
A Distortion Analysis for 0-PLF-FMD427

Recall the definition of Wasserstein-2 distance [26] as follows. For given distributions PXj and P
X̃j

,
let

W 2
2 (PX̃j

, PXj ) := inf [kXj � X̃jk2], (18)

where the infimum is over all joint distributions of (Xj , X̃j) with marginals PXj and P
X̃j

.428

Theorem 1 The set �D0(PM|XK) is characterized as follows:

�D0(PM|XK) = {D : Dj � P [kXj � X̃jk2] +W 2
2 (PX̃j

, PXj ), j = 1, 2, 3}, (19)

Furthermore, we also have that:
�D0(PM|XK) ◆ {D : Dj � 2 P [kXj � X̃jk2], j = 1, 2, 3}, (20)

i.e., minimum achievable distortion with 0-PLF-FMD is at most twice the MMSE distortion.429

Proof: Define

D0 := {D : Dj � [kXj � X̃jk2] +W 2
2 (PX̃j

, PXj ), j = 1, 2, 3}. (21)

First, we show that �D0(PM|XK) ✓ D0. For any D 2 �D0(PM|XK), there exists X̂D0 =
(X̂D

0
1
, X̂D

0
2
, X̂D

0
3
) jointly distributed with (M,X,K) such that

[kXj � X̂D
0
j
k2]  Dj , j = 1, 2, 3, (22)
PXj = P

X̂D0
j

. (23)

Then, for example, the analysis for the second frame is as follows

D2 � [kX2 � X̂D
0
2
k2] (24)

= [k(X2 � X̃2) � (X̂D
0
2

� X̃2)k2] (25)

= [kX2 � X̃2k2] + [kX̃2 � X̂D
0
2
k2] (26)

� [kX2 � X̃2k2] +W 2
2 (PX̃2

, P
X̂D0

2

) (27)

= [kX2 � X̃2k2] +W 2
2 (PX̃2

, PX2), (28)

where (26) holds because both X̃2 and X̂D
0
2

are functions of (M1,M2,K) and thus the MMSE430

(X2 � X̃2) is uncorrelated with (X̂D
0
2

� X̃2); (28) follows because the 0-PLF-FMD implies that431

P
X̂D0

2

= PX2 . Following similar steps for other frames, we get �D0(PM|XK) ✓ D0.432

Next, we show that D0 ✓ �D0(PM|XK). Assume that D 2 D0. Let X̂⇤
1 be an auxiliary random

variable jointly distributed with (M1,K) such that it satisfies the following conditions
P
X̂

⇤
1
= PX1 , (29)

and
P
X̃1X̂

⇤
1
= arg inf

P̄X̃1X̂⇤
1
:

P̄X̃1
=PX̃1

P̄X̂⇤
1
=PX̂⇤

1

P̄ [kX̃1 � X̂⇤
1k2]. (30)

Moreover, let X̂⇤
2 be an auxiliary random variable jointly distributed with (M1,M2,K) such that the

following two conditions are satisfied
P
X̂

⇤
2
= PX2 , (31)

and
P
X̃2X̂

⇤
2
= arg inf

P̄X̃2X̂⇤
2
:

P̄X̃2
=PX̃2

P̄X̂⇤
2
=PX̂⇤

2

P̄ [kX̃2 � X̂⇤
2k2]. (32)
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Similarly, we define X̂⇤
3 . Now, notice that since D 2 D0, we have:

D2 � [kX2 � X̃2k2] +W 2
2 (PX̃2

, PX2). (33)
It then directly follows that

[kX2 � X̂⇤
2k2] = [kX2 � X̃2k2] + [kX̃2 � X̂⇤

2k2] (34)
= [kX2 � X̃2k2] +W 2

2 (PX̃2
, P

X̂
⇤
2
) (35)

= [kX2 � X̃2k2] +W 2
2 (PX̃2

, PX2) (36)
 D2, (37)

where433

• (34) follows because X̃2 and X̂⇤
2 are functions of (M1,M2,K) and thus the MMSE (X2 �434

X̃2) is uncorrelated with (X̂⇤
2 � X̃2);435

• (35) follows from (32);436

• (36) follows because P
X̂

⇤
2
= PX2 .437

Following similar steps for other frames, we get D 2 �D0(PXr|X).438

Now, notice that W 2
2 (PX̃2

, PX2)  [kX2 � X̃2k2] since the Wasserstein-2 distance takes the
infimum over all possible joint distributions (X2, X̃2), but the expectation in [kX2 � X̃2k2] is taken
over the given P

X2X̃2
. Thus, we get

[kX2 � X̃2k2] +W 2
2 (PX̃2

, PX2)  2 [kX2 � X̃2k2]. (38)

This concludes the proof.439

B Distortion Analysis for 0-PLF-JD440

Let X̂⇤
1 be defined as in (29)–(30). Moreover, let X̂⇤

2 be an auxiliary random variable jointly
distributed with (M1,M2,K) such that the following conditions are satisfied

P
X̂

⇤
2 |X̂⇤

1=x1
= PX2|X1=x1

, 8x1 2 X1, (39)

and
P
X̃2X̂

⇤
2 |X̂⇤

1=x1
= arg inf

P̄X̃2X̂⇤
2 |X̂⇤

1=x1
:

P̄X̃2|X̂⇤
1=x1

=PX̃2|X̂⇤
1=x1

P̄X̂⇤
2 |X̂⇤

1=x1
=PX̂⇤

2 |X̂⇤
1=x1

P̄ [kX̃2 � X̂⇤
2k2|X̂⇤

1 = x1], 8x1 2 X1. (40)

Then, the following result holds.441

Theorem 2 We have
�joint

D0 (PM|XK) ◆ {D : D1 � [kX1 � X̃1k2] +W 2
2 (PX̃1

, PX1),

D2 � [kX2 � X̃2k2] +
X

x1

PX1(x1)W
2
2 (PX̃2|X̂⇤

1=x1
, PX2|X1=x1

),

D3 � [kX3 � X̃3k2] +
X

x1,x2

PX1X2(x1, x2)W
2
2 (PX̃3|X̂⇤

1=x1,X̂
⇤
2=x2

, PX3|X1=x1,X2=x2
)}.

(41)

Proof: Define
D0

joint := {D : D1 � [kX1 � X̃1k2] +W 2
2 (PX̃1

, PX1),

D2 � [kX2 � X̃2k2] +
X

x1

PX1(x1)W
2
2 (PX̃2|X̂⇤

1=x1
, PX2|X1=x1

),

D3 � [kX3 � X̃3k2] +
X

x1,x2

PX1X2(x1, x2)W
2
2 (PX̃3|X̂⇤

1=x1,X̂
⇤
2=x2

, PX3|X1=x1,X2=x2
)}.

(42)
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Now, assume that D 2 D0
joint. For the first frame, recall that X̂⇤

1 is an auxiliary random variable
jointly distributed with (M1,K) such that it satisfies (29)–(30). From similar steps to (34)–(36), it
then follows that

[kX1 � X̂⇤
1k2] = [kX1 � X̃1k2] +W 2

2 (PX̃1
, PX1) (43)

 D1. (44)

For the second frame, since D 2 D0
joint, we have:

D2 � [kX2 � X̃2k2] +
X

x1

PX1(x1)W
2
2 (PX̃2|X1=x1

, PX2|X1=x1
). (45)

Recall that X̂⇤
2 is an auxiliary random variable jointly distributed with (M1,M2,K) such that

(39)–(40) hold. It then directly follows that

[kX2 � X̂⇤
2k2] = [kX2 � X̃2k2] + [kX̃2 � X̂⇤

2k2] (46)

= [kX2 � X̃2k2] +
X

x1

P
X̂

⇤
1
(x1) [kX̃2 � X̂⇤

2k2|X̂⇤
1 = x1] (47)

= [kX2 � X̃2k2] +
X

x1

P
X̂

⇤
1
(x1)W

2
2 (PX̃2|X̂⇤

1=x1
, P

X̂
⇤
2 |X̂⇤

1=x1
) (48)

= [kX2 � X̃2k2] +
X

x1

PX1(x1)W
2
2 (PX̃2|X̂⇤

1=x1
, PX2|X1=x1

), (49)

where442

• (46) follows because X̃2 and X̂⇤
2 are functions of (M1,M2,K) and thus the MMSE (X2 �443

X̃2) is uncorrelated with (X̂⇤
2 � X̃2),444

• (48) follows from (40),445

• (49) follows because P
X̂

⇤
1 X̂

⇤
2
= PX1X2 .446

Following similar steps for the third frame, we get D 2 �D0(PM|XK). This concludes the proof.447

B.1 A Counterexample for Factor-Two Bound in Case of 0-PLF-JD448

Assume that we have only two frames, i.e., D3 ! 1. Let M1 be independent of X1 and M2 = X2.
Then, we have X̃1 = ; and X̃2 = X2. Consider the achievable distortion region of Theorem 2. The
distortion of the first step is given by the following

[kX1 � X̃1k2] +W 2
2 (PX̃1

, PX1) = 2 [X2
1 ]. (50)

For the second frame, we have

[kX2 � X̃2k2] +
X

x1

PX1(x1)W
2
2 (PX̃2|X̂⇤

1=x1
, PX2|X1=x1

)

=
X

x1

PX1(x1)W
2
2 (PX2|X̂⇤

1=x1
, PX2|X1=x1

) (51)

=
X

x1

PX1(x1)W
2
2 (PX2 , PX2|X1=x1

), (52)

where (51) follows because X̃2 = X2 and (52) follows because X2 is independent of X̂⇤
1 (M1 is449

independent of X1, then X̂⇤
1 , which is a function of (M1,K), would be independent of X1 and hence450

independent of X2).451

Now, notice that the MMSE distortion of the second step is zero since X̃2 = X2. However, the452

achievable distortion of the second step for the reconstruction satisfying 0-PLF JD is given in (52)453

which clearly does not satisfy the factor-two bound.454
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C Fixed Encoders Operating at Low rate regime455

We consider the class of noisy encoders where the encoder distribution can be written as follows

P noisy
Xj |M1...MjK

= (1 � µ)PXj + µQnoisy
Xj |M1...MjK

, j = 1, 2, 3. (53)

where µ is a sufficiently small constant and the distribution Qnoisy(·) could be arbitrary conditional456

distribution with same marginal as PXj .457

Theorem 3 For the class of encoders given by (53), we have
�joint

D0 (P noisy
M|XK) ◆ {D : Dj � 2 P noisy [kXj � X̃jk2] +O(µ), j = 2, . . . , 3}. (54)

Proof: We analyze the distortion for the second frame. A similar argument holds for other frames.458

Denote the reconstruction of the second step by X̂⇤
2 and consider the expected distortion. From a

similar justification starting from (24) and leading to (26), we can write the distortion as follows

[kX2 � X̂⇤
2k2] = [kX2 � X̃2k2] + [kX̃2 � X̂⇤

2k2]. (55)

Now, we study the expected term [kX̃2 � X̂⇤
2k2] as follows

[kX̃2 � X̂⇤
2k2] =

X

x1

P
X̂

⇤
1
(x1) [kX̃2 � X̂⇤

2k2|X̂⇤
1 = x1]. (56)

In order to analyze the above expression, we first approximate the MMSE reconstruction X̃2 as
follows

X̃2 = P noisy [X2|M1,M2,K] (57)
= (1 � µ) P [X2] + µ Qnoisy [X2|M1,M2,K] (58)
= [X2] +O(µ), (59)

where (58) follows from (53). Moreover, notice that (59) implies that
[kX2 � X̃2k2] = [kX2 � [X2] + µ( Qnoisy [X2|M1,M2,K] � [X2])k2] (60)

= [kX2 � [X2]k2] +O(µ). (61)
Next, consider the expected term in (56) as follows
X

x1

P
X̂

⇤
1
(x1) [kX̃2 � X̂⇤

2k2|X̂⇤
1 = x1] =

X

x1

P
X̂

⇤
1
(x1) [k [X2] � X̂⇤

2k2|X̂⇤
1 = x1] +O(µ)

(62)
=
X

x1

P
X̂

⇤
1
(x1) [k [X2] � X2k2|X1 = x1] +O(µ)

(63)
=
X

x1

PX1(x1) [k [X2] � X2k2|X1 = x1] +O(µ)

(64)
= E[k [X2] � X2k2] +O(µ) (65)
= E[kX̃2 � X2k2] +O(µ), (66)

where459

• (62) follows from (59);460

• (63) follows because the 0-PLF-JD implies that P
X̂

⇤
2 |X̂⇤

1
= PX2|X1

and [X2] is just a461

constant;462

• (64) follows from 0-PLF-JD where P
X̂

⇤
1
= PX1 ;463

• (66) follows from (61).464

Considering (55) and (66), we get

[kX2 � X̂⇤
2k2] = 2 [kX2 � X̃2k2] +O(µ). (67)

The proof for the third frame follows similar steps.465
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Figure 4: Encoded representations and reconstructions of the iRDP region CRDP.

