIP-ViT-L/14 – 68.82 67.80 85.40 57.84 69.97
Ensemble (B/16 + L/14) – 65.94 69.02 85.92 57.98 69.72

Prompt tuning for CLIP-ViT-B/16
CoOp (Zhou et al., 2021) – 49.71 64.20 75.21 47.99 59.28
TPT + CoOp (Manli et al.) – 57.95 66.83 77.27 49.29 62.84
RLCF + CoOP CLIP-RN50×4 52.06 64.62 76.00 48.42 60.28
RLCF + CoOP CLIP-ViT-B/16 61.66 67.04 78.06 49.70 64.12
RLCF + CoOP CLIP-ViT-L/14 69.74 70.62 84.51 56.49 70.34

Table 7: RLCF with different reward models in image captioning. Metrics M for METEOR, C
for CIDEr, S for SPICE, and Ref-C for RefCLIPScore. We keep the embedding extractor for the
two methods as CLIP-ViT-B/16.

Method
Embed. Extractor Reward Model MS-COCO =⇒ NoCaps

in domain near domain out domain
M C S Ref-C M C S Ref-C M C S Ref-C

TTA for CapDec (Nukrai et al., 2022) (zero-shot)
CapDec CLIP-ViT-B/16 – 23.9 62.6 10.3 75.5 22.3 54.0 9.6 74.2 17.2 31.7 6.4 71.3
+ RLCF CLIP-ViT-B/16 CLIP-ViT-B/16 24.3 65.5 10.7 76.6 22.7 57.2 10.0 75.7 17.7 35.0 6.8 72.9
+ RLCF CLIP-ViT-B/16 CLIP-ViT-L/14 24.6 68.0 10.7 76.7 23.0 57.9 10.3 75.7 17.9 35.5 6.9 72.7

TTA for CLIPCap (Mokady et al., 2021) (cross-domain)
CLIPCap CLIP-ViT-B/16 – 26.4 76.9 11.9 77.8 24.8 73.5 11.0 77.6 20.3 54.6 8.6 75.7
+ RLCF CLIP-ViT-B/16 CLIP-ViT-B/16 26.9 81.1 12.3 80.1 25.5 78.1 11.7 80.1 21.2 62.0 9.5 78.5
+ RLCF CLIP-ViT-B/16 CLIP-ViT-L/14 27.2 84.0 12.5 80.3 25.7 79.6 11.8 80.1 21.5 63.8 9.6 78.5

Table 8: Average GPU inference time per sample and GPU memory with different TTA steps.
Test on ImageNet-A and ImageNet-V2 with a single NVIDIA 40GB A100 GPU.

CLIP-ViT-B/16 TTA Steps ImageNet-A ImageNet-V2

Prompt Tuning Acc. Mem. (GB) Time (s) Acc. Mem. (GB) Time (s)
TPT + CoOp 1 57.95 4.2 0.168 66.83 18.2 0.468
TPT + CoOp 3 60.13 4.2 0.320 66.76 18.2 1.05
RLCF + CoOp 1 63.07 6.2 0.197 69.59 19.8 0.486
RLCF + CoOp 3 69.74 6.2 0.348 70.62 19.8 1.08

Image encoder tuning Acc. Mem. (GB) Time (s) Acc. Mem. (GB) Time (s)
TPT + CoOp 1 61.78 8.8 0.208 63.70 8.8 0.272
TPT + CoOp 3 62.07 8.8 0.384 64.02 8.8 0.512
RLCF 1 71.23 10.8 0.239 67.60 10.8 0.319
RLCF 3 73.71 10.8 0.415 69.77 10.8 0.543

models can always achieve significant improvements in the near and out domain data. This shows
the robustness of RLCF to open domain scenarios with different CLIP reward models.

B.3 GPU RUNTIME AND MEMORY

Efficiency is also important in TTA. We provide the GPU time and memory in Table 8.

Compared to TPT, the inference time of RLCF increases by a constant amount for different
TTA steps and datasets, i.e., roughly 0.03s per sample. For each sample, the CLIP reward model
only needs to run the image encoder once. This is the source of the 0.03s increase. The text features
of CLIP reward model are always the same because the class names are fixed.

ImageNet-A has 200 classes, while ImageNet-V2 has 1000 classes. For prompt tuning on ImageNet-
V2, the input batch size of the CLIP text encoder is 1000, and we need to re-run the text encoder
to update the text features after each TTA step. This is why prompt tuning is slower and consumes
more memory than image encoder tuning. For image encoder tuning, the text features are unchanged
and the image encoder only has a single image as input.
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