
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BELLMAN DIFFUSION: GENERATIVE MODELING AS
LEARNING A LINEAR OPERATOR IN THE DISTRIBU-
TION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Generative Models (DGMs), including Score-based Generative Models,
have made significant progress in approximating complex continuous distribu-
tions. However, their application to Markov Decision Processes (MDPs), partic-
ularly in distributional Reinforcement Learning (RL), is underexplored. The field
remains dominated by classical histogram-based methods, which suffer from dis-
cretization errors, leading to instability and slower convergence. This work high-
lights that this gap stems from the nonlinear operators used in modern DGM’s
modelings, which map neural network functions to the target distribution. These
nonlinearities conflict with the linearity required by the Bellman equation, which
relates the return distribution of a state to a linear combination of future states’
return distributions. To address this, we introduce Bellman Diffusion, a new DGM
that preserves the necessary linearity by modeling both the gradient and scalar
fields. We propose a novel divergence-based training technique to optimize neural
network proxies and introduce a new stochastic differential equation for sampling.
With these innovations, Bellman Diffusion is guaranteed to converge to the target
distribution. Our experiments show that Bellman Diffusion not only achieves ac-
curate field estimations and serves as an effective image generator, but also con-
verges 1.5ˆ faster than traditional histogram-based baselines in distributional RL
tasks. This work paves the way for the effective integration of DGMs into MDP
applications, enabling more advanced decision-making frameworks.

1 INTRODUCTION

Markov Decision Processes (MDPs), particularly distributional Reinforcement Learning
(RL) (Bellemare et al., 2017), learn the distribution of returns rather than just the expected value
(i.e., the Q-function). This allows the model to capture the intrinsic randomness (stochastic dynam-
ics and rewards) of returns, demonstrating its efficacy and broad applicability (Lowet et al., 2020;
Lyle et al., 2019; Dabney et al., 2018). Despite Deep Generative Models (DGMs), such as Energy-
Based Models (EBMs) (Teh et al., 2003), Generative Adversarial Networks (GANs) (Goodfellow
et al., 2020), and emerging Score-based Generative Models (SGMs) (Sohl-Dickstein et al., 2015;
Song et al., 2021; Ho et al., 2020), are well-developed for learning complex continuous distribu-
tions, their application to Markov Decision Processes and distributional RL remains underexplored1.
Instead, classical histogram-based methods (e.g., C51 (Bellemare et al., 2017)) remain widely used
in MDPs: These methods leverage Bellman’s equation (Bellman, 1954; Mnih et al., 2013) to effi-
ciently update the model with partial trajectories and approximate return distributions using discrete
bins, rather than directly modeling the continuous return distribution. The discretization inherent
in these methods can accumulate errors, causing instability and slower convergence. Specifically,
for continuous return distributions, histogram-based methods inevitably introduce discretization er-
rors at each state, leading to error propagation along the state-action trajectory. This accumulation
of errors, combined with potentially long trajectories, makes histogram-based methods, unstable to

1A naive approach to modeling the return distribution with DGMs is to sample full state-action trajectories
and use the computed returns to train EBMs. However, this method is not scalable, as trajectory sampling is
costly in many RL environments (see Appendix D for more details).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

train and difficult to converge. This highlights the need to leverage a continuous DGM to model
continuous return distributions in the Bellman update.

In this work, we first identify the main reason for the gap in applying modern DGMs to MDPs: the
linear nature of the Bellman equation update. More precisely, Bellman equation relates the return
distribution pz of a state z as a linear combination of return distributions pz1 of future states z1,
expressed formally as:

pzp¨q “
ÿ

z1,r

αz,z1,rpz1

´

¨ ´ r

γ

¯

, (1)

where “¨” indicates a dummy argument, r is the expected reward for transitioning between states,
and αz,z1,r, γ are constants determined by the RL environment. However, the modeling operators
of modern DGMs, which map neural network functions to target densities or related statistics, are
inherently nonlinear with respect to the neural network functions themselves (note that the nonlin-
earity is not referred to the input data). This nonlinearity conflicts with the Bellman update’s linear
structure, which relates a state’s return distribution linearly to those of future states, fundamentally
hindering the direct application of existing DGMs in Bellman updates. Below, we use EBMs, effec-
tive in distribution approximation (Lee et al., 2023), as an example to further illustrate this point.

Illustrative example. At each state z, the EBM’s modeling operator MEBM maps the neural net-
work function Ez (known as energy) to the target (return) distribution pz . This mapping is formally
expressed as: MEBM : Ezp¨q ÞÑ e´Ezp¨q

Zz
« pzp¨q. where Zz :“

ş

e´Ezpxq dx is the normalization
factor at each state z. In general, MEBM is a nonlinear operator with respect to the input function
Ez , which means the Bellman equation update cannot be used to link future state densities with the
current state for efficient updates:

pzp¨q “ MEBMpEzqp¨q ‰
ÿ

z1,r

αz,z1,rMEBMpEz1 q

´

¨ ´ r

γ

¯

“
ÿ

z1,r

αz,z1,rpz1

´

¨ ´ r

γ

¯

.

As such, MEBM, acting as a nonlinear operator, disrupts the linearity of the distributional Bellman
equation and rendering EBMs inapplicable in this context. In Sec. 2, we analyze the modeling
approaches of other modern DGMs and find that none can preserve the linearity of the Bellman
update, limiting the application of powerful DGMs in MDP tasks.

Our framework: Bellman Diffusion. To address this bottleneck, we propose Bellman Diffusion,
a novel DGM designed to overcome bottlenecks in applying DGMs to MDPs. The core idea is
to model the gradient field ∇pzp¨q and scalar field pzp¨q directly. That is, MBellman : pzp¨q ÞÑ
„

∇pzp¨q

pzp¨q

ȷ

. Since the gradient and identity operations are linear operators, the linearity of the Bell-

man equation is well preserved under MBellman. For instance, after applying the gradient operator
∇, the Bellman equation still holds:

∇pzp¨q “
ÿ

z1,r

αz,z1,r

γ
∇pz1

´

¨ ´ r

γ

¯

.

We now use ptarget to denote the target density of each state, replacing the previous notation pz .
Since ∇ptargetp¨q and ptargetp¨q are generally inaccessible, we introduce field-based divergence
measures and transform them into feasible training objectives: approximating fields ∇ptargetp¨q

and ptargetp¨q with neural network proxies gϕ and sφ.

Given these proxies, we introduce a new sampling method: Bellman Diffusion Dynamics, associated
with the fields represented by the following stochastic differential equation (SDE):

dxptq “ ∇ptargetpxptqq
looooooomooooooon

«gϕ

dt `

b

ptargetpxptqq
looooooomooooooon

«
?
sφ

dwptq, starting from xp0q „ p0, (2)

where wptq is a Brownian process and p0 is any initial distribution. Once the fields are well ap-
proximated, we can replace the field terms in the above equation with learned proxies, resulting in a
proxy SDE that can be solved forward in time to sample from ptargetpxq.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Theoretical and empirical results. Theoretically, we guarantee the convergence of our Bellman
Diffusion Dynamics to the stationary distribution ptarget, regardless of the initial distribution (The-
orem 4.1), and provide an error bound analysis accounting for neural network approximation errors
(Theorem 4.2). Thus, Bellman Diffusion is a reliable standalone generative model.

Experimentally, we show the generative capabilities of Bellman Diffusion on real and synthetic
datasets, confirming accurate field estimations, with promising results in image generation. We
further apply Bellman Diffusion to classical distributional RL tasks, resulting in much more stable
and 1.5ˆ faster convergence compared to the widely used histogram method. Notably, it can ef-
fectively learn and recover the target distributions with multiple unbalanced modes, a challenge for
score-based methods (Song & Ermon, 2019) due to the inherent nature of the score function.

In summary, Bellman Diffusion introduced in this paper stands as a novel and mathematically
grounded generative modeling approach, paving the way for continuous density modeling in var-
ious applications within MDPs, such as Planning and distributional RL.

2 LINEAR PROPERTY FOR MDPS

In this section, we review modern DGMs and highlight the desired property to facilitate density
estimation with Bellman updates, avoiding full trajectory updates.

2.1 MODELINGS OF MODERN DEEP GENERATIVE MODELS

DGMs aim to model the complex target distribution ptarget using a neural network-approximated
continuous density, enabling new samples generation. Below, we review well-known DGMs and
offer high-level insights into how they define a modeling operator M that connects their own mod-
eling functions to the desired density or its related statistics.

Energy-Based Models (EBMs) (Teh et al., 2003): These models define an energy function Epxq

and represent the probability as: ptargetpxq « e´Epxq

Z , where Z :“
ş

e´Epxq dx is the partition

function for normalizing probabilities. EBM defines a modeling operator MEBM : Ep¨q ÞÑ e´Ep¨q

Z ,
linking the statistic Ep¨q to desired density.

Flow-Based Models (Rezende & Mohamed, 2015; Chen et al., 2018): These use a series of invert-
ible transformations fpxq to map data x to a latent space z, with an exact likelihood: ptargetpxq «

πpzq

ˇ

ˇ

ˇ
det Bf´1

pxq

Bx

ˇ

ˇ

ˇ
. It determines a modeling operator MFlow : fp¨q ÞÑ πpfp¨qq

ˇ

ˇ

ˇ
det Bf´1

p¨q

Bx

ˇ

ˇ

ˇ
, con-

necting the transformation fp¨q to desired density.

Implicit Latent Variable Models: These models define a latent variable z and use a generative
process ppx|zq, where the latent space is sampled from a prior πpzq, usually taken as a standard
normal distribution. Two popular models are VAE (Kingma, 2013) and GAN (Goodfellow et al.,
2020). VAE maximizes a variational lower bound using an encoder network qpz|xq to approximate
the posterior distribution, while GAN employs a discriminator to distinguish between real and gen-
erated data, with a generator learning to produce realistic samples but lacking an explicit likelihood.
Since VAEs and GANs are implicit models, they lack an explicit modeling operator like MEBM and
MFlow that connects modeling functions to the desired density or its related statistics.