D Operational RDP Region466

Recall the definition of iRDP region CRDP for first-order Markov sources (Definition 4) as follows. It
is the set of all tuples (R,D,P) satisfying

R1 � I(X1;Xr,1), (68)
R2 � I(X2;Xr,2|Xr,1), (69)
R3 � I(X3;Xr,3|Xr,1, Xr,2), (70)
Dj � [kXj � X̂jk2], j = 1, 2, 3, (71)
Pj � �j(PX1...Xj , PX̂1...X̂j

), j = 1, 2, 3, (72)

for auxiliary random variables (Xr,1, Xr,2, Xr,3) and (X̂1, X̂2, X̂3) such that

X̂1 = ⌘1(Xr,1), X̂2 = ⌘2(Xr,1, Xr,2), X̂3 = Xr,3, (73)
Xr,1 ! X1 ! (X2, X3), (74)
Xr,2 ! (X2, Xr,1) ! (X1, X3), (75)
Xr,3 ! (X3, Xr,1, Xr,2) ! (X1, X2), (76)

for some deterministic functions ⌘1(.) and ⌘2(., .).467

Theorem 4 For first-order Markov sources, a given (D,P) and R 2 R(D,P), we have

R+ log(R+ 1) + 5 2 Ro(D,P). (77)

Moreover, the following holds:

Ro(D,P) ✓ R(D,P). (78)

Proof: Before stating the achievable scheme, we first discuss the strong functional representation
lemma [35]. It states that for jointly distributed random variables X and Y , there exists a random
variable U independent of X , and function � such that Y = �(X,U). Here, U is not necessarily
unique. The strong functional representation lemma states further that there exists a U which has
information of Y in the sense that

H(Y |U)  I(X;Y ) + log(I(X;Y ) + 1) + 4. (79)

Notice that the strong functional representation lemma can be applied conditionally. Given PXY |W ,
we can represent Y as a function of (X,W,U) such that U is independent of (X,W ) and

H(Y |W,U)  I(X;Y |W ) + log(I(X;Y |W ) + 1) + 4. (80)

Proof of (77) (Inner bound):468

For a given (D,P) and R 2 R(D,P), let Xr = (Xr,1, Xr,2, Xr,3) be jointly distributed with
X = (X1, X2, X3) where the Markov chains (74)–(76) hold and the rate constraints in (68)–(70)
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X2

Figure 5: Strong functional representation lemma for T = 2 frames.

are satisfied such that there exist (X̂1, X̂2, X̂3) for which distortion-perception constraints (71)–(72)
hold. Denote the joint distribution of (X,Xr, X̂) by PXXrX̂

and notice that according to the Markov
chains in (74)–(76), it factorizes as the following

PXXrX̂
= PX1X2X3 · PXr,1|X1

· PXr,2|Xr,1X2
· PXr,3|Xr,2Xr,1X3

· {X̂1 = g1(Xr,1)} · {X̂2 = g2(Xr,1, Xr,3)} · {X̂3 = Xr,3}. (81)

For an illustration of encoded representations Xr and reconstructions X̂ in R(D,P) which are induced469

by distribution PXXrX̂
, see Fig. 4.470

Now, we show that R+ log(R+ 1) + 5 2 R(D,P). The achievable scheme is as follows. Fix the
joint distribution PXr according to (81) which constructs the codebook, given by

PXr = PXr,1PXr,2|Xr,1
PXr,3|Xr,2Xr,1

. (82)

From the strong functional representation lemma [35], we know that471

• there exist a random variable V1 independent of X1 and a deterministic function q1 such
that Xr,1 = q1(X1, V1) and

H(Xr,1|V1)  I(X1;Xr,1) + log(I(X1;Xr,1) + 1) + 4, (83)

which means that the first encoder observes the source X1 and applies the function q1 to get472

Xr,1 whose distribution needs to be preserved according to (82) (see Fig. 5);473

• according to the conditional strong functional representation lemma, there exist a random
variable V2 independent of (X2, Xr,1) and a deterministic function q2 such that Xr,2 =
q2(Xr,1, X2, V2) and

H(Xr,2|Xr,1, V2)  I(X2;Xr,2|Xr,1) + log(I(X2;Xr,2|Xr,1) + 1) + 4. (84)

At the second step, the representation Xr,1 is available at the second encoder. So, upon474

observing the source X2, it applies the function q2 to get Xr,2 whose conditional distribution475

given Xr,1 needs to be preserved according to (82) (see Fig. 5);476

• according to the conditional strong functional representation lemma, there exist a random
variable V3 independent of (X3, Xr,1, Xr,2) and a deterministic function q3 such that Xr,3 =
q3(Xr,1, Xr,2, X3, V3) and

H(Xr,3|Xr,1, Xr,2, V3)  I(X3;Xr,3|Xr,1, Xr,2) + log(I(X3;Xr,3|Xr,1, Xr,2) + 1) + 4.

(85)

Now, the encoding and decoding are as follows477

• With V1 available at all encoders and decoders, we can have a class of prefix-free binary478

codes indexed by V1 with the expected codeword length not larger than I(X1;Xr,1) +479

log(I(X1;Xr,1) + 1) + 5 to represent Xr,1, losslessly (see Fig. 5).480

• With V2 available at the encoders and decoders, we can design a set of prefix-free481

binary codes indexed by (V2, Xr,1) with expected codeword length not larger than482

I(X2;Xr,2|Xr,1)+ log(I(X2;Xr,2|Xr,1)+ 1)+ 5 to represent Xr,2, losslessly(see Fig. 5).483
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• Similarly, one can represent Xr,3 losslessly with V3 available at the third encoder and484

decoder.485

• The decoders can use functions X̂1 = ⌘1(Xr,1), X̂2 = ⌘2(Xr,1, Xr,2) and X̂3 = Xr,3 to486

get the reconstruction X̂.487

This shows that R+ log(R+ 1) + 5 2 Ro(D,P).488

Proof of (78) (Outer Bound):489

For any (D,P), R 2 Ro(D,P), shared randomness K, encoding functions fj : X1 ⇥ . . .⇥Xj ⇥K !
Mj and decoding functions gj : M1 ⇥ M2 ⇥ . . . ⇥ Mj ⇥ K ! X̂j such that

Rj � [`(Mj)], j = 1, 2, 3, (86)

and

Dj � [kXj � X̂jk2], j = 1, 2, 3, (87)
Pj � �j(PX1...Xj , PX̂1...X̂j

), j = 1, 2, 3, (88)

we lower bound the expected length of the messages. Define

Xr,1 := (M1,K), (89)
Xr,2 := (M1,M2,K), (90)

and recall that according to the decoding functions, we have

X̂j = gj(M1, . . . ,Mj ,K), j = 1, 2, 3. (91)

We can write

R1 � [`(M1)] � H(M1|K) (92)
= I(X1;M1|K) (93)
= I(X1;M1,K) (94)
= I(X1;Xr,1). (95)

Now, consider the following set of inequalities

R2 � [`(M2)] � H(M2|M1,K) (96)
= I(X1, X2;M2|M1,K) (97)
= I(X1, X2;X2,r|Xr,1). (98)

Similarly, we have

R3 � [`(M3)] � H(M3|M1,M2,K) (99)
= I(X1, X2, X3;M3|M1,M2,K) (100)
� I(X1, X2, X3; X̂3|Xr,1, Xr,2). (101)

Notice that the definitions in (89)–(90) imply the following Markov chains

Xr,1 ! X1 ! (X2, X3), (102)
Xr,2 ! (X1, X2, Xr,1) ! X3. (103)

On the other hand, the decoding functions of the first and second steps imply that

X̂1 = g1(M1,K), (104)
X̂2 = g2(M1,M2,K), (105)

where together with definitions in (89) and (90), we can write

X̂1 = g1(M1,K) := ⌘1(Xr,1), (106)
X̂2 = g2(M1,M2,K) := ⌘2(Xr,1, Xr,2), (107)

such that ⌘1(.) and ⌘2(., .) are deterministic functions.490
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Now, consider the fact that the set of constraints in (87)–(88), (95), (98), (101) with Markov chains in
(102)–(103) and deterministic functions in (106)–(107) constitute an iRDP region, denoted by C̄RDP,
which is the set of all tuples (R,D,P) such that

R1 � I(X1;Xr,1), (108)
R2 � I(X1, X2;Xr,2|Xr,1), (109)
R3 � I(X1, X2, X3; X̂3|Xr,1, Xr,2), (110)
Dj � [kXj � X̂jk2], j = 1, 2, 3, (111)
Pj � �j(PX1...Xj , PX̂1...X̂j

), j = 1, 2, 3, (112)

for auxiliary random variables (Xr,1, Xr,2) and (X̂1, X̂2, X̂3) satisfying the following

X̂1 = ⌘1(Xr,1), X̂2 = ⌘2(Xr,1, Xr,2) (113)
Xr,1 ! X1 ! (X2, X3), (114)
Xr,2 ! (X1, X2, Xr,1) ! X3. (115)

for some deterministic functions ⌘1(.) and ⌘2(., .).491

Comparing the two regions C̄RDP and CRDP, we identify the following differences. The Markov chain492

in (74) is more restricted comparing to (115). Moreover, the Markov chain (75) does not exist in493

C̄RDP. The following lemma states that C̄RDP = CRDP. Now, for a given (D,P), let R̄(D,P) denote494

the set of rate tuples R such (R,D,P) 2 C̄RDP, then this lemma implies that R̄(D,P) = R(D,P)495

which completes the proof of the outer bound. Moreover, notice that the above proof only deals with496

the statistics of the representations and reconstructions and does not depend on the choice of the PLF.497

So, it holds for both PLF-FMD and PLF-JD. This concludes the proof.498

We conclude this section by the following lemma.499

Lemma 1 For first-order Markov sources, we have
CRDP = C̄RDP. (116)

Proof: This result for the scenario without perception constraint has been similarly observed in [36, Eq.500

(12)]. The proof in this section is provided for completeness.501

First, notice that the set of Markov chains in (74)–(76) is more restricted than the ones in (114)–(115),502

hence CRDP ✓ C̄RDP. Now, it remains to prove that C̄RDP ✓ CRDP. Consider the following facts503

1. The distortion constraints in (111) depend only on the joint distribution of (Xj , X̂j), and504

thus on the joint distribution of (Xj , Xr,1, . . . , Xr,j). So, imposing the Markov chain505

Xr,2 ! (X2, Xr,1) ! X1 does not affect the expected distortion [kX2 � X̂2k2] since it506

does not depend on the joint distribution of X1 with (Xr,1, Xr,2, X2). A similar argument507

holds for other frames;508

2. The perception constraints in (112) depend on the joint distributions PX1...Xj and P
X̂1,...,X̂j

509

(hence on PXr,1...Xr,j ). Thus, imposing Xr,2 ! (X2, Xr,1) ! X1 does not af-510

fect �2(PX1X2 , PX̂1X̂2
) since it does not depend on the joint distribution of X1 with511

(Xr,1, Xr,2, X2). A similar argument holds for other frames;512

3. Moreover, the rate constraints in (109) and (110) would be further lower bounded by
R2 � I(X1, X2;Xr,2|Xr,1) � I(X2;Xr,2|Xr,1), (117)
R3 � I(X1, X2, X3; X̂3|Xr,1, Xr,2) � I(X3; X̂3|Xr,1, Xr,2). (118)

Thus, the set of rate constraints is optimized by the set of Markov chains (74)–(76).513

4. The mutual information terms I(X1;Xr,1), I(X2;Xr,2|Xr,1) and I(X3; X̂3|Xr,1, Xr,2)514

depend on distributions PX1Xr,1 , PXr,1Xr,2X2 and P
X3X̂3Xr,1Xr,2

, respectively. So, these515

distributions should be preserved by the set of Markov chains. The first two distributions are516

preserved by the choice of (73)–(74). Now, since we have first-order Markov sources (see517

Definition 3), preserving the joint distributions of PXr,1X1 and PXr,1Xr,2X2 is sufficient to518

preserve the distribution PXr,1Xr,2X3 . So, preserving the joint distribution of P
X̂3Xr,1Xr,2

519

is sufficient to keep I(X3; X̂3|Xr,1, Xr,2) unchanged.520
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Considering the above four facts, without loss of optimality, one can impose the following Markov
chains

Xr,1 ! X1 ! (X2, X3), (119)
Xr,2 ! (X2, Xr,1) ! (X1, X3), (120)
X̂3 ! (X3, Xr,1, Xr,2) ! (X1, X2). (121)

This concludes the proof for the PLF-JD. For the PLF-FMD, notice that the only difference is the521

second fact stated above. But, this also holds since the perception constraints depend only on PXj522

and P
X̂j

(hence on PXr,1...,Xr,j ).523

524

E Gauss-Markov Source Model525

We first remark that the Wasserstein-2 distance can also be replaced by the KL-divergence in most of526

the following analysis. The common properties between these two measures are convexity and the527

fact that they both depend on only second-order statistics when restricted to Gaussian source model.528

Theorem 5 For the Gauss-Markov source model, any tuple (R,D,P) 2 CRDP can be attained by a529

jointly Gaussian distribution over (Xr,1, Xr,2, Xr,3) and identity mappings for ⌘j(·) in Definition 4.530

Proof: First, notice that a proof for the setting without perception constraint is provided in [37]. The531

following proof is different from [37] in some steps and also involves the perception constraint.532

For a given tuple (R,D,P) 2 CRDP, let X⇤
r,1, X⇤

r,2, X̂⇤
1 = ⌘1(X⇤

r,1), X̂⇤
2 = ⌘2(X⇤

r,1, X
⇤
r,2) and X̂⇤

3
be random variables satisfying (73)–(75). Let P

X̂
G
1 |X1

, P
X̂

G
2 |X̂G

1 X2
and P

X̂
G
3 |X̂G

1 X̂
G
2 X3

be jointly
Gaussian distributions such that the following conditions are satisfied.

cov(X̂G

1 , X1) = cov(X̂⇤
1 , X1), (122)

cov(X̂G

1 , X̂G

2 , X2) = cov(X̂⇤
1 , X̂

⇤
2 , X2), (123)

cov(X̂G

1 , X̂G

2 , X̂G

3 , X3) = cov(X̂⇤
1 , X̂

⇤
2 , X̂

⇤
3 , X3), (124)

In general, the Gaussian random variables which satisfy the constraints in (122)–(124) can be written
in the following format

X1 = ⌫X̂G

1 + Z1, (125)
X̂G

2 = !1X̂
G

1 + !2X2 + Z2, (126)
X̂G

3 = ⌧1X̂
G

1 + ⌧2X̂
G

2 + ⌧3X3 + Z3, (127)

for some real ⌫, !1, !2, ⌧1, ⌧2, ⌧3 where X̂G

1 ⇠ N (0,�2
X̂

G
1

), X̂G

2 ⇠ N (0,�2
X̂

G
2

), Z1, Z2 and Z3 are533

Gaussian random variables with zero mean and variances ↵2
1,↵

2
2,↵

2
3, independent of X̂G

1 , (X̂G

1 , X2)534

and (X̂G

1 , X̂G

2 , X3), respectively.535

We explicitly derive the coefficients ⌫, !1, !2, ⌧1, ⌧2 and ⌧3 in the following. Multiplying both sides
of (125) by X̂G

1 and taking an expectation, we get

[X1X̂
G

1 ] = ⌫�2
X̂

G
1
. (128)

According to (122), the above equation can be written as follows

[X1X̂
⇤
1 ] = ⌫ [X̂⇤2

1 ]. (129)

Multiplying both sides of (126) by the vector [X̂G

1 X2] and taking an expectation, we have

[ [X̂G

1 X̂G

2 ] [X2X̂
G

2 ]] = [!1 !2]

 
�2
X̂

G
1

[X2X̂G

1 ]

[X2X̂G

1 ] �2
2

!
(130)

Considering the fact that [X2X̂G

1 ] = ⇢1 [X1X̂G

1 ] and according to (123), the above equation can
be written as follows

[ [X̂⇤
1 X̂

⇤
2 ] [X2X̂

⇤
2 ]] = [!1 !2]

✓
[X̂⇤2

1 ] ⇢1 [X1X̂⇤
1 ]

⇢1 [X1X̂⇤
1 ] �2

2

◆
. (131)
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Similarly, multiplying both sides of (127) by the vector [X̂G

1 X̂G

2 X3], taking an expectation and
considering (124), we get

[ [X̂⇤
1 X̂

⇤
3 ] [X̂⇤

2 X̂
⇤
3 ] [X3X̂

⇤
3 ]] = [⌧1 ⌧2 ⌧3]

0

@
[X̂⇤2

1 ] [X̂⇤
1 X̂

⇤
2 ] ⇢1⇢2 [X1X̂⇤

1 ]
[X̂⇤

1 X̂
⇤
2 ] [X̂⇤2

2 ] ⇢2 [X2X̂⇤
2 ]

⇢1⇢2 [X1X̂⇤
1 ] ⇢2 [X2X̂⇤

2 ] [X̂⇤2
3 ]

1

A .

(132)

Solving equations (129), (131) and (132), we get

�2
X̂

G
1
= E[X̂⇤2

1 ], (133)

⌫ =
E[X1X̂⇤

1 ]

E[X̂⇤2
1 ]

, (134)

↵2
1 = �2

1 � E[X1X̂⇤
1 ]

E[X̂⇤2
1 ]

, (135)

!1 =
⌫⇢1 [X̂⇤

1 X̂
⇤
2 ] � [X2X̂⇤

2 ]

⌫2⇢21�
2
X̂

G
1

� �2
2

, (136)

!2 =
⌫⇢1�2

X̂
G
1

[X2X̂⇤
2 ] � �2

2 [X̂⇤
1 X̂

⇤
2 ]

⌫2⇢21�
4
X̂

G
1

� �2
2�

2
X̂

G
1

, (137)

↵2
2 = [X̂⇤2

2 ] � ↵2
2�

2
X̂

G
1

� !2
2�

2
2 � 2!1!2⇢1⌫�

2
X̂

G
1
. (138)

For the third step, the coefficients and noise variance of (127) are given as follows

[⌧1 ⌧2 ⌧3]

= [ [X̂⇤
1 X̂

⇤
3 ] [X̂⇤

2 X̂
⇤
3 ] [X3X̂

⇤
3 ]]

0

@
[X̂⇤2

1 ] [X̂⇤
1 X̂

⇤
2 ] ⇢1⇢2 [X1X̂⇤

1 ]
[X̂⇤

1 X̂
⇤
2 ] [X̂⇤2

2 ] ⇢2 [X2X̂⇤
2 ]

⇢1⇢2 [X1X̂⇤
1 ] ⇢2 [X2X̂⇤

2 ] [X̂⇤2
3 ]

1

A
�1

,

(139)
↵2
3 = [X̂⇤2

3 ] � ⌧21 [X̂⇤2
1 ] � ⌧22 [X̂⇤2

2 ] � ⌧23 [X2
3 ]

�2⌧1⌧2 [X̂⇤
1 X̂

⇤
2 ] � 2⌧1⌧3⇢1⇢2 [X1X̂

⇤
1 ] � 2⌧2⌧3⇢2 [X2X̂

⇤
2 ], (140)

where (.)�1 denotes the inverse of a matrix.536

Now, we look at the rate constraints.537

Rate Constraints:538

Consider the rate constraint of the first step as follows

R1 � I(X1;X
⇤
r,1) (141)

= H(X1) � H(X1|X⇤
r,1) (142)

� H(X1) � H(X1|X̂⇤
1 ) (143)

= H(X1) � H(X1 � [X1|X̂⇤
1 ]|X̂⇤

1 ) (144)
� H(X1) � H(X1 � [X1|X̂⇤

1 ]) (145)
� H(X1) � H(X1 � [X1|X̂G

1 ]) (146)
= H(X1) � H(X1 � [X1|X̂G

1 ]|X̂G

1 ) (147)
= I(X1; X̂

G

1 ) (148)

where539

• (143) follows because X̂⇤
1 is a function of X⇤

r,1;540

• (146) follows because for a given covariance matrix in (122), the Gaussian distribution541

maximizes the differential entropy;542

• (147) follows because the MMSE is uncorrelated from the data and since the random543

variables are Gaussian, the MMSE would be independent of the data.544
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Next, consider the rate constraint of the second step as the following

R2 � I(X2;X
⇤
r,2|X⇤

r,1) (149)
= H(X2|X⇤

r,1) � H(X2|X⇤
r,1, X

⇤
r,2) (150)

� H(X2|X⇤
r,1) � H(X2|X̂⇤

1 , X̂
⇤
2 ) (151)

� H(X2|X⇤
r,1) � H(X2|X̂G

1 , X̂G

2 ) (152)

= H(⇢1X1 +N1|X⇤
r,1) � H(X2|X̂G

1 , X̂G

2 ) (153)

� 1

2
log
⇣
⇢212

2H(X1|X⇤
r,1) + 22H(N1)

⌘
� H(X2|X̂G

1 , X̂G

2 ) (154)

� 1

2
log
⇣
⇢212

�2R122H(X1) + 22H(N1)
⌘

� H(X2|X̂G

1 , X̂G

2 ), (155)

where545

• (151) follows because X̂⇤
1 and X̂⇤

2 are deterministic functions of X⇤
r,1 and (X⇤

r,1, X
⇤
r,2),546

respectively;547

• (152) follows because for a given covariance matrix in (123), the Gaussian distribution548

maximizes the differential entropy;549

• (154) follows from entropy power inequality (EPI) [38, pp. 22];550

• (155) follows from (142).551

Similarly, consider the rate constraint of the third frame as the following,

R3 � I(X3; X̂
⇤
3 |X⇤

r,1, X
⇤
r,2) (156)

= H(X3|X⇤
r,1, X

⇤
r,2) � H(X3|X⇤

r,1, X
⇤
r,2, X̂

⇤
3 ) (157)

� H(X3|X⇤
r,1, X

⇤
r,2) � H(X3|X̂⇤

1 , X̂
⇤
2 , X̂

⇤
3 ) (158)

� H(X3|X⇤
r,1, X

⇤
r,2) � H(X3|X̂G

1 , X̂G

2 , X̂G

3 ) (159)

= H(⇢2X2 +N2|X⇤
r,1, X

⇤
r,2) � H(X3|X̂G

1 , X̂G

2 , X̂G

3 ) (160)

� 1

2
log
⇣
⇢222

2H(X2|X⇤
r,1,X

⇤
r,2) + 22H(N2)

⌘
� H(X3|X̂G

1 , X̂G

2 , X̂G

3 ) (161)

� 1

2
log
⇣
⇢222

�2R222H(X2|X⇤
r,1) + 22H(N2)

⌘
� H(X3|X̂G

1 , X̂G

2 , X̂G

3 ) (162)

� 1

2
log
⇣
⇢21⇢

2
22

�2R1�2R222H(X1) + ⇢222
�2R222H(N1) + 22H(N2)

⌘
� H(X3|X̂G

1 , X̂G

2 , X̂G

3 )

(163)

Next, we look at the distortion constraint.552

Distortion Constraint: The choices in (122)–(124) imply that

Dj � [kXj � X̂⇤
j
k2] = [kXj � X̂G

j
k2], j = 1, 2, 3. (164)

Finally, we look at the perception constraint553

Perception Constraint:554

Define the following distribution

PU⇤V ⇤ := arg inf
P̃UV :

P̃U=PX1

P̃V =PX̂⇤
1

P̃
[kU � V k2]. (165)

Now, define PUGV G to be a Gaussian joint distribution with the following covariance matrix

cov(UG, V G) = cov(U⇤, V ⇤). (166)

Then, we have the following set of inequalities:555
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P1 � W 2
2 (PX1 , PX̂

⇤
1
) = inf

P̃UV :
P̃U=PX1

P̃V =PX̂⇤
1

P̃
[kU � V k2] (167)

= [kU⇤ � V ⇤k2] (168)
= [kUG � V Gk2] (169)
� W 2

2 (PUG , PV G) (170)
= inf

P̂UV :
P̂U=PUG

P̂V =PV G

P̂
[kU � V k2] (171)

= inf
P̂UV :

P̂U=PX1

P̂V =P
X̂G

1

P̂
[kU � V k2] (172)

= W 2
2 (PX1 , PX̂

G
1
), (173)

where556

• (168) follows from the definition in (165);557

• (169) follows from (166) which implies that (U⇤, V ⇤) and (UG, V G) have the same second-558

order statistics;559

• (172) follows because PV G = P
X̂

G
1

which is justified in the following. First, notice that560

both PV G and P
X̂

G
1

are Gaussian distributions. Denote the variance of V G by �2
V G and561

recall that the variance of X̂G

1 is denoted by �2
X̂

G
1

. According to (166), �2
V G is equal to the562

variance of V ⇤. Also, from (165), we know that PV ⇤ = P
X̂

⇤
1

, hence the variances of V ⇤563

and X̂⇤
1 are the same. On the other side, according to (122), we know that the variance of564

X̂⇤
1 is equal to �2

X̂
G
1

. Thus, we conclude that �2
X̂

G
1

= �2
V G , which yields PV G = P

X̂
G
1

. A565

similar argument shows that PUG = PX1 .566

A similar argument holds for the perception constraint of the second and third steps for both PLFs.567

Thus, we have proved the set of Gaussian auxiliary random variables (X̂G

1 , X̂G

2 , X̂G

3 ) given in (125)–
(127) where the coefficients are chosen according to distortion-perception constraints, provides an
outer bound to CRDP which is the set of all tuples (R,D,P) such that

R1 � I(X1; X̂
G

1 ), (174)

R2 � 1

2
log
⇣
⇢212

�2R122H(X1) + 22H(N1)
⌘

� H(X2|X̂G

1 , X̂G

2 ), (175)

R3 � 1

2
log
⇣
⇢21⇢

2
22

�2R1�2R222H(X1) + ⇢222
�2R222H(N1) + 22H(N2)

⌘
� H(X3|X̂G

1 , X̂G

2 , X̂G

3 ),

(176)
Dj � [kXj � X̂G

j
k2], j = 1, 2, 3 (177)

Pj � W 2
2 (PX1...Xj , PX̂

G
1 ...X̂

G
j
). (178)

Now, we need to show that the above RDP region is also an inner bound to CRDP. This is simply
verified by the following choice. In iRDP region of (68)–(76), choose the following:

Xr,j = X̂j = X̂G

j
, j = 1, 2, 3, (179)

where (X̂G

1 , X̂G

2 , X̂G

3 ) satisfy (125)–(127) with coefficients chosen according to distortion-perception
constraints. The lower bounds on distortion and perception constraints in (177) and (178) are
immediately achieved by this choice. Now, we will look at the rate constraints. The achievable rate
constraint of the first step can be written as follows

R1 � I(X1; X̂
G

1 ), (180)
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which immediately coincides with (174). The achievable rate of the second step can be written as
follows