Score-Based Generative Models (SGMs) (Song et al., 2021): They involve a process that grad-
ually adds noise to ptarget, resulting in a sequence of time-conditioned densities tppxt, tqutPr0,T s,
where t “ 0 corresponds to ptarget and t “ T corresponds to a simple prior distribution πpzq.
Then, SGMs reverse this diffusion process for sampling by employing the time-conditioned score
sp¨, tq :“ ∇ log pp¨, tq and solving the ordinary differential equation (Song et al., 2021) from t “ T
to t “ 0 with ϕT pxT q “ xT „ π: dΨtpxT q “

`

fpΨtpxT q, tq ´ 1
2g

2ptqspΨtpxT q, tq
˘

dt,
where f and g are pre-determined. This flow defines a pushforward map VTÑtrss of the den-

sity as VTÑtrsstπu :“ π
`

Ψ´1
t p¨q

˘

ˇ

ˇ

ˇ
det

BΨ´1
t p¨q

Bx

ˇ

ˇ

ˇ
. Thus, SGMs determine a modeling operator

MSGM : s ÞÑ VTÑ0rsstπu « ptarget.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DESIRED LINEAR PROPERTY IN MDP

As the case of EBMs shown in Sec. 1, to leverage the strong capability of DGMs in density modeling
with the Bellman update (Eq. (1)), the linearity of modeling operator M is crucial:

Linear property of modeling. The modeling operator M defined by a DGM is linear:
M

`

af ` bg
˘

“ aM
`

f
˘

` bM
`

g
˘

, for any reals a, b and functions f, g.

If M : fzp¨q Ñ pzp¨q is linear, we can link future state densities or their statistics with the current
state for efficient updates, as shown in the Bellman equation in Eq. (1):

Mpfzqp¨q “
ÿ

z1,r

αz,z1,rMpfz1 q

ˆ

¨ ´ r

γ

˙

.

However, for current well-established DGMs, their modeling operators are either not explicitly de-
fined (e.g., VAE and GAN), lacking guaranteed linearity, or are nonlinear operators (e.g., MEBM,
MFlow, and MSGM). Consequently, this restricts the application of these powerful DGMs to MDPs.
We provide an extended discussion of related work in Appendix A.

3 METHOD: BELLMAN DIFFUSION

In this section, we mainly provide an overview of Bellman Diffusion, presenting the usage, with its
theoretical details later in Sec. 4. We defer all proofs to Appendix 3.

3.1 SCALAR AND VECTOR FIELD MATCHING

Field matching. Suppose we have a finite set of D-dimensional samples, with each data x drawn
from the distribution ptarget. As a generative model, Bellman Diffusion aims to learn both the
gradient field ∇ptarget and the scalar field ptarget. Similar to Fisher divergence (Antolı́n et al.,
2009) for the score function ∇ log ptarget, we introduce two divergences for ∇ptarget and ptarget.

Definition 3.1 (Field Divergences). Let pp¨q and qp¨q be continuous probability densities. The dis-
crepancy between the two can be defined as

Dgrad

`

pp¨q, qp¨q
˘

“

ż

ppxq ∥∇ppxq ´ ∇qpxq∥2 dx (3)

using the gradient operator ∇ in terms of x, or as

Did

`

pp¨q, qp¨q
˘

“

ż

ppxqpppxq ´ qpxqq2 dx (4)

using the identity operator I. Here, ∥¨∥ denotes the ℓ2 norm.

As shown in Appendix B.2, the two measures above are valid statistical measures. These mea-
sures are used to empirically estimate the gradient field ∇ptargetpxq and the scalar field ptargetpxq

from real data X . Furthermore, our modeling defines a modeling operator given by MBellman :“
„

∇
I

ȷ

: ptargetp¨q ÞÑ

„

∇ptargetp¨q

ptargetp¨q

ȷ

which is linear in its input.

Similar to SGMs, we parameterize two neural networks, gϕpxq and sφpxq ě 0, with learnable
parameters ϕ and φ, to match with these fields using the following estimation loss functions:

$

’

&

’

%

Lgradpϕq :“ Dgrad

`

ptargetp¨q,gϕp¨q
˘

“ Ex„ptargetpxq

”

}∇ptargetpxq ´ gϕpxq}2
ı

Lidpφq :“ Did

`

ptargetp¨q, sφp¨q
˘

“ Ex„ptargetpxq

”

pptargetpxq ´ sφpxqq2
ı

.
(5)

Since the terms ∇ptargetpxq and ptargetpxq inside the expectation are generally inaccessible, these
losses cannot be estimated via Monte Carlo sampling. The following proposition resolves this issue
by deriving a feasible proxy for the loss functions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 3.1 (Equivalent Forms of Field Matching). The loss Lgradpϕq is given by

Lgradpϕq “ Cgrad ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

}gϕpx1q}2 ` trp∇gϕpx1qqN px2 ´ x1;0, ϵIDq

ı

,

and Lidpφq is expressed as

Lidpφq “ Cid ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN px2 ´ x1;0, ϵIDq

ı

.

Here, N p¨;0, ϵIDq denotes a D-dimensional isotropic Gaussian density function, and Cgrad and
Cid are constants independent of the model parameters ϕ and φ.

We note that using the sequence of isotropic Gaussian densities tN p¨;0, ϵIDquϵą0 is not strictly
necessary. It is a convenient choice for constructing a family of distributions with parameters ϵ ą 0
that approximates the delta distribution as ϵ Ñ 0`, enabling feasible and simple training objectives.

Building on the above proposition, we can obtain feasible approximations of the training losses.
With ϵ fixed to be sufficiently small (see Sec. 6 for experimental setups), we have:
$

’

&

’

%

sLgradpϕ; ϵq :“ Cgrad ` Ex1,x2„ptargetpxq

”

}gϕpx1q}2 ` trp∇gϕpx1qqN p¨,0, ϵIDq

ı

« Lgradpϕq,

sLidpφ; ϵq :“ Cid ` Ex1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN px2 ´ x1,0, ϵIDq

ı

« Lidpφq

(6)

We note that scalar and gradient fields can be modeled independently. Moreover, as Bellman Dif-
fusion directly matches these fields, it eliminates the need for the normalizing constant associated
with costly spatial integrals in the density network required by EBMs.

3.2 EFFICIENT FIELD MATCHING LOSSES

Slice trick for efficient training. While the loss functions sLgradpϕ; ϵq and sLidpφ; ϵq support Monte
Carlo estimation, the term trp∇gϕpx1qq in sLgradpϕ; ϵq is computationally expensive, limiting the
scalability in high dimensions. To address this problem, we apply the slice trick (Kolouri et al.,
2019; Song et al., 2020) to estimate the trace term efficiently. The resulting objective is summarized
in the following proposition.
Proposition 3.2 (Sliced Gradient Matching). We define the sliced version of Lgrad (i.e., Eq. (3)) as

Lslice
gradpϕq “ Ev„qpvq,x„ptargetpxq

”

`

vJ∇ptargetpxq ´ vJgϕpxq
˘2

ı

,

where v represents the slice vector drawn from a continuous distribution qpvq. This sliced loss also
has an equivalent form:

Lslice
gradpϕq “ C 1

grad` lim
ϵÑ0

E v„qpvq;
x1,x2„ptargetpxq

”

pvJgϕpx1qq2`pvJ∇x1gϕpx1qvqN px2´x1;0, ϵIDq

ı

,

where C 1
grad is another constant independent of the model parameters.

Similar to Eq. (6), we can define a proxy loss for Lslice
gradpϕq as follows with a sufficiently small ϵ:

Ev„qpvq;x1,x2„ptargetpxq

”

pvJgϕpx1qq2 ` pvJ∇x1
gϕpx1qvqN px2 ´ x1;0, ϵIDq

ı

, (7)

which allows Monte Carlo estimation from samples X . This proxy loss serves as a reasonable
estimator (Lai et al., 2023) for Lgradpϕq.

Slice trick for improving sample efficiency. When the data dimension D is large, the multiplier
N px2 ´ x1;0, ϵIDq in the loss functions: sLgradpϕ; ϵq and sLidpφ; ϵq, will become nearly zero due
to the p2πq´D{2 factor, requiring a very large batch size for accurate Monte Carlo estimation and
leading to low data efficiency.

To resolve this issue, we apply an additional slice trick, projecting the D-dimensional Gaussian
density N px2 ´ x1;0, ϵIDq into a 1-dimensional density N pwJx2 ´ wJx1, 0, ϵq along a random
direction w „ qpwq, where w follows a slice vector distribution qpwq. Combining with Eq. (7),
this results in our ultimate gradient field matching loss:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

sLslice
gradpϕ; ϵq :“ Ew„qpwq,v„qpvq;

x1,x2„ptargetpxq

”

pvJgϕpx1qq2`pvJ∇x1
gϕpx1qvqN pwJx2´wJx1; 0, ϵq

ı

.

(8)

Similarly, we apply the same trick to sLidpφ; ϵq for dimension projection and obtain:

sLslice
id pφ; ϵq :“ E w„qpwq;

x1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN pwJx2 ´ wJx1; 0, ϵq
ı

. (9)

We adopt sLslice
gradpϕ; ϵq and sLslice

id pφ; ϵq for vector and scalar field matching losses, as they offer
more practical and efficient objectives than Lgradpϕq and Lidpφq, respectively. Empirically, these
adaptations significantly stabilize the model in experiments.