R2 � I(X2; X̂
G

2 |X̂G

1 ) (181)
= H(X2|X̂G

1 ) � H(X2|X̂G

1 , X̂G

2 ) (182)
= H(⇢1X1 +N1|X̂G

1 ) � H(X2|X̂G

1 , X̂G

2 ) (183)

=
1

2
log(⇢212

2H(X1|X̂G
1 ) + 22H(N1)) � H(X2|X̂G

1 , X̂G

2 ) (184)

� 1

2
log
⇣
⇢212

�2R122H(X1) + 22H(N1)
⌘

� H(X2|X̂G

1 , X̂G

2 ), (185)

where568

• (184) follows because EPI holds with “equality” for jointly Gaussian distributions [38, pp.569

22];570

• (185) follows from (175).571

Thus, the bound in (185) coincides with (155). A similar argument holds for the achievable rate of572

the third frame.573

Notice that the above proof (both converse and achievability) can be extended to T frames using the574

sequential analysis that was presented. Thus, without loss of optimality, one can restrict to the jointly575

Gaussian distributions and identity functions ⌘1(.) and ⌘2(., .) in iRDP region CRDP.576

For a given rate R, the following corollary provides the optimization programs which lead to the577

characterization of the DP tradeoff DP(R) for the Gauss-Markov source model.578

Corollary 1 For a given rate tuple R and T = 2 frames, the optimal reconstructions of the DP-
tradeoff DP(R) can be written as follows

X̂G

1 = ⌫X1 + Z1, (186)
X̂G

2 = !1X̂
G

1 + !2X2 + Z2, (187)

where Z1 (resp Z2) is a Gaussian random variable independent of X1 (resp (X̂G

1 , X2)) and X̂G

j
⇠

N (0, �̂2
j
) for j = 1, 2, and ⌫,!1,!2, �̂2

1 , �̂
2
2 are the solutions of the following optimization program

for the first step,
min
⌫,�̂

2
1

�2
1 + �̂2

1 � 2⌫�2
1 , (188a)

s.t. ⌫2�2
1  �̂2

1(1 � 2�2R1), (188b)
(�1 � �̂1)

2  P1, (188c)
and the following minimization problem for the second step and PLF-FMD,

min
!1,!2,�̂

2
2

�2
2 + �̂2

2 � 2⌫!1⇢1�1�2 � 2!2�
2
2 , (189a)

s.t. !2
2�

2
2(1 � 2�2R2

⌫2⇢21�
2
1

�̂2
1

)  (�̂2
2 � !2

1 �̂
2
1 � 2!1!2⌫⇢1�1�2)(1 � 2�2R2), (189b)

(�2 � �̂2)
2  P2, (189c)

or the following minimization problem for the second step and PLF-JD,
min

!1,!2,�̂
2
2

�2
2 + �̂2

2 � 2⌫!1⇢1�1�2 � 2!2�
2
2 (190a)

s.t. !2
2�

2
2(1 � 2�2R2

⌫2⇢21�
2
1

�̂2
1

)  (�̂2
2 � !2

1 �̂
2
1 � 2!1!2⌫⇢1�1�2)(1 � 2�2R2), (190b)

tr(⌃12 + ⌃̂12 � 2(⌃1/2
12 ⌃̂12⌃

1/2
12 )1/2)  P2, (190c)

where tr(.) denotes the trace of a matrix and

⌃12 :=

✓
�2
1 ⇢1�1�2

⇢1�1�2 �2
2

◆
, (191)

⌃̂12 :=

✓
�̂2
1 !1�̂2

1 + ⌫!2⇢1�1�2
!1�̂2

1 + ⌫!2⇢1�1�2 �̂2
2

◆
. (192)
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Proof: We obtain the optimization programs for T = 2 frames as follows.579

For a given rate tuple R, the DP-tradeoff DP(R) is given by the set of all tuples (D,P) such that
there exists X̂G satisfying the following Markov chains

X̂G

1 ! X1 ! X2, (193)
X̂G

2 ! (X̂G

1 , X2) ! X1, (194)

and the following conditions,

R1 � I(X1; X̂
G

1 ), (195)
R2 � I(X2; X̂

G

2 |X̂G

1 ), (196)

and

Dj � [kXj � X̂G

j
k2], j = 1, 2, (197)

Pj � W 2
2 (PX1...Xj , PX̂

G
1 ...X̂

G
j
). (198)

In general, the set of reconstructions that satisfy (193)–(194) can be written as follows

X̂G

1 = ⌫X1 + Z1, (199)
X̂G

2 = !1X̂
G

1 + !2X2 + Z2. (200)

Plugging the above into (195) and (196) yields the following rate expressions

1

2
log

�̂2
1

�̂2
1 � ⌫2�2

1

 R1, (201)

1

2
log

�̂2
2 � (!1�̂1 +

!2⌫⇢1�1�2

�̂1
)2

�̂2
2 � !2

1 �̂
2
1 � !2

2�
2
2 � 2!1!2⌫⇢1�1�2

 R2. (202)

Re-arranging the terms in the above constraints yields the conditions in (188b) and (190b). Consider-
ing (197) with (199)–(200) gives the following expressions for distortions

[kX1 � X̂G

1 k2] = �2
1 + �̂2

1 � 2 [X1X̂
G

1 ] = �2
1 + �̂2

1 � 2⌫�2
1 , (203)

[kX2 � X̂G

2 k2] = �2
2 + �̂2

2 � 2 [X2X̂
G

2 ] = �2
2 + �̂2

2 � 2!1⌫⇢1�1�2 � 2!2�
2
2 , (204)

which are the objective functions in (188a) and (190a). Now, we evaluate the perception constraint.580

Notice that the covariance matrices of (X1, X2) and (X̂G

1 , X̂G

2 ) are given by ⌃12 and ⌃̂12 defined581

in (191) and (192), respectively. The Wasserstein-2 distance between two Gaussian distributions with582

covariance matrices ⌃12 and ⌃̂12 is given in (190c) as discussed in [26, pp. 18].583

Similarly, the expressions in (189) for the decoder based on PLF-FMD can be obtained.584

F Gauss-Markov Source Model: Extremal Rates585

In this section, we derive the achievable reconstructions for some special cases. We assume that we
have only two frames, i.e., D3, P3 ! 1. Moreover, let �2

1 = �2
2 := �2 for simplicity. In general,

the reconstructions can be written as follows

X̂G

1 = ⌫X1 + Z1, (205)
X̂G

2 = !1X̂
G

1 + !2X2 + Z2, (206)

where X̂G

j
⇠ N (0, �̂2

j
) for j = 1, 2. Recall the optimization program of the first step in (188) as

follows

min
⌫,�̂

2
1

�2 + �̂2
1 � 2⌫�2, (207a)

s.t. ⌫2�2  �̂2
1(1 � 2�2R1), (207b)

(� � �̂1)
2  P1, (207c)
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For a given �̂2
1 , the objective function in (207a) is a monotonically deacreasing function of ⌫, hence

one can restrict ⌫ to be nonnegative, without loss of optimality. So, the above optimization program
can be written as

min
⌫,�̂

2
1

�2 + �̂2
1 � 2⌫�2, (208a)

s.t. 0  ⌫  �̂1
�

p
1 � 2�2R1 , (208b)

(� � �̂1)
2  P1, (208c)

Optimizing with respect to ⌫ in the above program, we have

⌫ =
�̂1
�

p
1 � 2�2R1 , (209)

where the optimization program reduces to

min
�̂
2
1

�2 + �̂2
1 � 2��̂1

p
1 � 2�2R1 , (210a)

s.t. (� � �̂1)
2  P1. (210b)

Next, recall the optimization program of the second step for PLF-FMD in (189) as follows

min
!1,!2,�̂

2
2

�2 + �̂2
2 � 2⌫!1⇢1�

2 � 2!2�
2, (211a)

s.t. !2
2�

2(1 � 2�2R2
⌫2⇢21�

2

�̂2
1

)  (�̂2
2 � !2

1 �̂
2
1 � 2!1!2⌫⇢1�

2)(1 � 2�2R2), (211b)

(� � �̂2)
2  P2, (211c)

Plugging (209) into the above program, we get

min
!1,!2,�̂

2
2

�2 + �̂2
2 � 2!1⇢1�̂1�

p
1 � 2�2R1 � 2!2�

2, (212a)

s.t. !2
2�

2(1 � ⇢212
�2R2(1 � 2�2R1))  (�̂2

2 � !2
1 �̂

2
1 � 2!1!2⇢1�̂1�

p
1 � 2�2R1)(1 � 2�2R2),

(212b)
(� � �̂2)

2  P2, (212c)

The optimization program for the second step of PLF-JD is similar to the above program (212) when586

(212c) is replaced by (190c). In this section, we study different rate regimes and obtain the solutions587

of the above optimization programs. In particular, we are interested in two perception thresholds588

P2 ! 1 and P2 = 0 where the former corresponds to the classical rate-distortion region and the589

latter is the case of 0-PLF. For the 0-PLF-FMD, we have �̂1 = �̂2 = �. For the 0-PLF-JD, in addition590

to preserving the marginals, the correlation [X̂G

1 X̂G

2 ] = ⇢1�2 should be satisfied. For each of these591

cases, the optimization program in (212) is simplified in the following.592

Optimization Program of the Second Step for P ! 1: In this case, there is no perception constraint
in the setting and the optimization program in (212) reduces to the following

min
�̂
2
2 ,!1,!2

�2 + �̂2
2 � 2!1⇢1�̂1�

p
1 � 2�2R1 � 2!2�

2, (213a)

s.t. !2
2�

2(1 � ⇢212
�2R2(1 � 2�2R1))  (�̂2

2 � !2
1 �̂

2
1 � 2!1!2⇢1�̂1�

p
1 � 2�2R1)(1 � 2�2R2).

(213b)

This case corresponds to the classical rate-distortion tradeoff where it is shown that for a given rate,593

the MMSE reconstructions are indeed optimal [28, 37]. The expressions for MMSE reconstructions594

are given in Appendix H.1.595

Optimization Program of the Second Step for 0-PLF-FMD: In this case, we have �̂1 = �̂2 = �. So,
the optimization program in (212) reduces to the following

min
!1,!2

2�2 � 2!1⇢1�
2
p
1 � 2�2R1 � 2!2�

2, (214a)

s.t. !2
2(1 � ⇢212

�2R2(1 � 2�2R1))  (1 � !2
1 � 2!1!2⇢1

p
1 � 2�2R1)(1 � 2�2R2).

(214b)
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Here, !1 and !2 only need to satisfy the rate constraint given in (214b) which represents a larger596

search space than that of 0-PLF-JD which will be discussed in the following.597

Optimization Program of the Second Step for 0-PLF-JD: In this case, in addition to preserving
marginals �̂1 = �̂2 = �, we need to satisfy the constraint [X̂G

1 X̂G

2 ] = ⇢1�2. Thus, the opti-
mization program of this case has an extra condition !1 + ⌫!2⇢1 = ⇢1 comparing to (214) and it is
given as follows

min
!1,!2

2�2 � 2!1⇢1�
2
p
1 � 2�2R1 � 2!2�

2, (215a)

s.t. !2
2(1 � ⇢212

�2R2(1 � 2�2R1))  (1 � !2
1 � 2!1!2⇢1

p
1 � 2�2R1)(1 � 2�2R2),

!1 + ⌫!2⇢1 = ⇢1. (215b)

Comparing (215) with (214), we notice that the search space of the optimization program for 0-PLF-598

JD is smaller than that of 0-PLF-FMD. Thus, a larger distortion is expected for 0-PLF-JD.599

Before studying each case of extremal rates, we introduce another constraint in the optimization600

program of all above three cases of perception metrics. We restrict to nonnegative !1!2⇢1 and get an601

upper bound on the programs (213), (214) and (215). So, in further discussion on these programs,602

the constraint !1!2⇢1 � 0 will be also considered.603

1) R1 = R2 = ✏ for small ✏:604

In the low-rate regime, notice that we can approximate the rate term as follows

1 � 2�2✏ = 2✏ ln 2 +O(✏2). (216)

Plugging the above into (209), we have

⌫ =
�̂1
�

p
2✏ ln 2 +O(✏2). (217)

Also, inserting (216) into the rate constraint of the second step (211c) yields the following

!2
2�

2(1 � ⇢212✏ ln 2 +O(✏2))  (�̂2
2 � !2

1 �̂
2
1 � 2!1!2⇢1�̂1�

p
2✏ ln 2 +O(✏2))(2✏ ln 2 +O(✏2)).1

(218)

Re-arranging the terms in the above inequality yields the following

�̂2
2 � !2

2�
2(1 � ⇢212✏ ln 2 +O(✏2))

2✏ ln 2 +O(✏2)
+ !2

1 �̂
2
1 + 2!1!2⇢1�̂1�

p
2✏ ln 2 +O(✏2) (219)

= !2
2�

2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 �̂
2
1 + 2!1!2⇢1�̂1�

p
2✏ ln 2 +O(✏2) (220)

So, in all of the optimization programs of the case R1 = R2 = ✏, the above constraint (220) will605

replace the rate constraint of the second step.606

Now, we consider different cases based on the perception measure.607

a) Without a perception constraint: In this case, using (216), the optimization program of the first
step in (210) simplifies to the following

D1 = min
�̂
2
1

�2 + �̂2
1 � 2��̂1

p
2✏ ln 2 +O(✏2), (221)

which gives us the following optimal solution

�̂1 =
p

2✏ ln 2 +O(✏2)� =
p
2✏ ln 2� +O(✏). (222)

Plugging the above solution into (217) and (221), we get

⌫ = 2✏ ln 2 +O(✏2), (223)

1The inequalities of the form f(✏) + O(✏2)  g(✏) + O(✏2), where f(✏), g(✏) = ⌦(✏2), imply that
f(✏)  g(✏). So, in such inequalities, we work with dominant terms (f(✏), g(✏)) and ignore the small terms
O(✏2). A similar argument holds if we have other orders of ✏ and the functions f(.), g(.) approach zero slower
than them.
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and

D1 = (1 � 2✏ ln 2)�2 +O(✏2). (224)

Now, we look at the optimization program of the second step (213). For a given !1 and !2, the
objective function is an increasing function of �̂2

2 , so optimizing over �̂2
2 yields the following

�̂2
2 = !2

2�
2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 �̂
2
1 + 2!1!2⇢1�̂1�

p
2✏ ln 2 +O(✏2). (225)

Thus, the optimization program (213) is further upper bounded by the following

min
�̂
2
2 ,!1,!2:

!1!2⇢1�0

�2 + !2
2�

2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 �̂
2
1 � 2(1 � !2)!1⇢1�̂1�

p
2✏ ln 2 +O(✏2) � 2!2�

2.

(226)

The optimal solution of the above minimization is given by the following

!1 = ⇢1 +O(✏), (227)
!2 = 2✏ ln 2 +O(✏2). (228)

Thus, considering the dominant terms of (223), (227) and (228), we have

X̂G

1 = (2✏ ln 2)X1 + Z1, (229)
X̂G

2 = ⇢1X̂
G

1 + (2✏ ln 2)X2 + Z2, (230)

and Zj ⇠ N (0, 2✏�2 ln 2) for j = 1, 2. Notice that

D1 = (1 � 2✏ ln 2)�2, (231)
D2 = (1 � (1 + ⇢21)2✏ ln 2)�

2. (232)

b) 0-PLF-FMD: In this case, we have �̂1 = �̂2 = �. For the optimization program of the first step,
(209) reduces to the following

⌫ =
p
2✏ ln 2 +O(✏), (233)

and D1 is given in the following which is derived by (210)

D1 = 2(1 �
p
2✏ ln 2)�2 +O(✏). (234)

Now, we study the optimization program of the second step. The optimization program of (214) is
further upper bounded by the following

min
!1,!2:

!1!2⇢1�0

2�2 � 2!1⇢1�
2
p
2✏ ln 2 +O(✏2) � 2!2�

2, (235a)

s.t. 1 �

s

!2
2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 + 2!1!2⇢1
p

2✏ ln 2 +O(✏2). (235b)

Now, we further simplify the inequality (235b) in the following. Considering the fact that !1!2⇢1 � 0,
this inequality implies that

!2
1  1, (236)
!2
2  2✏ ln 2 +O(✏2). (237)

So, using the above inequalities, the RHS of (235b) can be upper bounded as follows
s

!2
2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 + 2!1!2⇢1
p
2✏ ln 2 +O(✏2)



s

!2
2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 + (!2
1 + !2

2)⇢1
p
2✏ ln 2 +O(✏2)



s

!2
2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 +O(✏3/2). (238)
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Now, according to (238), the optimization program in (235) is further upper bounded by the following

min
!1,!2:

!1!2⇢1�0

2�2 � 2!1⇢1�
2
p
2✏ ln 2 +O(✏2) � 2!2�

2, (239a)

s.t. 1 �

s

!2
2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 +O(✏3/2). (239b)

For a given !1 (resp !2), the objective function (239a) is a monotonically decreasing function of !2

(resp !1), so the optimal solution is attained on the boundary, i.e.,

1 =

s

!2
2

✓
1

2✏ ln 2
+O (1)

◆
+ !2

1 +O(✏3/2) (240)

Thus, the program (239) further simplifies to the following

min
!1:

!1⇢1�0

2�2 � 2!1⇢1�
2
p
2✏ ln 2 +O(✏2) � 2�2

q
(1 � !2

1 � O(✏3/2))(2✏ ln 2 +O(✏2)).

(241)

The optimal solution of the above program is given by

!1 =
⇢1p
1 + ⇢21

+O (✏) , (242)

which together with (240) yields

!2 =

s
2✏ ln 2

1 + ⇢21
+O(✏). (243)

Thus, considering dominant terms of (233), (242) and (243), we get

X̂G

1 =
p
2✏ ln 2X1 + Z1, (244)

X̂G

2 =
⇢1p
1 + ⇢21

X̂G

1 +

s
2✏ ln 2

1 + ⇢21
X2 + Z2, (245)

where Z1 ⇠ N (0, (1 � 2✏ ln 2)�2) and

Z2 ⇠ N (0, (1 � ⇢21
1 + ⇢21

� 1 + 2⇢21
1 + ⇢21

2✏ ln 2)�2). (246)

Notice that

D1 = 2(1 �
p
2✏ ln 2)�2, (247)

D2 = 2(1 �
q
(1 + ⇢21)2✏ ln 2)�

2. (248)

For the special case of ⇢1 = 1, the expressions in (244) and (245) simplify as follows

X̂G

1 =
p
2✏ ln 2X1 + Z1, (249)

X̂G

2 =
p
2
p
2✏ ln 2X1 +

1p
2
Z1 + Z2. (250)

Define ZFMD := 1p
2
Z1 + Z2 and notice that ZFMD ⇠ N (0, (1 � 4✏ ln 2)�2). Moreover, we have

D1 = 2(1 �
p
2✏ ln 2)�2, (251)

D2 = 2(1 �
p
4✏ ln 2)�2. (252)

c) 0-PLF-JD: In this case, the optimization program of the first step is similar to the previous case.
The optimization program of the second step is given in (215) where the condition !1 + ⌫!2⇢1 = ⇢1
is introduced. According to (233), ⌫ = O(

p
✏) which suggests the following form for !1,

!1 = ⇢1 � �✏, (253)
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for some small �✏ that goes to zero as ✏ ! 0. The parameter �✏ will be determined later. Plugging
!1 = ⇢1 � �✏ into (240), we find out that only the constant term of !1 contributes to a dominant term
for !2 which yields the following

!2 =
q

2✏ ln 2(1 � ⇢21) +O(✏). (254)

Thus, we have

X̂G

1 =
p
2✏ ln 2X1 + Z1, (255)

X̂G

2 = (⇢1 � �✏)X̂
G

1 +
q
(1 � ⇢21)2✏ ln 2X2 + Z2, (256)

Now, applying the constraint [X̂G

1 X̂G

2 ] = ⇢1�2, we get

�✏ = ⇢1

q
1 � ⇢21(2✏ ln 2). (257)

However, notice that since �✏ = O(✏), it does not contribute to dominant terms of distortion. So, we
can simply represent X̂G

1 and X̂G

2 as follows

X̂G

1 =
p
2✏ ln 2X1 + Z1, (258)

X̂G

2 = ⇢1X̂
G

1 +
q

(1 � ⇢21)2✏ ln 2X2 + Z2, (259)

where Z1 ⇠ N (0, (1 � 2✏ ln 2)�2) and Z2 ⇠ N (0, (1 � ⇢21 � (1 � ⇢21 + 2⇢21
p

1 � ⇢21)2✏ ln 2)�
2).

The following distortions are also achievable

D1 = 2(1 �
p
2✏ ln 2)�2, (260)

D2 = 2(1 � (⇢21 +
q
1 � ⇢21)

p
2✏ ln 2)�2. (261)

For the special case of ⇢ = 1, according to (259) and (261), we have X̂G

2 = X̂G

1 and D2 = D1.608

2) R1 ! 1, R2 = ✏ for small ✏: In this case, since R1 ! 1, we have X̂G

1 = X1, D1 = 0, and
we only need to solve the optimization program of the second step. Also, we have the following
approximation

1 � 2�2R2 = 1 � 2�2✏ = 2✏ ln 2 +O(✏2). (262)

We consider three different cases based on the perception constraint.609

a) Without a perception constraint: In this case, consider the optimization program (213). For a given
!1 and !2, the objective function is an increasing function of �̂2

2 , hence optimizing over �̂2
2 , we get

�̂2
2 =

!2
2�

2(1 � ⇢21 +O(✏))

2✏ ln 2 +O(✏2)
+ !2

1�
2 + 2!1!2⇢1�

2. (263)

The program in (213) is further upper bounded by the following

min
!1,!2:

!1!2⇢1�0

�2 +
!2
2�

2(1 � ⇢21 +O(✏))

2✏ ln 2 +O(✏2)
+ !2

1�
2 + 2!1!2⇢1�

2 � 2!1⇢1�
2 � 2!2�

2,

(264)

The solution of the above optimization program is given by the following

!1 = ⇢1 � ⇢1(2✏ ln 2), (265)
!2 = 2✏ ln 2. (266)

Thus, we have

X̂G

1 = X1, (267)
X̂G

2 = (⇢1 � ⇢1(2✏ ln 2))X1 + (2✏ ln 2)X2 + Z2, (268)

where Z2 ⇠ N (0, (1 � ⇢21)�
22✏ ln 2). So, the reconstruction of the second frame closely resembles610

the first frame. The distortions of the first and second frames are zero and (1�⇢21�(1�⇢21)2✏ ln 2)�2,611

respectively.612
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b) 0-PLF-FMD: In this case, �̂1 = �̂2 = �. Thus, the optimization program in (214) is further upper
bounded by the following

min
!1,!2:

!1!2⇢1�0

2�2 � 2!1⇢1�
2 � 2!2�

2, (269a)

s.t. !2
2(1 � ⇢21 +O(✏))  (1 � !2

1 � 2!1!2⇢1)(2✏ ln 2 +O(✏2)). (269b)
For a given !1 (resp !2), the objective function (269a) is a monotonically decreasing function of !2

(resp !1). So, the optimal solution is attained on the boundary, i.e., (269b) is satisfied with equality
given as follows

!2
2(1 � ⇢21 +O(✏)) = (1 � !2

1 � 2!1!2⇢1)(2✏ ln 2 +O(✏2)). (270)
It can be easily verified that the first-order terms of !1 and !2 which optimize the program are 1 and
0, respectively. So, we write !1 and !2 in the following form

!1 = 1 + (2✏ ln 2)�1 +O(✏2), (271)
!2 = (2✏ ln 2)�2 +O(✏2), (272)

for some real �1 and �2. Plugging the above (271) and (272) into (270) and considering the dominant
terms, we get

�22(1 � ⇢21) = �2�1 � 2⇢1�2. (273)
On the other side, we can write the objective function in (269) as follows

2�2 � 2!1⇢1�
2 � 2!2�

2

= 2�2 � 2⇢1!1�
2 � 2!2�

2 +O(✏2) (274)
= 2�2 � 2⇢1�

2 � 2(⇢1�1�
2 + �2�

2)(2✏ ln 2) +O(✏2) (275)
= 2�2 � 2⇢1�

2 � (�2⇢21�2�
2 � ⇢1(1 � ⇢21)�

2
2 + 2�2�

2)(2✏ ln 2) +O(✏2). (276)
Differentiating the above expression with respect to �2 and letting it be zero, we have:

�2 =
1

⇢1
, �1 = �1 + ⇢21

2⇢21
. (277)

Thus, we have
X̂G

1 = X1, (278)

X̂G

2 = (1 � (1 + ⇢21)2✏ ln 2

2⇢21
)X̂G

1 +
2✏ ln 2

⇢1
X2 + Z2, (279)

where Z2 ⇠ N (0, ( 1�⇢
2
1

⇢
2
1

)2✏ ln 2). Again, the reconstruction of the second frame is almost similar to613

the first frame and the distortion is 2(1 � ⇢1 � ( 1�⇢
2
1

2⇢1
)2✏ ln 2)�2.614

c) 0-PLF-JD: First consider the case where ⇢1 6= 1. The optimization program is given in (215)
where the constraint !1 + ⌫⇢1!2 = ⇢1 is introduced. Notice that !1 can be written in the following
form

!1 = ⇢1 + �✏, (280)
for some �✏ that goes to zero as ✏ ! 0. The parameter �✏ will be determined later. Plugging
!1 = ⇢1 + �✏ into (270) yields the following

!2 =
p
2✏ ln 2 +O(✏), (281)

which is derived only through the first-order term of !1 which is ⇢1. Now, considering the fact that
[X̂G

1 X̂G

2 ] = ⇢1�2, we obtain
�✏ = �⇢1

p
2✏ ln 2. (282)

Thus, we have
X̂G

1 = X1, (283)
X̂G

2 = (⇢1 � ⇢1
p
2✏ ln 2)X̂G

1 +
p
2✏ ln 2X2 + Z2, (284)

where Z2 ⇠ N (0, (1 � ⇢21)�
2). Here, the reconstruction of the second frame closely resembles the615

first frame. The distortion of the second frame is 2(1 � ⇢21 � (1 � ⇢21)
p
2✏ ln 2)�2.616

If ⇢1 = 1, we simply have X̂G

2 = X̂G

1 = X1 = X2 which can be derived from (283)–(284) by letting617

X1 = X2.618

The analysis for the case of R1 = ✏ and R2 ! 1 is similar and is omitted for brevity. The results of619

this section are summarized in Table 2.620
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Table 2: Achievable reconstructions for extremal rates and different PLFs (The first, second and third rows
represent reconstructions corresponding to the MMSE, 0-PLF-FMD and 0-PLF-JD, respectively).