3.3 BELLMAN DIFFUSION DYNAMICS

Suppose that neural networks gϕpxq, sφpxq accurately estimate the target fields ∇ptargetpxq

and ptargetpxq, one can sample from ptargetpxq by approximating the score function as:
∇ log ptargetpxq “

∇ptargetpxq

ptargetpxq
«

gϕpxq

sφpxq
, and then applying Langevin dynamics (Bussi & Parrinello,

2007): dxptq “ ∇ log ptargetpxqdt `
?
2 dωptq «

gϕpxq

sφpxq
dt `

?
2 dωptq, where ωptq is a standard

Brownian motion. However, this approach can be numerically unstable due to the division2. This
issue is unavoidable as ptargetpxq vanishes when ∥x∥ Ñ 8. Additionally, it doesn’t support the
distributional Bellman update for MDPs as mentioned in Sec. 1.

To solve this, we propose a new SDE to sample from ptarget, termed Bellman Diffusion Dynamics:

dxptq “ ∇ptargetpxptqq dt `

b

ptargetpxptqq dωptq. (10)

We also provide the theoretical motivation and derivation of Eq. (10) in Appendix B.1.

In practice, once the neural network approximations gϕpxq « ∇ptargetpxq and sφpxq « ptargetpxq

are both well-learned, we can derive the following empirical Bellman Diffusion Dynamics, a feasible
proxy SDE for Eq. (10):

dxptq “ gϕpxqdt `

b

sφpxqdωptq. (11)

Bellman Diffusion learns and samples using both the scalar and gradient fields, allowing it to better
approximate low-density regions and unbalanced target weights (see Sec. 6.1).

3.4 SUMMARY OF TRAINING AND SAMPLING ALGORITHMS

To summarize Bellman Diffusion as a DGM, we outline the training and sampling steps in Alg. 3
and Alg. 4 in Appendix D.1. For training, we first sample real data x1,x2 from dataset X (line 2)
and slice vectors v,w from some predefined distributions qpvq, qpwq (line 3)3. Then, we estimate
the loss functions sLslice

gradpϕ; ϵq, sLslice
id pφ; ϵq using Monte Carlo sampling (lines 4-6). Finally, the

model parameters ϕ and φ are updated via gradient descent (lines 7-8).

For inference, we begin by sampling xp0q from an arbitrary distribution, such as standard normal
(line 1). Then, after setting the number of steps T and step size η, we iteratively update xp0q to
xpηT q following Eq. (10) (lines 3-7).

2For example, if sφpxq is around 0.01, its inverse can magnify the estimation error of gϕpxq by 100 times.
3Here, we follow the practice in Song et al. (2020) by using a single slice vector to approximate the expec-

tation over qpvq or qpwq, trading variance for reduced computational cost.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 MAIN THEORY

In this section, we present theoretical foundations for Bellman Diffusion Dynamics, including
steady-state analysis of Eq. (10) and an error analysis for Eq. (11), to justify its underlying rationale.
We defer all proofs to Appendix C.

4.1 STEADY-STATE ANALYSIS OF BELLMAN DIFFUSION DYNAMICS

Let pt be the marginal density of Bellman Diffusion Dynamics given by Eq. (10), starting from any
initial density p0. The following theorem shows that, regardless of the initial distribution p0, pt
converges to the stationary distribution, which is exactly ptarget, as t Ñ 8, at an exponential rate.
Theorem 4.1 (Convergence to the Steady State). Let ptarget be the target density satisfying Assump-
tion C.1. Then, for any initial density p0, we have the following KL and Wasserstein-2 bounds:

W 2
2

`

pt, ptarget
˘

À KL
`

pt}ptarget
˘

À e´2αtKL
`

p0}ptarget
˘

.

Here, α ą 0 is some constant determined by ptarget, and À hides multiplicative constants that
depend only on ptarget.

This theorem implies that as t Ñ 8, pt Ñ ptarget in both KL and Wasserstein-2 senses. Thus, it
justifies that by using our sampling method, which involves solving the SDE in Eq. (10), we can
ensure that samples will be obtained from the target distribution ptarget.

4.2 ERROR ANALYSIS OF EMPIRICAL BELLMAN DIFFUSION DYNAMICS

We let pt;ϕ,φ denote the marginal density from the empirical Bellman Diffusion Dynamics in
Eq. (11), starting from any initial density p0. The following theorem extends the result in Theo-
rem 4.1 by providing an error analysis. It accounts for network approximation errors in gϕpxq «

∇ptargetpxq and sφpxq « ptargetpxq, and gives an upper bound on the Wasserstein-2 discrepancy
between pT ;ϕ,φ and ptarget.
Theorem 4.2 (Error Analysis of Neural Network Approximations). Let ptarget be the target dis-
tribution satisfying Assumptions C.1 and C.2. Suppose the dynamics in Eqs. (10) and (11) start
from the same initial condition sampled from p0. For any ε ą 0, if T “ Oplog 1{ε2q and

εest “ O
´

ε
?
Te

1
2
LT

¯

, such that ∥gϕp¨q ´ ∇ptargetp¨q∥
8

ď εest and |sφp¨q ´ ptargetp¨q|
8

ď εest,

where L ą 0 is the Lipschitz constant associated with ptarget, then W2ppT ;ϕ,φ, ptargetq ď ε.

From the above theorem, our dynamics can function as a standalone generative model, capable
of learning the target distribution ptarget. Using advanced techniques such as Chen et al. (2022);
De Bortoli (2022); Kim et al. (2023; 2024), a tighter bound between pT ;ϕ,φ and ptarget in W2 or
other divergences could be achieved. Moreover, discrete-time versions of both Theorems 4.1 and 4.2
can be derived with more advanced analysis. However, we defer this to future work, as the current
focus is on establishing the core principles.

5 EXPERIMENTS: BELLMAN DIFFUSION IN DISTRIBUTIONAL RL

We detail the training and evaluation of Bellman Diffusion for distributional RL tasks, demonstrating
its effectiveness in this classical MDP setting. A method effective in RL can naturally address
simpler MDP tasks, such as planning.

5.1 BELLMAN DIFFUSION FOR DISTRIBUTIONAL RL MODELING

An MDP is defined by a 5-tuple pZ,A, ptran, prwd, γq, where Z is the state space, A is the action
space, ptran represents the transition probability, prwd is the reward model, and γ is the discount
factor. Given a policy π that selects an action a P A for each state z P Z , the goal is to estimate the
probability distribution of the discounted return X “

ř

tě1 γ
t´1Rt for each state z or state-action

pair pz, aq, where Rt is the reward received at time step t.

Training and evaluation algorithms. Let us consider the case of state-action return Xz,a, z P

Z, a P A. To apply Bellman Diffusion to model this return distribution, we need to first parameterize

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 Training with Bellman Diffusion
1: repeat
2: Sample state transition pzt, at, zt`1, at`1, rtq from

the environment and policy π
3: if zt is the end state then
4: Sample x1, x2 from N prt; 0, ξq

5: Compute Lgradpϕ; ϵq “ gϕpx1, zt, atq
2

` N px1 ´

x2; 0, ϵqBx1gϕpx1, zt, atq

6: Compute Lidpφ; ϵq “ sφpx1, zt, atq
2

´ 2N px1 ´

x2; 0, ϵqsφpx1, zt, atq

7: Update parameter ϕ with ´∇ϕLgradpϕ; ϵq
8: Update parameter φ with ´∇φLidpφ; ϵq
9: else

10: Sample x from a bounded span pxmin, xmaxq

11: Set target gradient gtgt “ gϕ
`

x´r
γ

, zt`1, at`1

˘

12: Set target scalar stgt “ 1
γ
sφ

`

x´r
γ

, zt`1, at`1

˘

13: Update ϕ with ´∇ϕ

`

gϕpx, zt, atq ´ gtgt
˘2

14: Update φ with ´∇φ

`

sφpx, zt, atq ´ stgt
˘2

15: end if
16: until parameters ϕ,φ converge

Algorithm 2 Inference with Bellman Diffusion
1: Set the initial environment state z0 P Z
2: Set the cumulative return X “ 0, with discount

rate γ P p0, 1q

3: Set the current time step t “ 0
4: while zt is not the terminal state do
5: Set an empty map f : A Ñ R
6: for a P A do
7: Sample a batch of particle xi from uniform dis-

tribution Upxmin, xmaxq

8: Apply the Bellman Diffusion Dynamics (i.e.,
Eq. (10)), with gradient and scalar fields gϕ, sφ,
to convert each particle xi into a new one sxi

9: Set fpaq as the mean of all new particle sxi

10: end for
11: Set at “ argmaxaPA fpaq

12: Based on the last state zt and action at, get new
state zt`1 and reward x from the environment

13: Update the current return X “ x ` γX
14: Update time step t “ t ` 1
15: end while

the gradient and scalar fields for every state-action pair pz, aq, which is memory consuming. One
way to address this inefficiency is to share field models across all state-action pairs. In this spirit,
we respectively denote the 1-dimensional gradient and scalar models as gϕpx, z, aq and sφpx, z, aq.
Alg. 1 shows the training procedure of field models in terms of the distributional Bellman update,
while Alg. 2 shows how to form a policy π : Z Ñ A with the field models and evaluate its
performance. Alg. 1, together with the 5th-11th lines in Alg. 2 to predict the next action at`1,
form a complete distributional RL learning algorithm.

More algorithm details. In Alg. 1, we assume that the reward at the terminal state is a scalar and that
the variance of the Gaussian ξ is small—an assumption that holds in most scenarios. For instance,
at the end of a game, one either wins or loses. We also define xmin and xmax as the minimum
and maximum possible returns. This algorithm can also be naturally applied to planning, and as
mentioned above, it can also be extended to RL by incorporating action selection: typically choosing
the action with the highest expected return, while occasionally exploring randomly. We compare
our method to the baseline histogram-based approach C51, which models the return distribution as
a simple categorical distribution. Its training algorithm is detailed in Algorithm 1 of their paper.

Figure 1: The 2 ˆ 2 subfigures, arranged from left to right and top to bottom, show a trajectory of
Bellman Diffusion, interacting with a maze environment. Each subfigure consists of the state on the
left, gradient field in the middle, and scalar field on the right.

5.2 EXPERIMENTAL RESULTS ON DISTRIBUTIONAL RL

We apply Bellman Diffusion to two OpenAI Gym environments (Brockman, 2016):
Frozen Lake and Cart Pole. Concrete implementations are detailed in Appendix D.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: The left and right subfigures respectively show the initial and some middle states of
Bellman Diffusion, interacting with an environment of balance control. Every subfigure is composed
of the observation on the left, gradient field in the middle, and scalar field on the right.

Frozen Lake is a maze where actions (e.g., moving up) may yield unexpected out-
comes (e.g., moving left), while Cart Pole involves balancing a pole on a movable car.

Figure 3: The returns on the
Cart Pole, with the colored ar-
eas as the confidence interval
and the maximum return as 500.

Results in Figs. 1 and 2 show that Bellman Diffusion accurately
estimates state-level return distributions and their derivatives. For
instance, as the agent approaches the goal in the maze, the ex-
pected return shifts from 0.5 to 1, reflecting that the agent receives
no rewards until it reaches the goal.

With the same model sizes and different random seeds, Bellman
Diffusion and C51, are both run on the environment of Cart Pole
10 times. The results of return dynamics over training steps are
shown in Fig. 3. Both models can ultimately achieve the maxi-
mum return; however, Bellman Diffusion converges significantly
faster than C51 and exhibits highly stable dynamics. Unlike C51,
which accumulates discretization errors across state transitions,
our method learns a continuous return distribution, minimizing
such errors and achieving superior convergence.

6 EXPERIMENTS: BELLMAN DIFFUSION AS A
GENERAL DGM

To further verify the effectiveness of Bellman Diffusion as a capable DGM, we conducted extensive
experiments on various synthetic and real benchmarks across different tasks. We also place the
experiment setup in Appendix D.3 and other supplementary experiments in Appendix E.

6.1 SYNTHETIC DATASETS

In this part, we aim to show that Bellman Diffusion can accurately estimate the scalar and gradient
fields ∇ptargetpxq, ptargetpxq and the associated sampling dynamics can recover the data distribution
in terms of the estimation models gϕpxq, sφpxq. For visualization purpose, we will adopt low-
dimensional synthetic data (i.e., D “ 1, or 2) in the studies.

1-dimensional uniform distribution. We use Bellman Diffusion to model a uniform distribution
over three disjoint spans, illustrated in the leftmost subfigure of Fig. 4. A key challenge is ap-
proximating the discontinuous data distribution using continuous neural networks. Interestingly, the
results in Fig. 4 show that the estimated field models gϕpxq and sφpxq closely match the true values
on the support (e.g., r´1.0, 2.0s) and perform reasonably in undefined regions. For instance, gϕpxq

resembles a negative sine curve on r´4.5,´0.5s, aligning with the definitions of one-sided deriva-
tive. Notably, Bellman Diffusion Dynamic yields a generated distribution closely aligned with the
target distribution and demonstrates its effectiveness in modeling discontinuous data distributions.

2-Dimensional Mixture of Gaussians (MoG). Bellman Diffusion effectively approximates the den-
sity and gradient fields for multimodal distributions, even with unbalanced weights. We demonstrate
this using a MoG with three modes with weights 0.45, 0.45, and 0.1, as shown in the leftmost sub-
figure of Fig. 5. The right three subfigures show accurate estimations of both scalar and gradient
fields for the target distribution and its gradient. The three clustering centers of the training data
align with the density peaks in the scalar field (leftmost subfigure) and critical points in the gradi-
ent field (middle subfigure). Bellman Diffusion successfully recovers the unbalanced modes of the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Bellman Diffusion captures the uniform distribution supported on disjoint spans. The
leftmost subfigure presents the training data histogram, while the next three show the estimated
density, derivative functions, and samples generated by Bellman Diffusion.

Figure 5: Bellman Diffusion learns the unbalanced MoG, which is hard for score-based models.
The subfigures, from left to right, display the training data, estimated scalar and gradient fields, and
samples generated by our Bellman Diffusion.

target distribution and estimates the fields accurately, even in low-density regions—a challenge for
SGMs (Song & Ermon, 2019). Additional results in Appendix E.1 show Bellman Diffusion’s ef-
fectiveness in generating clustered, geometric data structures using the ”moon-shape” dataset, along
with a comparison to DDPM (a type of SGM) on MoG datasets.

6.2 HIGH-DIMENSIONAL DATA GENERATION

Dataset Denoising Diffusion Models Our Model: Bellman Diffusion
Wasserstein Ó MMD (10´3) Ó Wasserstein Ó MMD (10´3) Ó

Abalone 0.975 5.72 0.763 5.15
Telemonitoring 2.167 10.15 2.061 9.76
Mushroom 1.732 4.29 1.871 5.12
Parkinsons 0.862 3.51 0.995 3.46
Red Wine 1.151 3.83 1.096 3.91

Figure 6: Results on high-dimensional datasets. Bellman
Diffusion is an effective DGM in high dimensions.

In this section, we follow the com-
mon practice (Song et al., 2020) to
examine the scalability of our ap-
proach across multiple UCI tabu-
lar datasets (Asuncion et al., 2007),
including Abalone, Telemonitoring,
Mushroom, Parkinson’s, and Red
Wine. We apply several preprocess-
ing steps to these datasets, such as
imputation and feature selection, resulting in data dimensions of 7, 16, 5, 15, and 10, respectively.
For evaluation metrics, we utilize the commonly used Wasserstein distance (Rüschendorf, 1985)
and maximum mean discrepancy (MMD) (Dziugaite et al., 2015). The performance of a generative
model is considered better when both metrics are lower. Table 6 shows the experimental results.
We observe that, regardless of the dataset or metric, Bellman Diffusion performs competitively with
DDPM (Ho et al., 2020; Song & Ermon, 2019), a diffusion model known for its scalability.

We further demonstrate in Appendix E.2 that Bellman Diffusion is compatible with VAE (Kingma,
2013), allowing latent generative model training similar to latent diffusion models (Rombach et al.,
2022) for higher-resolution image generation. These results demonstrate that Bellman Diffusion is a
scalable DGM. However, a more comprehensive study on large-scale Bellman Diffusion as a DGM
is left for future work, as our current focus is on unlocking DGM applications in MDPs.

7 CONCLUSION

This work addresses the limitations of modern DGMs in MDPs and distributional RL, emphasizing
the need for linearity in modelings. We propose Bellman Diffusion, a novel DGM that maintains
linearity by modeling gradient and scalar fields. Through new divergence measures and a SDE-based
sampling method (Bellman Diffusion Dynamics), we ensure convergence to the target distribution.
Experimental results show that Bellman Diffusion provides accurate estimations and outperforms
traditional RL methods, offering a promising approach for integrating DGMs into RL frameworks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

BIBLIOGRAPHY

J Antolı́n, JC Angulo, and S López-Rosa. Fisher and jensen–shannon divergences: Quantitative
comparisons among distributions. application to position and momentum atomic densities. The
Journal of chemical physics, 130(7), 2009.

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60(6):503–515, 1954.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Giovanni Bussi and Michele Parrinello. Accurate sampling using langevin dynamics. Physical
Review E—Statistical, Nonlinear, and Soft Matter Physics, 75(5):056707, 2007.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka,
Yuki Mitsufuji, and Stefano Ermon. Pagoda: Progressive growing of a one-step generator from a
low-resolution diffusion teacher. arXiv preprint arXiv:2405.14822, 2024.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced wasserstein distances. Advances in neural information processing systems, 32, 2019.

Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, and Stefano Er-
mon. Fp-diffusion: Improving score-based diffusion models by enforcing the underlying score
fokker-planck equation. In International Conference on Machine Learning, pp. 18365–18398.
PMLR, 2023.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. In International Conference on Algorithmic Learning Theory, pp.
946–985. PMLR, 2023.

Adam S Lowet, Qiao Zheng, Sara Matias, Jan Drugowitsch, and Naoshige Uchida. Distributional
reinforcement learning in the brain. Trends in neurosciences, 43(12):980–997, 2020.

Clare Lyle, Marc G Bellemare, and Pablo Samuel Castro. A comparative analysis of expected
and distributional reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 4504–4511, 2019.

Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
Chawla. S2ac: Energy-based reinforcement learning with stein soft actor critic. arXiv preprint
arXiv:2405.00987, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the loga-
rithmic sobolev inequality. Journal of Functional Analysis, 173(2):361–400, 2000.

Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning. In 2022
IEEE Conference on Games (CoG), pp. 104–111. IEEE, 2022.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–
195, 1999.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Hannes Risken and Hannes Risken. Fokker-planck equation. Springer, 1996.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Ludger Rüschendorf. The wasserstein distance and approximation theorems. Probability Theory
and Related Fields, 70(1):117–129, 1985.

Liam Schramm and Abdeslam Boularias. Bellman diffusion models. arXiv preprint
arXiv:2407.12163, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E Hinton. Energy-based models for
sparse overcomplete representations. Journal of Machine Learning Research, 4(Dec):1235–1260,
2003.

Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted langevin algorithm:
Isoperimetry suffices. Advances in neural information processing systems, 32, 2019.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

13

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

A Related Work 15
A.1 Related Work on DGMs . 15
A.2 Related Work on MDPs . 16

B Theoretical Results and Proofs for Sec. 3 16
B.1 Motivation of the Proposed Dynamics in Eq. (10) 16
B.2 Validity of Field Divergences. 17
B.3 Proof to Proposition 3.1. 18
B.4 Proof to Proposition 3.2 . 19

C Proofs for Sec. 4 21
C.1 Prerequisites for Theoretical Analysis. 21
C.2 Proofs of Theorem 4.1 . 21
C.3 Proofs of Theorem 4.2 . 22

D Algorithms and Experiments with Bellman Diffusion 23
D.1 Bellman Diffusion’s Training and Sampling as a DGM 24
D.2 Disfavored Full Trajectory Sampling . 24
D.3 Experiment Settings . 25

E Additional Experiments 25
E.1 Synthetic Data Generation . 25
E.2 Image Generation . 26
E.3 Ablation Studies . 26

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 RELATED WORK ON DGMS

Deep generative models (DGMs) have gained significant attention in recent years due to their ability
to learn complex data distributions and generate high-fidelity samples. This literature review cov-
ers several prominent categories of DGMs, including Variational Autoencoders (VAEs), Generative
Adversarial Networks (GANs), energy-based methods, flow-based methods, and diffusion models.

Variational Autoencoders (VAEs). Variational Autoencoders (VAEs) are a class of generative
models that leverage variational inference to approximate the posterior distribution of latent vari-
ables given the data. The VAE framework is based on the evidence lower bound (ELBO), which can
be expressed as:

Lpθ,ϕ;xq “ Eqϕpz|xqrlog pθpx|zqs ´ DKLpqϕpz|xq||ppzqq,

where qϕpz|xq is the approximate posterior, pθpx|zq is the likelihood, and DKL denotes the
Kullback-Leibler divergence. VAEs have shown remarkable success in generating images and other
complex data types Kingma (2013).

Generative Adversarial Networks (GANs). Generative Adversarial Networks (GANs) consist
of two neural networks, a generator G and a discriminator D, that compete against each other.
The generator aims to create realistic samples Gpzq from random noise z, while the discriminator
attempts to distinguish between real samples x and generated samples Gpzq. The objective function
for GANs can be formulated as:

min
G

max
D

Ex„ptargetpxqrlogDpxqs ` Ez„pzpzqrlogp1 ´ DpGpzqqqs,

where pdatapxq is the data distribution and pzpzq is the prior distribution on the noise. GANs have
become popular for their ability to produce high-quality images and have been applied in various
domains Goodfellow et al. (2020).

Energy-Based Models Energy-based models (EBMs) define a probability distribution through an
energy function Epxq that assigns lower energy to more probable data points. The probability of a
data point is given by:

ppxq “
1

Z
expp´Epxqq,

where Z “
ş

expp´Epxqqdx is the partition function. Training EBMs typically involves minimiz-
ing the negative log-likelihood of the data (LeCun et al., 2006). They have been successfully applied
in generative tasks, including image generation and modeling complex data distributions.

Flow-Based Methods Flow-based methods, such as Normalizing Flows (NFs), learn a bijective
mapping between a simple distribution z and a complex data distribution x through a series of
invertible transformations. The probability density of the data can be expressed as:

ppxq “ ppzq

ˇ

ˇ

ˇ

ˇ

det
Bf´1

Bx

ˇ

ˇ

ˇ

ˇ

,

where f is the invertible transformation from z to x. Flow-based models allow for efficient ex-
act likelihood estimation and have shown promise in generating high-quality samples (Rezende &
Mohamed, 2015).

Diffusion Models Diffusion models are a class of generative models that learn to generate data
by reversing a gradual noising process. The generative process can be described using a stochastic
differential equation (SDE):

dxt “ fpxt, tqddt ` gptqddwt,

where wt is a Wiener process, and fpxt, tq and gptq are functions defining the drift and diffusion
terms, respectively. The model learns to recover the data distribution from noise by training on
the denoising score matching objective (Ho et al., 2020; Song et al., 2021). Diffusion models have
recently gained attention for their impressive image synthesis capabilities.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 RELATED WORK ON MDPS

Limited by the linearity of the distributional Bellman equation, Previous works (Bellemare et al.,
2017; Hessel et al., 2018; Dabney et al., 2018) in planning and distributional RL have relied on
conventional generative models to represent state-level return distributions. For instance, the widely
used C51 (Bellemare et al., 2017) is a histogram model, resulting in discrete approximation errors. In
contrast, Bellman Diffusion is a new type of diffusion model that serves as an expressive distribution
approximator without discretization errors.

Recent work (Messaoud et al., 2024) (S2AC) also explores to leverage DGMs for RL tasks. How-
ever, they do not align with the problem setting and objectives of our paper. S2AC is designed for
Maximum Entropy (MaxEnt) RL, where the primary goal is learning a stochastic policy. In contrast,
our work focuses on distributional RL, which aims to model the return distribution for each state.
These are fundamentally different RL paradigms, addressing distinct challenges and requiring tai-
lored methodologies. Similar to the Langevin dynamics used in vanilla diffusion models, the SVGD
sampler relies on the score function. This dependency introduces challenges when applied to distri-
butional RL, where we aim to model the return distribution without direct reliance on the score of
the updated particle.

One concurrent work (Schramm & Boularias, 2024) (BDM) may share some conceptual connec-
tions as Bellman Diffusion, they address different problem settings and have distinct goals. BDM
is grounded in standard value-based RL and aims to estimate the successor state measure (SSM).
In contrast, our work focuses on distributional RL, where the goal is to model the entire return dis-
tribution for each state, rather than just its first moment (i.e., the value). This difference reflects
a fundamental distinction in the types of information each method seeks to capture. Additionally,
while BDM estimates the SSM, it does not explicitly discuss how a policy can be derived from it. In
comparison, distributional RL, as utilized in our method, provides a direct framework for deriving
a feasible policy from the return distribution. This makes our approach more readily applicable to
practical RL tasks. At last, BDM focuses primarily on introducing the concept of SSM estimation
using diffusion models, but it does not include experimental validation to support its methodology.
In contrast, we provide a comprehensive framework with experimental results that demonstrate the
effectiveness of Bellman Diffusion in both RL tasks and generative modeling.

B THEORETICAL RESULTS AND PROOFS FOR SEC. 3

B.1 MOTIVATION OF THE PROPOSED DYNAMICS IN EQ. (10)

1-dimensional Case. Let us first consider the one-dimensional case:
dxptq “ fpxptqq dt ` gpxptqqdwptq.

Based on the Fokker–Planck equation Risken & Risken (1996), the probability distribution ppx, tq
of dynamics xptq satisfies

Bppx, tq

Bt
“ ´

B

Bx

´

fpxqppx, tq
¯

`
1

2

B2

Bx2

´

g2pxqppx, tq
¯

“
B

Bx

´

´ fpxqppx, tq `
1

2

B

Bx

´

g2pxqppx, tq
¯¯

.

Suppose that the density ppx, tq converges as t Ñ 8, then we have Bppx, tq{Bt |tÑ8“ 0. As a
result, the above equality indicates that

´fpxqppx,8q `
1

2

d

dx

´

g2pxqppx,8q

¯

“ C.

Suppose the constant C is 0, then we have

g2pxq
dppx,8q

dx
“

´

2fpxq ´
dg2pxq

dx

¯

ppx,8q.

One way to make this equality hold is to have the below setup:
$

&

%

g2pxq “ ppx,8q

fpxq “
1

2

´dppx,8q

dx
`

dg2pxq

dx

¯¯

“
dppx,8q

dx
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Therefore, the following dynamics:

dxptq “
dptargetpxptqq

dx
dt `

b

ptargetpxptqqdwptq,

will converge to distribution ptargetpxq as t Ñ 8, regardless of the initial distribution ppx, 0q.

D-dimensional Case. For the general situation, the dynamics will be

dxptq “ ∇xptqptargetpxptqqdt `

b

ptargetpxptqqdωptq,

Let us check this expression. Firstly, the Fokker–Planck equation indicates that

Bppx, tq

Bt
“ ´∇x ¨

`

ppx, tq∇xptargetpxq
˘

`
1

2
∆x

`

ptargetpxqppx, tq
˘

“ ∇x ¨

´

´ ppx, tq∇xptargetpxq `
1

2
∇x

`

ptargetpxqppx, tq
˘

¯

,

where ∆x “ ∇x ¨ ∇x is the Laplace operator. With the Leibniz rule, we have

´ ppx, tq∇xptargetpxq `
1

2
∇x

`

ptargetpxqppx, tq
˘

“ ´ ppx, tq∇xptargetpxq `
1

2
ppx, tq∇xptargetpxq `

1

2
ptargetpxq∇xppx, tq

“
1

2
ptargetpxq∇xppx, tq ´

1

2
ppx, tq∇xptargetpxq.

Combining the above two equations, we get

Bppx, tq

Bt
“

1

2
∇x ¨

´

ptargetpxq∇xppx, tq ´ ppx, tq∇xptargetpxq

¯

.

By applying the Leibniz rule to divergence operators, we have
#

∇x ¨
`

ptargetpxq∇xppx, tq
˘

“
〈
∇xptargetpxq,∇xppx, tq

〉
` ptargetpxq∆xppx, tq

∇x ¨
`

ppx, tq∇xptargetpxq
˘

“
〈
∇xppx, tq,∇xptargetpxq

〉
` ppx, tq∆xptargetpxq

.

Therefore, the original partial differential equation (PDE) can be simplified as

Bppx, tq

Bt
“

1

2

´

ptargetpxq∆xppx, tq ´ ppx, tq∆xptargetpxq

¯

.

Since the dynamics will converge, we set ptargetpxq “ ppx,8q. Then, we get

Bppx, tq

Bt

ˇ

ˇ

ˇ

tÑ8
“

1

2

´

ppx,8q∆xppx,8q ´ ppx,8q∆xppx,8q

¯

“ 0.

Therefore, the dynamics lead to sampling from a given distribution ptargetpxq.

B.2 VALIDITY OF FIELD DIVERGENCES.