R1 = R2 = ✏ R1 ! 1, R2 = ✏ R1 = ✏, R2 = 1

X̂
G
1 =(2✏ ln 2)X1 + Z1 X̂

G
1 =X1 X̂

G
1 =(2✏ ln 2)X1 + Z1

X̂
G
2 =⇢1X̂

G
1 + (2✏ ln 2)X2 + Z2 X̂

G
2 =(⇢1 � ⇢12✏ ln 2)X̂G

1 + (2✏ ln 2)X2 + Z2 X̂
G
2 =X2

M
M

SE

Zj⇠N (0, 2✏�2 ln 2) Z2⇠N (0, (1 � ⇢
2
1)2✏�

2 ln 2) Z1⇠N (0, 2✏�2 ln 2)

D1=(1 � 2✏ ln 2)�2
D1=0 D1=(1 � 2✏ ln 2)�2

D2=(1 � (1 + ⇢
2
1)2✏ ln 2)�2

D2=(1 � ⇢
2
1 � (1 � ⇢

2
1)2✏ ln 2)�2

D2=0

X̂
G
1 =

p
2✏ ln 2X1 + Z1 X̂

G
1 =X1 X̂

G
1 =

p
2✏ ln 2X1 + Z1

X̂
G
2 =

⇢1q
1+⇢21

X̂
G
1 +

r
2✏ ln 2
1+⇢21

X2 + Z2 X̂
G
2 =(1 � (1+⇢21)2✏ ln 2

2⇢21
)X̂G

1 + 2✏ ln 2
⇢1

X2 + Z2 X̂
G
2 =X2

0
-P

L
F-

FM
D

Z1⇠N (0, (1 � 2✏ ln 2)�2) Z2⇠N (0, (
1�⇢21
⇢21

)2✏ ln 2) Z1⇠N (0, (1 � 2✏ ln 2)�2)

Z2⇠N (0, (1� ⇢21
1+⇢21

� 1+2⇢21
1+⇢21

2✏ ln 2)�2)

D1=2(1 �
p
2✏ ln 2)�2

D1=0 D1=2(1 �
p
2✏ ln 2)�2

D2=2(1 �
q

(1 + ⇢21)2✏ ln 2)�2
D2=2(1 � ⇢1 � (

1�⇢21
2⇢1

)2✏ ln 2)�2
D2=0

X̂
G
1 =

p
2✏ ln 2X1 + Z1 X̂

G
1 =X1 X̂

G
1 =

p
2✏ ln 2X1 + Z1

X̂
G
2 =⇢1X̂

G
1 +

q
(1 � ⇢21)2✏ ln 2X2 + Z2

a
X̂

G
2 =(⇢1 � ⇢1

p
2✏ ln 2)X̂G

1 +
p
2✏ ln 2X2 + Z2 X̂

G
2 =⇢1X̂

G
1 +

q
1 � ⇢21X2

0
-P

L
F-

JD

Z1⇠N (0, (1 � 2✏ ln 2)�2) Z2⇠N (0, (1 � ⇢
2
1)�

2) Z1⇠N (0, (1 � 2✏ ln 2)�2)

Z2⇠N (0, (1 � ⇢
2
1 � (1 � ⇢

2
1)2✏ ln 2)�2)

D1=2(1 �
p
2✏ ln 2)�2

D1=0 D1=2�2

D2=2(1 � (⇢21 +
q

1 � ⇢21)
p
2✏ ln 2)�2

D2=2(1 � ⇢
2
1 � (1 � ⇢

2
1)

p
2✏ ln 2)�2

D2=2(1 �
q

1 � ⇢21

�⇢
2
1

p
2✏ ln 2)�2

a
As justified in (253)–(259), the coefficient !1 (the coefficient of X̂G

1 in X̂
G
2 ) has some correction terms of O(✏) which are ignored in the presentation of

X̂
G
2 since they do not contribute to dominant terms of distortion.

G Comparison of PLFs in Low-Rate Regime621

Theorem 6 For sufficiently small ✏, let Rj = ✏ and suppose that ⇢j = ⇢ and �j = �, for j =
1, . . . , T . The achievable distortions DFMD,j (for 0-PLF-FMD), and DJD,j (for 0-PLF-JD) are:

DFMD,j = 2(1 � �FMD,j

p
2✏ ln 2)�2, DJD,j = 2(1 � �JD,j

p
2✏ ln 2)�2, (285)

where �FMD,j :=
q
1 + ⇢2 (2⇢2)j�1�1

2⇢2�1 and �JD,j := ⇢2(j�1) + {j � 2} ·
p

1 � ⇢2(
P

j�2
i=0 ⇢

2i).622

Proof: We extend the proof in the previous section for the low-rate regime to T frames.623

Distortion Analysis for 0-PLF-FMD:624

We follow similar steps to (233)–(248) for optimization problems of the third and fourth frames and625

then use induction to derive expressions for T frames. For simplicity, we assume that ⇢j = ⇢ for all j.626

Notice that in the following proof, (X̂G

1 , X̂G

2 ) are as in (205)–(206) where ⌫, !1 and !2 are already627

derived in (233)–(248).628

Now, consider the reconstruction of the third frame as follows

X̂G

3 = ⌧1X̂
G

1 + ⌧2X̂
G

2 + ⌧3X3 + Z3, (286)

for some ⌧1, ⌧2, ⌧3, where X̂G

3 ⇠ N (0,�2) and Z3 is a Gaussian random variable independent of
(X̂G

1 , X̂G

2 , X3). The rate constraint of the third step is given by

R3 � I(X3; X̂
G

3 |X̂G

1 , X̂G

2 ). (287)
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Evaluating the above constraint with the choice of random variables (X̂G

1 , X̂G

2 , X̂G

3 ) and re-arranging
the terms, we get

⌧23�
2(1 � 2�2R3(⇢42�2R1�2R2 + ⇢2(1 � ⇢2)2�2R2 � ⇢2)) 

(1 � 2�2R3)(1 � ⌧21 � ⌧22 � 2⌧1⌧2!1⌫ � 2⌧1⌧2!2⌫⇢� 2⌧2⌧3!1⌫⇢
2 � 2⌧2⌧3!2⇢� 2⌧1⌧3⌫⇢

2)�2.

(288)

Similar to (240), considering the dominant terms of the above rate constraint and the fact that the
solution of the optimization problem is attained when the above inequality is satisfied with “equality”,
we get

(1 � ⌧21 � ⌧22 +O(✏3/2))(2✏ ln 2 +O(✏2)) = ⌧23 (1 +O(✏)). (289)

The distortion can be written as follows

[kX3 � X̂G

3 k2] = 2�2 � 2⌧3�
2 � 2⌧2!2⇢�

2 � 2⌧2!1⌫⇢
2�2 � 2⌧1⌫⇢

2�2. (290)

So, the goal is to solve the following optimization problem for the third step

min
⌧1,⌧2,⌧3

2�2 � 2⌧3�
2 � 2⌧2!2⇢�

2 � 2⌧2!1⌫⇢
2�2 � 2⌧1⌫⇢

2�2 (291)

s.t. : (1 � ⌧21 � ⌧22 +O(✏3/2))(2✏ ln 2 +O(✏2)) = ⌧23 (1 +O(✏)). (292)

We restrict the search space to ⌧1, ⌧2, ⌧3 � 0 and get an upper bound to the above optimization
program as follows

min
⌧1,⌧2,⌧3�0

2�2 � 2⌧3�
2 � 2⌧2!2⇢�

2 � 2⌧2!1⌫⇢
2�2 � 2⌧1⌫⇢

2�2 (293)

s.t. : (1 � ⌧21 � ⌧22 +O(✏3/2))(2✏ ln 2 +O(✏2)) = ⌧23 (1 +O(✏)). (294)

The above optimization problem is equivalent to the following

min
⌧1,⌧2�0

 
2�2 � 2

s
(2✏ ln 2 +O(✏2))(1 � ⌧21 � ⌧22 +O(✏3/2))

1 +O(✏)
�2

�2⌧2!2⇢�
2 � 2⌧2!1⌫⇢

2�2 � 2⌧1⌫⇢
2�2

!
. (295)

We proceed with solving the above optimization program. Taking the derivative of the objective
function with respect to ⌘1 and ⌘2 yields the following:

⌘2p
1 � ⌘21 � ⌘22

= ⇢
p

1 + ⇢2 +O(✏), (296)

⌘1p
1 � ⌘21 � ⌘22

= ⇢2 +O(✏). (297)

Solving the above set of equations, we get

⌘1 =
⇢2p

1 + ⇢2 + 2⇢4
+O(✏), (298)

⌘2 =
⇢
p
1 + ⇢2p

1 + ⇢2 + 2⇢4
+O(✏). (299)

Thus, considering the dominant terms, we get the following reconstruction for the third frame

X̂G

3 =
⇢2p

1 + ⇢2 + 2⇢4
X̂G

1 +
⇢
p

1 + ⇢2p
1 + ⇢2 + 2⇢4

X̂G

2 +

p
2✏ ln 2p

1 + ⇢2 + 2⇢4
X3 + Z3. (300)

The above reconstruction yields the following distortion for the third frame

[kX3 � X̂G

3 k2] = 2(1 �
p
2✏ ln 2(1 + ⇢2 + 2⇢4))�2. (301)

Finally, consider the reconstruction of the fourth frame as follows

X̂G

4 = �1X̂
G

1 + �2X̂
G

2 + �3X̂
G

3 + �4X4 + Z4, (302)
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where X̂G

4 ⇠ N (0,�2). The rate constraint of the fourth step implies that

(1 � �21 � �22 � �23 +O(✏))(2✏ ln 2 +O(✏)) = �24(1 +O(✏)). (303)

The distortion can be written as follows

[kX4 � X̂G

4 k2] = 2�2 � 2�4�
2 � 2�3⇢⌧3�

2 � 2�3⇢
2⌧2!2�

2 � 2�3⇢
3⌧2!1⌫�

2

�2�3⇢
3⌧1⌫�

2 � 2�2⇢
3!1⌫�

2 � 2�2⇢
2!2�

2 � 2�1⇢
3⌫ (304)

= 2�2 � 2
q

(2✏ ln 2)(1 � �21 � �22 � �23)�
2 � 2�3⇢⌧3�

2

�2�3⇢
2⌧2!2�

2 � 2�3⇢
3⌧2!1⌫�

2 � 2�3⇢
3⌧1⌫�

2

�2�2⇢
3!1⌫�

2 � 2�2⇢
2!2�

2 � 2�1⇢
3⌫ +O(✏). (305)

We take the derivative of the above expression with respect to �1, �2 and �3 and we get
�1p

1 � �21 � �22 � �23
= ⇢3 +O(✏), (306)

�2p
1 � �21 � �22 � �23

= ⇢2
p
1 + ⇢2 +O(✏), (307)

�3p
1 � �21 � �22 � �23

= ⇢
p
1 + ⇢2 + 2⇢4 +O(✏). (308)

Solving the above set of equations yields the following

�1 =
⇢3p

1 + ⇢2 + 2⇢4 + 4⇢6
+O(✏), (309)

�2 =
⇢2
p
1 + ⇢2p

1 + ⇢2 + 2⇢4 + 4⇢6
+O(✏), (310)

�3 =
⇢
p

1 + ⇢2 + 2⇢4p
1 + ⇢2 + 2⇢4 + 4⇢6

+O(✏). (311)

Thus, considering the dominant terms, we can write

X̂G

4 =
⇢3p

1 + ⇢2 + 2⇢4 + 4⇢6
X̂G

1 +
⇢2
p
1 + ⇢2p

1 + ⇢2 + 2⇢4 + 4⇢6
X̂G

2

+
⇢
p
1 + ⇢2 + 2⇢4p

1 + ⇢2 + 2⇢4 + 4⇢6
X̂G

3 +

p
2✏ ln 2p

1 + ⇢2 + 2⇢4 + 4⇢6
X4 + Z4. (312)

The distortion term then becomes:

[kX4 � X̂G

4 k2] = 2(1 �
p
2✏ ln 2(1 + ⇢2 + 2⇢4 + 4⇢6))�2. (313)

Now, we use induction to derive the terms for T frames. Define

�FMD,j :=

vuut1 +
j�1X

i=1

2j�1�i⇢2(j�i), j = 2, . . . , T (314)

=

s

1 + ⇢2
(2⇢2)j�1 � 1

2⇢2 � 1
. (315)

Thus, we have

X̂G

j
=

j�1X

i=1

�FMD,i⇢j�i

�FMD,j

X̂G

i
+

p
2✏ ln 2

�FMD,j

Xj + Zj , j = 2, . . . , T, (316)

where Zj is a Gaussian random variable independent of (X̂G

1 , . . . , X̂G

j�1, Xj) and its variance is such
that [(X̂G

j
)2] = �2. The distortion is given by the following expression

DFMD,j = [kXj � X̂jk2] = 2(1 � �FMD,j

p
2✏ ln 2)�2, j = 2, . . . , T. (317)
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For the special case where ⇢ = 1, then the distortion simplifies to the following