The first step is to check whether Dgrad, Did are well defined divergence measures. To this end, we
have the below conclusion.
Theorem B.1 (Well-defined Divergences). Suppose that pp¨q, qp¨q are probability densities that are
second-order continuously differentiable (i.e., in C2) and that ppxq ‰ 0 for all x. Then the diver-
gence measure Dgradppp¨q, qp¨qq defined by Eq. (3) and that Didppp¨q, qp¨qq formulated by Eq. (4)
are both valid statistical divergence measures, satisfying the following three conditions:

• Non-negativity: D˚ppp¨q, qp¨qq is either zero or positive;

• Null condition: D˚ppp¨q, qp¨qq “ 0 if and only if ppxq “ qpxq for every point x;

• Positive definiteness: D˚ppp¨q, pp¨q ` δpp¨qq is a positive-definite quadratic form for any
infinitesimal displacement δpp¨q from pp¨q.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here the subscript ˚ represents either grad or id.

Proof. Non-negativity condition obviously holds for both Dgrad and Did, due to their definitions.

For the null condition,

Dgradppp¨q, qp¨qq “ 0 implies ppxq}∇ppxq ´ ∇qpxq}2 “ 0 for all x.

This implies ∇ppxq “ ∇qpxq for all x. Since the gradients are equal, ppxq and qpxq differ by at
most a constant. For probability densities, this constant must be zero, so ppxq “ qpxq. On the other
hand, for Didppp¨q, qp¨qq “ 0:

Didppp¨q, qp¨qq “ 0 implies pppxq ´ qpxqq2 “ 0 for all x

This directly implies that ppxq “ qpxq for all x. Hence, both Dgrad and Did satisfy the null condi-
tion: D˚ppp¨q, qp¨qq “ 0 if and only if ppxq “ qpxq for all x.

At last, we prove that the two measurements satisfy the positive definiteness condition. For
Dgradppp¨q, pp¨q ` δpp¨qq:

Dgradppp¨q, pp¨q ` δpp¨qq “

ż

ppxq}∇ppxq ´ ∇pppxq ` δppxqq}2 dx “

ż

ppxq}∇δppxq}2 dx.

This expression is quadratic in δppxq, and since norms are positive definite, Dgrad is positive definite
for any infinitesimal displacement δppxq. On the other hand, for Didppp¨q, pp¨q ` δpp¨qq:

Didppp¨q, pp¨q ` δpp¨qq “

ż

ppxqpppxq ´ pppxq ` δppxqqq2 dx “

ż

ppxqpδppxqq2 dx.

Again, this is quadratic in δppxq, making Did positive definite for any infinitesimal displacement
δppxq. Thus, both Dgrad and Did are positive-definite quadratic forms for any infinitesimal dis-
placement δppxq from ppxq. This concludes the proof.

Since measures Dgrad, Did are well defined, it is valid to derive the corresponding loss functions
Lgrad,Lid as formulated in Eq. (5).

B.3 PROOF TO PROPOSITION 3.1.

We aim to rearrange the following loss function:

Lgradpϕq “ Dgrad

`

ptargetp¨q,gϕp¨q
˘

“ Ex„ptargetpxq

”

}∇ptargetpxq ´ gϕpxq}2
ı

By expanding the inner quadratic form, we get

Lgradpϕq “

ż

pdatapxq}∇xpdatapxq}2dx `

ż

pdatapxq}gϕpxq}2dx

´ 2

ż

pdatapxq

´

gϕpxq

¯J

∇xpdatapxqdx.

The first term in the right hand side is in fact a constant and we denote it as Cgrad. Then, by applying
the technique of integral by parts, we can simply the last term as

2

ż

pdatapxq

´

gϕpxq

¯J

∇xpdatapxqdx

“

ż

´

gϕpxq

¯J

∇xpdatapxq2dx

“

ż

∇x ¨

´

pdatapxq2gϕpxq

¯

dx ´

ż

pdatapxq2
´

∇x ¨ gϕpxq

¯

dx

Suppose the integral area is Ω (say by taking it as a ball with a radius R ą 0) and applying Gauss’s
Divergence Theorem, we have

ż

Ω

∇x ¨

´

pdatapxq2gϕpxq

¯

dx “

ż

BΩ

npxqJ
´

pdatapxq2gϕpxq

¯

dx,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where BΩ denotes the boundary of area Ω and npxq represents the unit norm to the boundary BΩ.
Furthermore, suppose that lim}x}Ñ8 pdatapxq Ñ 0 and gϕpxq are uniformly bounded in x, then
this integral vanishes. So, we have the reduced objective:

Lgradpϕq “ Cgrad `

ż

pdatapxq}gϕpxq}2dx `

ż

pdatapxq2trp∇gϕpxqqdx.

For the second integral, we apply the decoupling trick:
ż

ptargetpxq2sφpxqdx

“

ż

ptargetpxqptargetpyqsφpxqδpy ´ xqdx dy

“Ex„ptargetpxq,y„ptargetpyq

”

sφpxqδpy ´ xq

ı

“ lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1qN px2 ´ x1;0, ϵIDq

ı

.

Here, we use that N p¨;0, ϵIDq weakly converges to δp¨q as ϵ Ñ 0`. Therefore, we simplify the loss
function as

Lgradpϕq “ Cgrad ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

}gϕpx1q}2 ` trp∇gϕpx1qqN px2 ´ x1;0, ϵIDq

ı

,

Next, we prove for the case of

Lidpφq “ Cid ` lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1q2 ´ 2sφpx1qN px2 ´ x1;0, ϵIDq

ı

,

by following a similar argument. Suppose that we have a divergence loss function:

Lidpφq “

ż

ptargetpxq

´

ptargetpxq ´ sφpxq

¯2

dx.

Then, we can expand the term as

Lidpφq “

ż

ptargetpxq3 dx ´ 2

ż

ptargetpxq2sφpxqdx `

ż

ptargetpxqsφpxq2 dx.

For the second integral, we apply the trick again:
ż

ptargetpxq2sφpxqdx “

ż

ptargetpxqptargetpyqsφpxqδpy ´ xqdx dy

“Ex„ptargetpxq,y„ptargetpyq

”

sφpxqδpy ´ xq

ı

“ lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1qN px2 ´ x1;0, ϵIDq

ı

.

Here, we use that N p¨; 0, ϵIDq weakly converges to δp¨q as ϵ Ñ 0. Therefore, we simplify the loss
function as

Lidpφq “ Cid ` Ex„ptargetpxq

”

sφpxq2
ı

´ 2 lim
ϵÑ0

Ex1,x2„ptargetpxq

”

sφpx1qN px2 ´ x1;0, ϵIDq

ı

,

where Cid is a constant without learnable parameter φ.

B.4 PROOF TO PROPOSITION 3.2

Proof. We recall the sliced version of Lgrad as:

Lslice
gradpϕq “ Ev„qpvq,x„ptargetpxq

”

`

vJ∇ptargetpxq ´ vJgϕpxq
˘2

ı

.

By expanding the quadratic term p¨q2 inside the recursive expectations, we have

Lslice
grad “ Ev

”

ż

ptargetpxqpvJ∇xgϕpxqq2 dx ´ 2

ż

ptargetpxqpvJ∇xptargetpxqqpvJ∇xgϕpxqq dx ` C 1
grad

ı

,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where, C 1
grad :“

ş

ptargetpxqpvJ∇xptargetpxqq2 dx is a constant independent of trainable parame-
ter. We will further simplify the second term came from the cross product as:

ż

ptargetpxqpvJ∇xptargetpxqqpvJ∇xgϕpxqqdx

“
1

2

ż

pvJ∇xptargetpxq2qpvJ∇xgϕpxqq dx

“
1

2

ż

´

∇xptargetpxq2
¯J´

pvJ∇xgϕpxqqv
¯

dx.

Note that we can replace the gradient field ∇xgϕpxq with neural network gϕpxq. By applying the
integration by parts, this equality can be expanded as

1

2

ż

∇x ¨

´

ptargetpxq2pvJgϕpxqqv
¯

dx ´
1

2

ż

ptargetpxq2∇x ¨

´

pvJgϕpxqqv
¯

dx.

Let us first handle the first term in the above equation. Applying Gauss’s divergence theorem to a
ball BpRq centered at the origin with radius R ą 0, we get

ż

BpRq

∇x ¨

´

ptargetpxq2pvJgϕpxqqv
¯

dx “

ż

BBpRq

npxqJ
´

ptargetpxq2pvJgϕpxqqv
¯

. (12)

where npxq is the unit norm vector to the region boundary BBpRq. Suppose that ptargetpxq decays
sufficiently fast as ∥x∥2 Ñ 8, for instance, lim}x}2Ñ8 ptargetpxq{ ∥x∥D2 “ 0 (see Assumption C.1
(iii)), then this term vanishes as R Ñ 8.

For the second term in the expansion, we have

∇x ¨

´

pvJgϕpxqqv
¯

“
ÿ

1ďiďD

BppvJgϕpxqqviq

Bxi
“

ÿ

1ďiďD

ÿ

1ďjďD

vivjgϕ,jpxq

Bxi
“ vJ∇xgϕpxqv.

Here, we write v “ pviq1ďiďD and x “ pxiq1ďiďD. Collecting the above derivations, we have
ż

ptargetpxqpvJ∇xptargetpxqqpvJ∇xgϕpxqqdx “ ´
1

2

ż

ptargetpxq2pvJ∇xgϕpxqvqdx. (13)

Therefore, the loss function can be converted into

Lslice
grad “ Ev

”

ż

ptargetpxqpvJ∇xgϕpxqq2 dx `

ż

ptargetpxq2pvJ∇xgθpxqvqdx
ı

` C 1
grad. (14)

We apply the same trick from the proof of Proposition 3.1—using Dirac expansion—to enable
Monte Carlo estimation for the second inner term:

ż

ptargetpxq2
´

vJ∇xgθpxqv
¯

dx

“

ż

ptargetpxq

´

ż

ptargetpyqδpy ´ xqdy
¯´

vJ∇xgθpxqv
¯

dx

“

ż

ptargetpx1qptargetpx2qpvJ∇x1
gθpx1qvqδpx2 ´ x1qdx1 dx2

“Ex1,x2„ptargetpxq

”

pvJ∇x1gθpx1qvqδpx2 ´ x1q

ı

.

Combining the above two identities, we have

Lslice
grad “ Ev„pslicepvq,x1,x2„ptargetpxq

”

pvJgθpx1qq2 ` pvJ∇x1
gθpx1qvqδpx2 ´x1q

ı

`C 1
grad, (15)

which completes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C PROOFS FOR SEC. 4

C.1 PREREQUISITES FOR THEORETICAL ANALYSIS.

We introduce some notations and terminologies. We recall the definition of KL divergence between
ptarget and density p as

KL
`

p}ptarget
˘

:“

ż

RD

ppxq log
ppxq

ptargetpxq
dx.

Fisher divergence between ptarget and p is defined as:

Jptarget
ppq :“

ż

RD

ppxq

∥∥∥∥∇x log
ppxq

ptargetpxq

∥∥∥∥2 dx.
Wasserstein-2 distance (W2) between ptarget and p is defined as:

W 2
2 pp, ptargetq :“ inf

γ„Γpµ,νq
Epx,yq„γ ∥x ´ y∥22 ,

where Γpµ, νq is the set of all couplings of pµ, νq.

The following summarizes the two assumptions for our main theorems in Sec. 4.
Assumption C.1. Assume the target density ptarget satisfies the following conditions:

(i) ptargetp¨q P C2. That is, it is second-order continuously differentiable;

(ii) Log-Sobolev inequality: there is a constant α ą 0 so that the following inequality holds for
all continuously differentiable density p:

KL
`

p}ptarget
˘

ď
1

2α
Jptargetppq. (16)

(iii) ptarget is either compactly supported with M :“ ∥ptarget∥L8 ă 8, or it decays sufficiently
fast as ∥x∥2 Ñ 8:

lim
}x}2Ñ8

ptargetpxq

∥x∥D2
“ 0.

Assumption C.2. Assume the target density ptarget satisfies the following additional conditions:

(i) There is a L ą 0 so that for all x,y
∥ptargetpxq ´ ptargetpyq∥22 ď L ∥x ´ y∥22 and ∥∇ptargetpxq ´ ∇ptargetpyq∥22 ď L ∥x ´ y∥22 .

C.2 PROOFS OF THEOREM 4.1

Proof. Recall our dynamics is

dxptq “ ∇ptargetpxptqqdt `

b

ptargetpxptqqdwptq.

The Fokker-Planck equation of our dynamics with density pt “ ptpxq :“ ppx, tq is

Btppx, tq “
1

2
∇ ¨

´

ptargetpxqppx, tq∇ log
ppx, tq

ptargetpxq

¯

. (17)

This is due to the following derivation Risken & Risken (1996), where we demonstrated for the
D “ 1 case. The probability distribution ppx, tq of dynamics xptq at point x and time t with
fpxq “ Bxptargetpxq and g2pxq “ ptargetpxq is governed by:

Bppx, tq

Bt
“ ´

B

Bx

´

fpxqppx, tq
¯

`
1

2

B2

Bx2

´

g2pxqppx, tq
¯

“
B

Bx

´

´ Bxptargetpxqppx, tq `
1

2

B

Bx

´

ptargetpxqppx, tq
¯¯

“
1

2

B

Bx

´

ptargetpxqBxppx, tq ´ Bxptargetpxqppx, tq
¯

“
1

2

B

Bx

´

ptargetpxqppx, tqBx log
ppx, tq

ptargetpxq

¯

.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Here, in the last equality we use the identity:

Bx log
ppx, tq

ptargetpxq
“

ptargetpxq

ppx, tq
Bx

´ ppx, tq

ptargetpxq

¯2

“
ptargetpxqBxppx, tq ´ Bxptargetpxqppx, tq

ptargetpxqppx, tq
.

For a general D, the same computation can be carried out to derive Eq. (17).

We now prove the KL bound of convergence using a similar argument motivated by Vempala &
Wibisono (2019).

d

dt
KL

`

pt}ptarget
˘

“
d

dt

ż

RD

pt log
pt

ptarget
dx

paq
“

ż

RD

B

Bt
pt log

pt
ptarget

dx `

ż

RD

pt
B

Bt
log

pt
ptarget

dx

pbq
“

ż

RD

B

Bt
pt log

pt
ptarget

dx

pcq
“
1

2

ż

RD

”

∇x ¨
`

ptargetpt∇x log
pt

ptarget

˘

ı

log
pt

ptarget
dx

pdq
“ ´

ż

RD

ptargetpt

∥∥∥∥∇x log
pt

ptarget

∥∥∥∥2 dx
peq

ď ´ M

ż

RD

pt

∥∥∥∥∇x log
pt

ptarget

∥∥∥∥2 dx
“ ´ MJptargetpptq

ď ´
M

2α
KL

`

pt}ptarget
˘

.

Here, (a) follows from the chain rule; (b) uses the identity
ş

pt
B
Bt log

pt

ptarget
dx “

ş

B
Btpt dx “

d
dt

ş

pt dx “ 0; (c) follows from the Fokker-Planck Eq. (17); (d) is due to integration by parts and
Assumption C.1 (iii); and (e) comes from Assumption C.1 (iii).

Thus, applying Grönwall’s inequality, we can get

KL
`

pt}ptarget
˘

À e´2αtKL
`

p0}ptarget
˘

.

Since ptarget satisfies the LSI, it also satisfies the Talagrand’s inequality Otto & Villani (2000):

α

2
W 2

2

`

pt, ptarget
˘

ď KL
`

pt}ptarget
˘

.

Therefore, we have

W 2
2

`

pt, ptarget
˘

ď
2

α
KL

`

pt}ptarget
˘

À
2

α
e´2αtKL

`

p0}ptarget
˘

.

This completes the proof. We notice that “Talagrand’s inequality implies concentration of measure
of Gaussian type” allowing us to remove the compact support assumption on ptarget while maintain-
ing the validity of the theorem.

C.3 PROOFS OF THEOREM 4.2

Proof. In the proof we will extensively using a simple form of Cauchy-Schwarz (CS) inequality:

pu1 ` u2 ` ¨ ¨ ¨ ` unq2 ď npu2
1 ` u2

2 ` ¨ ¨ ¨ ` u2
nq,

for ui P R, i “ 1, ¨ ¨ ¨ , n. We aim at obtaining the following bound:

W 2
2 ppT ;ϕ,φ, ptargetq À ε2estTe

LT `
2

α
e´αTKL

`

p0}ptarget
˘

. (18)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

To achieve it, we compare the random vector processes txptqutPr0,T s and tpxptqutPr0,T s, governed by
the following dynamics:

dxptq “ ∇ptargetpxptqqdt `

b

ptargetpxptqqdωptq

dpxptq “ gϕppxptqqdt `

b

sφppxptqqdpwptq.

Their strong solutions in the Itô sense are:

xptq “ xp0q `

ż T

0

∇ptargetpxptqq dt `

ż T

0

b

ptargetpxptqqdωptq

pxptq “ pxp0q `

ż T

0

gϕppxptqqdt `

ż T

0

b

sφppxptqqdpwptq.

Set random vectors aptq :“ ∇ptargetpxptqq ´ gϕppxptqq and bptq :“
a

ptargetpxptqq ´
a

sφppxptqq,
we then have

E
“

∥xpT q ´ pxpT q∥22
‰

ď E

«

´

xp0q ´ pxp0q `

ż T

0

aptqdt `

ż T

0

bptqdωptq
¯2

ff

ď 3E
”

∥xp0q ´ pxp0q∥22
ı

` 3E
”

`

ż T

0

aptqdt
˘2

ı

` 3E
”

`

ż T

0

bptqdωptq
˘2

ı

À E
”

∥xp0q ´ pxp0q∥22
ı

` TE
”

ż T

0

a2ptqdt
ı

` E
”

ż T

0

b2ptqdt
ı

À E
”

∥xp0q ´ pxp0q∥22
ı

` TE
”

ż T

0

∥∇ptargetpxptqq ´ ∇ptargetppxptqq∥22 dt
ı

` TE
”

ż T

0

∥∇ptargetppxptqq ´ gϕppxptqq∥22 dt
ı

` E
”

ż T

0

|ptargetpxptq ´ ptargetppxptqq|dt
ı

` E
”

ż T

0

|ptargetppxptqq ´ sφppxptqq|dt
ı

À E
”

∥xp0q ´ pxp0q∥22
ı

` LT

ż T

0

E
“

∥xptq ´ pxptq∥22
‰

dt ` ε2estT.

Here, we apply the Cauchy-Schwarz (CS) inequality and the Itô isometry in the third inequality, the
CS inequality and p

?
u ´

?
vq2 ď |u ´ v| (u, v ě 0) in the fourth inequality, and the estimation

error assumption in the last equality.

Since the dynamics in Eqs. (10) and (11) start from the same initial condition sampled from p0,
we have E

”

∥xp0q ´ pxp0q∥22
ı

“ 0. Applying the Grönwall’s inequality and the definition of the
Wasserstein-2 distance, then we obtain

W 2
2 ppT ;ϕ,φ, pT q À ε2estTe

LT .

Combining the above inequality and the result of Theorem 4.1 that

W 2
2

`

pT , ptarget
˘

À
2

α
e´αTKL

`

p0}ptarget
˘

,

we finally derive the following inequality by applying CS inequality

W 2
2 ppT ;ϕ,φ, ptargetq À ε2estTe

LT `
2

α
e´αTKL

`

p0}ptarget
˘

.