[kXj � X̂jk2] = 2(1 � 2
j�1
2

p
2✏ ln 2)�2, j = 2, . . . , T, (318)

which shows an exponential decrease at each step.629

Distortion Analysis for 0-PLF-JD:630

In this case, the proof for T frames is similar to (254)–(261). Thus, we have

X̂G

j
= ⇢X̂G

j�1 +
p

(1 � ⇢2)2✏ ln 2Xj + Zj , j = 2, . . . , T, (319)

where Zj is a Gaussian random variable independent of (X̂G

j�1, Xj) and its variance is such
that [(X̂G

T
)2] = �2. It should be mentioned that preserving the correlation coefficients, e.g.,

[X̂G

j
X̂G

j�1] = ⇢, needs some correction terms of O(✏) as discussed in (257). However, as shown in
(261), these correction terms do not contribute to dominant terms of distortion and hence, they can be
ignored in the presentation of (319). Now, define

�JD,j := ⇢2(j�1) +
p
1 � ⇢2(

j�2X

i=0

⇢2i), j = 2, . . . , T, (320)

and notice that

DJD,j := [kXj � X̂jk2] (321)
= 2�2 � 2 [XjX̂j ] (322)
= 2�2 � 2 [Xj(⇢X̂

G

j�1 +
p

(1 � ⇢2)2✏ ln 2Xj)] (323)

= 2�2 � 2 [Xj(⇢
j�1X1 +

p
1 � ⇢2(⇢j�2X2 + . . .+Xj))]

p
2✏ ln 2�2 (324)

= 2(1 � �JD,j

p
2✏ ln 2)�2. (325)

For the special case of ⇢ = 1, we get �JD,j = 1 which remains a constant across different steps.631

H Universality Statement for Gauss-Markov Source Model632

H.1 MMSE Representations for a Given Rate633

For a given rate tuple R, the minimum distortions achievable by MMSE representations are derived
in [28, 37] and are given by

Dmin
1 = �2

12
�2R1 , (326)

Dmin
2 = (⇢21

�2
2

�2
1

Dmin
1 + �2

N1
)2�2R2 , (327)

Dmin
3 = (⇢22

�2
3

�2
2

Dmin
2 + �2

N2
)2�2R3 , (328)

where

�2
N1

:= (1 � ⇢21)�
2
2 , (329)

�2
N2

:= (1 � ⇢22)�
2
3 . (330)

The above distortions are achieved by the following optimal reconstructions X̂r given in [28]. Notice634

that the MMSE representation is XRD
r

= X̂r, i.e., the functions ⌘1(.) and ⌘2(., .) of iRDP region CRDP635

(Definition 4) are identity functions (this statement follows from Theorem 5). Now, we choose the636

reconstruction X̂r in the following.637

The reconstruction X̂r,1 is chosen such that X̂r,1 ! X1 ! (X2, X3) holds a Markov chain and

X1 = X̂r,1 + Z1, (331)

where X̂r,1 ⇠ N (0,�2
1 � Dmin

1 ) and Z1 ⇠ N (0, Dmin
1 ) are independent random variables. Then,

the reconstruction X̂r,2 is chosen as follows. Let

W2 := ⇢1
�2
�1

Z1 +N1, (332)
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which is the innovation from X̂r,1 to X2. Now, we find the random variables Ŵ2 and Z2 such that

W2 = Ŵ2 + Z2, (333)

where Ŵ2 ⇠ N (0, ⇢21
�
2
2

�
2
1
Dmin

1 + �2
N1

� Dmin
2 ) and Z2 ⇠ N (0, Dmin

2 ) are independent from each
other, and the Markov chain Ŵ2 ! (X2, X̂r,1) ! (X1, X3) holds. Now, define

X̂r,2 := ⇢1
�2
�1

X̂r,1 + Ŵ2. (334)

Finally, we choose the reconstruction X̂r,3 as follows. Let

W3 := ⇢2
�3
�2

Z2 +N2, (335)

which is the innovation from X̂r,2 to X3. Now, we find random variables Ŵ3 and Z3 such that

W3 = Ŵ3 + Z3, (336)

where Ŵ3 ⇠ N (0, ⇢22
�
2
3

�
2
2
Dmin

2 + �2
N2

� Dmin
3 ) and Z2 ⇠ N (0, Dmin

3 ) are independent from each
other, and the Markov chain Ŵ3 ! (X3, X̂r,1, X̂r,2) ! (X1, X2) holds. Now, define

X̂r,3 := ⇢1
�3
�2

X̂r,2 + Ŵ3. (337)

Thus, the optimal reconstruction X̂r is chosen and it satisfies the rate constraint R.638

H.2 Universality Statement639

Theorem 7 For a given rate tuple R with strictly positive components, let the MMSE representation
be denoted as XRD

r
= (XRD

r,1, X
RD
r,2, X

RD
r,3). Let (D,P) 2 DP(R) and let X̂ = (X̂1, X̂2, X̂3) be the

corresponding reconstruction achieving it. Then there exist 1, ✓1, ✓2,  1,  2 and  3 and noise
variables (Z1, Z2, Z3) independent of (XRD

r,1, X
RD
r,2, X

RD
r,3), which satisfy the following

X̂1 = 1X
RD
r,1 + Z1, X̂2 = ✓1X

RD
r,1 + ✓2X

RD
r,2 + Z2, X̂3 =  1X

RD
r,1 +  2X

RD
r,2 +  3X̂

RD
r,3 + Z3.

For a given positive rate tuple R, let the MMSE representation XRD
r

be in the set PRD(R). Also, let640

(D,P) 2 DP(R) and Xr, X̂ be the corresponding representation and reconstruction achieving it.641

Proof: First, notice that according to the proof of Theorem 5 for the Gauss-Markov source model,642

one can set X̂ = Xr in iRDP region of CRDP, without loss of optimality. So, in the following proof,643

the reconstruction Xr and representation X̂ are used interchangeably, in some places.644

We show the following statement. If

R1 � I(X1;Xr,1), (338)
R2 � I(X2;Xr,2|Xr,1), (339)
R3 � I(X3;Xr,3|Xr,1, Xr,2), (340)

then, there exist 1, ✓1, ✓2,  1,  2 and  3 and noise variables Z1, Z2, Z3 independent of XRD
r,1 ,

(XRD
r,1 , X

RD
r,2), (XRD

r,1 , X
RD
r,2 , X

RD
r,3), respectively, which satisfy the following

X̂1 = 1X
RD
r,1 + Z1, (341)

X̂2 = ✓1X
RD
r,1 + ✓2X

RD
r,2 + Z2, (342)

X̂3 =  1X
RD
r,1 +  2X

RD
r,2 +  3X̂

RD
r,3 + Z3. (343)

If (338)–(340) are satisfied with equality, then the noise random variables in (341)–(343) do not exist645

and a linear combination is sufficient for converting (XRD
r,1 , X

RD
r,2 , X

RD
r,3) to (X̂1, X̂2, X̂3).646

First, we prove the statement when all of inequalities in (338)–(340) hold with “equality”. We provide647

the proof for T = 2 frames. The extension to arbitrary number of frames is straightforward. To that648

end, we first prove the following two lemmas.649
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Lemma 2 Without loss of optimality, the reconstruction of the first step X̂1 satisfies the following

�1X̂1 = W1, (344)

where

�1 :=
[X1X̂1]

�2
X̂1

, (345)

and W1 is a Gaussian random variable that its statistics do not depend on the pair (D1, P1).650

Proof: According to Theorem 5, we know that (X1, X̂1) are jointly Gaussian. So, we can write X1

as follows

X1 = �1X̂1 + T1, (346)

where T1 is a Gaussian random variable independent of X̂1 with a constant variance �2
12

�2R1 . Notice
that (346) can be written as follows

X̂1 = ↵1(X1 +Q), (347)

where Q is a Gaussian random variable independent of X1 with a zero-mean and variance �
2
12

�2R1

1�2�2R1

and

↵1 :=
1

�1
(1 � 2�2R1). (348)

From (347), we get

�1X̂1 = (1 � 2�2R1)(X1 +Q). (349)

Now, defining W1 := (1 � 2�2R1)(X1 +Q) yields the desired result.651

Lemma 3 Without loss of optimality, the reconstructions of the first and second steps (X̂1, X̂2)
satisfy the following

�1X̂1 + �2X̂2 = W2, (350)

where

�1 :=
⇢1 [X1X̂1]�̂2

X2
� [X̂1X̂2] [X2X̂2]

�̂2
X1
�̂2
X2

� 2[X̂1X̂2]
, (351)

�2 :=
⇢1 [X1X̂1] [X̂1X̂2] � �̂2

X1
[X2X̂2]

�̂2
X1
�̂2
X2

� 2[X̂1X̂2]
, (352)

and W2 is a Gaussian random variable that its statistics do not depend on the pairs (D1, P1) and652

(D2, P2).653

Proof: According to Theorem 5, we know that (X1, X2, X̂1, X̂2) are jointly Gaussian. So, we can
write X2 as follows

X2 = �1X̂1 + �2X̂2 + T2, (353)

where T2 is a Gaussian random variable independent of (X̂1, X̂2) with a constant variance of
�2
X2|X̂1

2�2R2 where

�2
X2|X̂1

:=
1

2
log
⇣
⇢21�

2
12

�2R1 + 22H(N1)
⌘
. (354)

Notice that (353) can be written as follows

�1X̂1 + �2X̂2 = (1 � 2�2R2)(X2 +Q0), (355)

where Q0 is a Gaussian random variable independent of X2 with a zero-mean and variance654
�
2
X2|X̂1

2�2R2

1�2�2R2
. Defining W2 := (1 � 2�2R2)(X2 +Q0) yields the desired result.655
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Now, we proceed with the proof of the theorem. According to Lemma 2, there exist real �1 and �01
such that

�1X̂1 = �01X
RD
r,1 . (356)

Define

1 :=
�01
�1

. (357)

Then, according to Lemma 3, there exist �1, �2, �01 and �02 such that

�1X̂1 + �2X̂2 = �01X
RD
r,1 + �02X

RD
r,2 . (358)

The above equation can be written as

X̂2 =
�01 � �11

�2
XRD

r,1 +
�02
�2

XRD
r,2 (359)

:= ✓1X
RD
r,1 + ✓2X

RD
r,2 . (360)

A similar justification holds for the third frame.656

Next, we prove the statement when at least one of the rate constraints in (338)–(340) hold with strict657

inequality. In the following, we construct new reconstructions (X̂ 0
1, X̂

0
2) based on (X̂1, X̂2) such658

that they satisfy the rate constraints (R1, R2) with equality. Then, we will be able to apply the two659

lemmas we proved to show that (X̂1, X̂2) are linearly related to MMSE reconstructions (XRD
r,1 , X

RD
r,2).660

Construction of X̂ 0
1:661

Now, let

R̂1 := I(X1; X̂1), (361)

where R̂1  R1. Also, recall that

R1 = I(X1;X
RD
r,1). (362)

Now, let X̂ 0
1 such that X̂ 0

1 ! XRD
r,1 ! X1 holds and

X̂ 0
1 = XRD

r,1 +W1, (363)

where W1 ⇠ N (0, ⌫21) independent of X̂1 and ⌫21 will be determined in the following. Notice that
I(X1; X̂ 0

1) is a monotonically decreasing function of ⌫21 . So, one choose ⌫21 such that

I(X̂ 0
1;X1) = I(X1; X̂1) = R̂1. (364)

Now, according to Lemma 2, since X̂ 0
1 and X̂1 have the same rates, there exists a coefficient 01 such

that

X̂1 = 01X̂
0
1 (365)

= 01X
RD
r,1 + 01W1. (366)

Now, define Z1 := 01W1 and notice that

X̂1 = 01X
RD
r,1 + Z1. (367)

Construction of X̂ 0
2:662

Next, consider the second step. Define

R̂2 := I(X2; X̂2|X̂1), (368)

where R̂2  R2. Also, recall that

R2 = I(X2;X
RD
r,2 |XRD

r,1). (369)

Define X̃2 := [X2|XRD
r,1 , X

RD
r,2 ] to be the MMSE reconstruction and consider that

R2 = I(X2;X
RD
r,2 |XRD

r,1) (370)

= I(X2; X̃2|XRD
r,1), (371)
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where the last equality follows because both Markov chains X2 ! (XRD
r,1 , X

RD
r,2) ! X̃2 and X2 !663

X̃2 ! (XRD
r,1 , X

RD
r,2) hold where the latter one is satisfied for Gaussian random variables for which664

we can write X2 = [X2|Xr,1, Xr,2] +W 0 such that W 0 is independent of (XRD
r,1 , X

RD
r,2).665

Now, we show that I(X2; X̃2|XRD
r,1)  I(X2; X̃2|X̂ 0

1). This is justified in the following

I(X2; X̃2|X̂ 0
1) = I(X2; X̃2|XRD

r,1 +W1) (372)

= H(X2|XRD
r,1 +W1) � H(X2|X̃2, X

RD
r,1 +W1) (373)

� H(X2|XRD
r,1 +W1,W1) � H(X2|X̃2, X

RD
r,1 +W1) (374)

= H(X2|XRD
r,1 ,W1) � H(X2|X̃2, X

RD
r,1 +W1) (375)

� H(X2|XRD
r,1 ,W1) � H(X2|X̃2) (376)

= H(X2|XRD
r,1) � H(X2|X̃2) (377)

= H(X2|XRD
r,1) � H(X2|X̃2, X

RD
r,1) (378)

= I(X2; X̃2|XRD
r,1), (379)

where (377) follows because W1 is independent of (X2, XRD
r,1) and (378) follows from the Markov666

chain X2 ! X̃2 ! XRD
r,1 .667

Define

R0
2 := I(X2; X̃2|X̂ 0

1), (380)

and consider the fact that R0
2 � R2. Now, we introduce X̂ 0

2 such that X̂ 0
2 ! (X̃2, X̂ 0

1) ! X2 forms
a Markov chain and

X̂ 0
2 = X̃2 + X̂ 0

1 +W2, (381)

where W2 ⇠ N (0, ⌫22) independent of (X̃2, X̂1) and ⌫22 will be determined in the following. Since
I(X2; X̂ 0

2|X̂ 0
1) is a monotonically decreasing function of ⌫22 , we can choose ⌫22 such that

I(X2; X̂
0
2|X̂ 0

1) = I(X2; X̂2|X̂1) = R̂2. (382)

Then, according to Lemma 3, there exist �01, �02, �̂1 and �̂2 such that

�01X̂
0
1 + �02X̂

0
2 = �̂1X̂1 + �̂2X̂2. (383)

Plugging (363), (367) and (381) into the above expression and letting X̃2 = ↵XRD
r,1 + �XRD

r,2 for
some ↵,�, we get

(�01 + (1 + ↵)�02 � �̂1
0)XRD

r,1 + �02�X
RD
r,2 + (�01 + �02)W1 + �02W2 � �̂1Z1 = �̂2X̂2. (384)

Now define

✓1 :=
�01 + (1 + ↵)�02 � �̂10

�̂2
, (385)

✓2 :=
�02�

�̂2
, (386)

Z2 :=
(�01 + �02)

�̂2
W1 +

�02
�̂2

W2 � �̂1

�̂2
Z1. (387)

Thus, we have

X̂2 = ✓1X
RD
r,1 + ✓2X

RD
r,2 + Z2. (388)

Notice that the above proof only uses the information about reconstructions of the operating points in668

DP-tradeoff and it does not depend on the choice of PLF. So, it holds for both PLF-JD and PLF-FMD.669

This concludes the proof.670
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H.3 Gaussian Example671

Assume that the sources are symmetric in the sense that �2
1 = �2

2 = �2
3 = 1, ⇢1 = ⇢2 = ⇢3 := ⇢ for

some 0 < ⇢  1. Also, suppose that the perception thresholds are symmetric, i.e., P1 = P2 = P3 :=
P for some 0 < P  1. We choose the rate tuple R such that the minimum distortions Dmin

j
= D

for j 2 {1, 2, 3}. According to Appendix H.1, such rates are given by

R1 =
1

2
log

1

D
, (389)

R2 =
1

2
log

⇢2D + (1 � ⇢)

D
, (390)

R3 =
1

2
log

⇢2D + (1 � ⇢2)

D
. (391)

The covariance matrix of the MMSE representations cov(XRD
r,1 , X

RD
r,2 , X

RD
r,3) is given by (1 � D)⌃

where

⌃ :=

0

@
1 ⇢ ⇢2

⇢ 1 ⇢
⇢2 ⇢ 1

1

A . (392)

If we introduce the 0-PLF while keeping the rates as those of MMSE reconstructions, it can be672

shown that the optimal distortions are all equal to D1 = D2 = D3 = 2 � 2
p
1 � D. Denote the673

reconstructions by (X̂0
D1

, X̂0
D2

, X̂0
D3

) and notice that the covariance matrix of the reconstructions is674

equal to that of the sources and is given by ⌃. Thus, the covariance matrix of (XRD
r,1 , X

RD
r,2 , X

RD
r,3) is675

(1�D) times the covariance matrix of (X̂0
D1

, X̂0
D2

, X̂0
D3

). So, the reconstructions (XRD
r,1 , X

RD
r,2 , X

RD
r,3)676

and (X̂0
D1

, X̂0
D2

, X̂0
D3

) can be transformed to each other by the scaling factor 1p
1�D

. This inspires677

the idea that reconstructions corresponding to different tuples (D,P) are linearly related to those of678

MMSE representations which is the essence of the following Theorem 6. Moreover, both PLFs either679

based on FMD or JD perform similarly in this example since individually scaling the reconstruction680

of each frame finally ends up in matching the covariance matrix of all frames.681

I Justification of low-rate regime for Moving MNSIT682

In the MovingMNIST dataset, the digit in I-frame is generated uniformly across the 32⇥32 center683

region in a 64⇥64 image, meaning that log(32⇥32)=10 bits are required to localize the digits and any684

lower rate would result in much less correlated reconstructions. As such, one can consider R1=12 bits685

(2 extra bits for content and style) as a low rate. For P-frames, the movement is uniformly constrained686

within a 10⇥10 region so any rate R2 log2(10⇥10)=6.6 bits (excluding residual compensation)687

can be considered a low rate.688

J Experiment Details689

J.1 Training Setup and Overview690

Our compression architecture is built on the scale-space flow model [32], which allows end-to-end691

training without relying on pre-trained optical flow estimators. For better compression efficiency,692

we replace the residual compression module with the conditioning one [33]. In the following, we693

will interchangeably refer X1 as the I-frame and subsequent ones as P-frames. The annotation for694

the encoder, decoder, and critic (discriminator) will be referred to as f, g, and h respectively and695

their specific functionality (e.g motion compression, joint perception critic) will be described within696

context through a subscript/superscript.697

Distortion and Perception Measurement: We follow the setup in prior works [16, 21] for distortion698

and perception measurement. Specifically, we use MSE loss [||X�X̂||2] as a distortion metric and699

Wasserstein-1 distance as a perception metric, which can be estimated through the WGAN critics700

(following the Kanotorovich-Rubinstein duality). For the marginal perception metric, we optimize701
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Figure 6: Compression diagram for (a) I-frame (b) P-frame with universal representation and (c) P-frame with
optimized representation. For simplicity, we do not show the shared randomness K.

our critics hm to classify between original image X and synthetic ones X̂ . This will then allow us to702

measure W1(PX , P
X̂
) since:703

W1(PX , P
X̂
) = sup

hm2F
[hm(X)] � [hm(X̂)] (393)

where F is a set of all bounded 1-Lipschitz functions. Similarly, the joint perception metric is realized704

through W1(PX1...Xj , PX̂1...X̂j
) by training a critic hj that classifies between synthetic and authentic705

sequences:706

W1(PX1...Xj , PX̂1...X̂j
) = sup

hj2F
[hj(X1, ..., Xi)] � [hj(X̂1, ..., X̂i)] (394)

In practice, the set of 1-Lipschitz functions is limited by the neural network architecture. Also,707

although our analysis employs the Wasserstein-2 distance as a perception metric, it is worth noting708

that the ideal reconstructions (0-PLF) for this metric and the one used in our study should be identical.709

I-frame Compressor: We compress I-frames in a similar fashion as previous works [16, 21]. Our710

encoder fI and decoder gI in Figure 6a contain a series of convolution operations and we control711

the rate R1 by varying the dimension and quantization level in the bottleneck. The model utilizes712

common randomness through the dithered quantization operation. For a given rate R1, we vary the713

amount of DP tradeoff by controlling the hyper-parameter �marginal
i

in the following minimization714

objective L1:715

L1 = [||X1 � X̂1||2] + �marginal
i

W1(PX1 , PX̂1
) (395)

Following the results from Zhang et al. [16], we fix the encoder after optimizing the encoder-decoder716

pair for MSE representations. We then fix the encoder and train another decoder to obtain the optimal717

reconstruction with perfect perception, i.e, W1(PX , P
X̂
) ⇡ 0. We will leverage these universal718

representation results to compress P-frames (both end-to-end and universal).719

P-frame Compressor: We describe the loss functions before explaining our architectures. Given720

previous reconstructions X̂[i�1]:={X̂1, X̂2, ..., X̂i�1}, one can adjust the distortion-joint perception721

tradeoff by controlling the hyper-parameter �joint
i

in the following objective Li.722

Ljoint
i

= [||Xi � X̂i||2] + �joint
i

W1(PX[i]
, P

X̂[i]
) (396)

Note that in order to achieve 0-PLF-JD, previous reconstructions X̂[i�1] must also achieve 0-PLF-JD,723

since it is impossible to reconstruct such X̂i if the previous X̂[i�1] are not temporally consistent2.724

For the FMD metric, we use the loss function in (395).725

In the universal model in Figure 6b, the motion encoder fm

i
compresses and sends the quantized726

flow fields [Xm

r,i
] between the MMSE reconstruction X̃i�1 and Xi. Given [Xm

r,i
], the flow decoder727

and warping module gm
i

will transform X̃i�1 into X̃w

i
(predicted frame). We use f c

i
to compress the728

2This follows from the inequality: W 2
2 (PX1,X2 , PX̂1,X̂2

)�W
2
2 (PX1 , PX̂1

)+W
2
2 (PX2 , PX̂2

)
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residual information [Xc

r,i
] between Xi and X̃w

i

3, which will be decoded by gc
i
. We note that for729

MMSE representation, gc
i

only requires X̃w

i
as a conditional input while an additional conditioning730

input X̂[i�1] is required when perceptual optimization is involved. Together, fm

i
, gm

i
, f c

i
, and gc

i
731

are optimized for MMSE reconstructions. To train for different DP tradeoffs, we fix fm

i
, gm

i
, f c

i
732

and adapt the new decoder ĝc
i

(conditioning on X̃w

i
, X̂[i�1]). We note that fixing gm

i
for universal733

representation is essential since [Xc

r,i
] is dependent on the outputs X̃w

i
of gm

i
.734

In the end-to-end model in Figure 6c, we use an MMSE representation to estimate the motion vector,735

as in the case of the universal model. The only difference is that the encoder f c

i
also uses previous736

X̂i and the encoders will be jointly trained with the decoders.737

J.2 Networks Architecture738

In this section, we describe the network architecture for universal and end-to-end P-frame compressor739

models. 4. In the architecture layout, we denote BN2D and SN for the Batchnorm2D and Spectral740

Normalization layers. Convolutional and transposed convolutional layer are denoted as “conv” and741

“upconv” respectively, which is accompanied by number of filters, kernel size, stride, and padding.742

Motion Encoder and Decoder. The universal and optimized end-to-end model shares the same743

architecture for the motion encoder and decoder. (fm

i
and gm

i
respectively). We follow the original744

implementations [32] and present the convolutional architecture in Table 3. Different from the original745

implementation, however, we replace the last layer with dithered quantization layer (as in [16]) in our746

implementation. The output dimension of the motion encoder is denoted as dm.747

Table 3: Motion Encoder fm

i and Decoder gmi .
(a) Encoder fm

i

Input-64⇥64⇥(2⇥channels)
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU

conv (dm:4:2:0), BN2D
Quantizer

(b) Decoder gm
i

Input-dm
upconv (64:4:1:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU

upconv (3:5:2:0), BN2D

Residual Encoder and Decoder. The architecture of the conditional residual encoder is shown in748

Table 4a, where we stack multiple frames along their channel dimension as an input. As described749

previously, in the residual encoder, the universal model requires only Xi, X̃w

i
while the end-to-end750

model will receive Xi, X̃w

i
and X̂[i�1]. We denote the output dimension of this residual encoder as751

dr. In the decoding part, the decoder will first condition all the previous reconstructions X̂[i � 1] by752

projecting them into an embedding vector of size 192 (conditioning module in Table 4b). Then we753

concatenate this vector with the output of fr

i
. The concatenated vector will be fed into the decoder754

(Table 4c) to produce the reconstruction X̂i.755

FMD and JD Critics. For the video critics, our PLF-JD critic architecture is inspired by the work756

of Kwon and Park [40], where we concatenate frames sequentially along their channel dimensions.757

For both PLF-FMD and PLF-JD critics, we add spectral normalization layers for better convergence.758

Their architecture is shown in Table 5.759

Rate and output dimension The rate R is computed by log2(denc⇥L), where L is the number of760

quantization levels and denc=dr+dm. Table 6 provides configurations of the rate, dm, dr, and L in761

the experiment.762

Training Details: We use a batch size of 64, RMSProp optimizer with a learning rate of 5⇥10�5,763

and train each model with 360 epochs, where the training set contains 60000 images. To accelerate764

3Here, we use conditioning [33] instead of sending Xi � X̃
w

i�1 as in the original work [32]
4For the I-frame compressor, we follow the DCGAN implementation by Denton et al [39], adding the

dithered quantization layer in the encoder’s last layer( https://github.com/edenton/svg/blob/master/
models/dcgan_64.py)
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Table 4: Residual Encoder, Conditional Module, and Residual Decoder.
(a)Encoder f c

i

Input
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU

conv (dr:4:1:0), BN2D
Quantizer

(b)Conditional Module
Input

conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU

conv (192:4:1:0), BN2D

(c)Decoder
Input-(dr+192)

upconv (64:4:1:0) uc4s1, BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU

upconv (channels:5:2:0), BN2D

Table 5: PLF-FMD and PLF-JD critic for frame i.
(a) PLF-FMD Critic

Input–64⇥64⇥channels
SN, conv (64:4:2:1), l-ReLU
SN, conv (128:4:2:1), l-ReLU
SN, conv (256:4:2:1), l-ReLU

conv (512:4:2:1), l-ReLU
Linear

(b) PLF-JD