D ALGORITHMS AND EXPERIMENTS WITH BELLMAN DIFFUSION

In Sec. D.1, we present the algorithms of Bellman Diffusion, highlighting its potential as a generative
model. Sec. D.2 demonstrates the computational inefficiencies of naively applying existing DGMs
to MDP tasks, further underscoring Bellman Diffusion’s efficiency for such applications. Lastly,
Sec. D.3 details the training configurations of Bellman Diffusion.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 7: 15ˆ15 randomly sampled images from our latent Bellman Diffusion model that is trained
on the MNIST dataset. We can see that most of the results are high-quality.

Algorithm 3 Training
1: repeat
2: Sample real data: x1,x2 „ X
3: Sample slice vectors: v „ qpvq,w „ qpwq

4: δ “ N pwJx2 ´ wJx1; 0, ϵq
5: sLslice

gradpϕ; ϵq « pvJgϕpx1qq
2

` δpvJ∇x1gϕpx1qvq

6: sLslice
id pφ; ϵq « sφpx1q

2
´ 2δsφpx1q

7: Update parameter ϕ w.r.t. ´∇ϕ
sLslice
gradpϕ; ϵq

8: Update parameter φ w.r.t. ´∇φ
sLslice
gradpφ; ϵq

9: until converged

Algorithm 4 Sampling

1: Sample xp0q from any initial distribution
2: Set sampling steps T
3: Set constant step size η
4: for t “ 0, 1, . . . , T ´ 1 do
5: z „ N p0, IDq

6: ∆ “ gϕpxpηtqqη `
a

sφpxpηtqqηz
7: xpηpt ` 1qq “ xpηtq ` ∆
8: end for
9: return xpϵT q

D.1 BELLMAN DIFFUSION’S TRAINING AND SAMPLING AS A DGM

In this section, we detail the algorithms for training (Alg. 3) and sampling (Alg. 4) in Bellman
Diffusion as a general DGM.

D.2 DISFAVORED FULL TRAJECTORY SAMPLING

As mentioned in Sec. 2, a DGM that is qualified to be applied with the efficient Bellman update
needs to satisfy some linearity condition, otherwise one can only sample full state-action trajectories
to train the DGM, which is too costly for many RL environments. To understand this point, suppose
that there is an 1-dimensional maze with N blocks, with a robot moving from the leftmost block
to the rightmost block. If one directly trains the return model with the returns computed from full
trajectories, then the robot has to try to move to the final block after each action, resulting in a time
complexity at least as OpN ¨Nq “ OpN2q for every episode. In contrast, if the return model can be
trained with partial trajectories (e.g., 1 step) through the Bellman equation, then the time complexity
would be significantly reduced (e.g., OpN2q). There are many RL environments where the number

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 8: Bellman Diffusion learns unusually clustered data. The subfigures, from left to right, show
the training data, estimated density field, gradient field, and generated samples.

N can be very big. For example, StarCraft II (Vinyals et al., 2017) and Counter-Strike (Pearce &
Zhu, 2022), where a full trajectory can contain over ten thousand steps.

D.3 EXPERIMENT SETTINGS

Unless specified, we construct the gradient and scalar field models gϕpxq and sφpxq using
MLPs (Pinkus, 1999). We employ Adam (Kingma, 2014) for optimization, without weight decay or
dropout. The parameter ϵ in the loss functions sLslice

gradpϕ; ϵq and sLslice
id pφ; ϵq ranges from 0.1 to 1.0,

depending on the task. For the sampling dynamics defined in Eq. (10), we typically set T “ 300
and η “ 0.1. All models are trained on a single A100 GPU with 40GB memory, taking only a few
tens of minutes to a few hours.

E ADDITIONAL EXPERIMENTS

Due to the limited space, we put the minor experiments here in the appendix. The main experiments
involving field estimation, generative modeling, and RL are placed in the main text.

E.1 SYNTHETIC DATA GENERATION

2-dimensional moon-shaped data. To demonstrate the ability of Bellman Diffusion to learn dis-
tributions with disjoint supports, we test it on the two moon dataset, where samples cluster into two
disjoint half-cycles, as shown in the leftmost subfigure of Fig. 8.

The right three parts of Fig. 8 shows that the estimated scalar and gradient fields ptargetpxq and
∇ptargetpxq match the training samples, with correctly positioned density peaks (leftmost subfigure)
and critical points (middle subfigure). Our diffusion sampling dynamics accurately recover the
shape of the training data, even in low-density regions. Thus, we conclude that Bellman Diffusion
is effective in learning from complex data.

Comparison of Bellman Diffusion and DDPM on 2-dimensional MoG. We provide an addi-
tional comparison of generated samples from DDPM and Bellman Diffusion on a MoG dataset with
three modes. As the setup in Fig. 5, the training distribution consists of three modes with weights
of 0.45, 0.45, and 0.1. The results are shown in Fig. 9. We observe that the generated samples from
DDPM (right subfigure) fail to capture the different weights of these modes. In contrast, Bellman
Diffusion (left subfigure) successfully recovers the three modes with their respective weights, as also
demonstrated in Fig. 5.

The reason Bellman Diffusion may learn different modes of ptarget is that our training objectives di-
rectly model sφ « ptarget (and its gradient, gϕ « ∇ptarget). As a result, it can learn different modes
within ptarget. This contrasts with diffusion models, which learn the score function ∇ log ptarget for
generation.

To illustrate this difference, consider an example where ptarget “ ap
p1q

target ` bp
p2q

target, which repre-

sents a mixture of two modes with weights a and b, and where the supports of pp1q

target and p
p2q

target are
disjoint.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Bellman Diffusion DDPM

Figure 9: Comparison of generated samples from MoG with three modes between Bellman Dif-
fusion and DDPM. (Left) Bellman Diffusion accurately captures the three modes with different
weights. (Right) DDPM struggles to reflect the correct weight distribution of the target.

Method Abalone Telemonitoring
Bellman Diffusion w/ ϵ “ 0.5, n “ 1 0.975 2.167
Bellman Diffusion w/ ϵ “ 1.0, n “ 1 1.113 2.379
Bellman Diffusion w/ ϵ “ 0.1, n “ 1 0.875 2.075

Bellman Diffusion w/ ϵ “ 0.01, n “ 1 1.567 3.231
Bellman Diffusion w/ ϵ “ 0.5, n “ 2 0.912 2.073
Bellman Diffusion w/ ϵ “ 0.5, n “ 3 0.895 1.951

Table 1: The experiment results of our case studies, with Wasserstein distance as the metric.

For a point x in the support of pp1q

target, we have:

∇x log ptargetpxq “ ∇x log a ` ∇x log p
p1q

targetpxq “ ∇x log p
p1q

targetpxq.

Similarly, for a point x in the support of pp2q

target, we have:

∇x log ptargetpxq “ ∇x log p
p2q

targetpxq.

This example illustrates that, by using the score function (as in the case of diffusion models), we are
unable to recover the weights a and b of the mixture components.

E.2 IMAGE GENERATION

While image generation is not the main focus of our paper, we show that Bellman Diffusion is
also promising in that direction. We adopt a variant of the widely used architecture of latent dif-
fusion (Rombach et al., 2022), with VAE to encode images into latent representations and Bellman
Diffusion to learn the distribution of such representations. We run such a model on MNIST (Deng,
2012), a classical image dataset. The results are shown in Fig. 7. We can see that most gener-
ated images are high-quality. This experiment verify that Bellman Diffusion is applicable to high-
dimensional data, including image generation.

E.3 ABLATION STUDIES

There are some important hyper-parameters of Bellman Diffusion that need careful studies to deter-
mine their proper values for use. This part aims to achieve this goal. We adopt two tabular datasets:
Abalone and Telemonitoring, with the Wasserstein distance as the metric.

The variance of Gaussian coefficients. The loss functions sLgradpϕ; ϵq, sLidpφ; ϵq of both gradi-
ent and scalar matching contain a term ϵ, which is to relax their original limit forms for practical
computation. As shown in the first 4 rows of Table 1, either too big or too small value of term ϵ
leads to worse performance of our Bellman Diffusion model. These experiment results also make
sense because too big ϵ will significantly deviate the loss functions from their limit values, and too
small ϵ will also cause numerical instability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Number of slice vectors. Intuitively, more slice vectors will make our loss estimation more ac-
curate, leading to better model performance. The experiment results in the first and the last two
rows of Table 1 confirm this intuition, but also indicate that such performance gains are not notable.
Therefore, we adopt n “ 1 slice vectors in experiments to maintain high efficiency.

27

	Introduction
	Linear Property for MDPs
	Modelings of Modern Deep Generative Models
	Desired Linear Property in MDP

	Method: Bellman Diffusion
	Scalar and Vector Field Matching
	Efficient Field Matching Losses
	Bellman Diffusion Dynamics
	Summary of Training and Sampling Algorithms

	Main Theory
	Steady-State Analysis of Bellman Diffusion Dynamics
	Error Analysis of Empirical Bellman Diffusion Dynamics

	Experiments: Bellman Diffusion in Distributional RL
	Bellman Diffusion for Distributional RL Modeling
	Experimental Results on Distributional RL

	Experiments: Bellman Diffusion as a General DGM
	Synthetic Datasets
	High-dimensional Data Generation

	Conclusion
	Bibliography
	 Appendix
	Related Work
	Related Work on DGMs
	Related Work on MDPs

	Theoretical Results and Proofs for Sec. 3
	Motivation of the Proposed Dynamics in Eq. (10)
	Validity of Field Divergences.
	Proof to Proposition 3.1.
	Proof to Proposition 3.2

	Proofs for Sec. 4
	Prerequisites for Theoretical Analysis.
	Proofs of Theorem 4.1
	Proofs of Theorem 4.2

	Algorithms and Experiments with Bellman Diffusion
	Bellman Diffusion's Training and Sampling as a DGM
	Disfavored Full Trajectory Sampling
	Experiment Settings

	Additional Experiments
	Synthetic Data Generation
	Image Generation
	Ablation Studies

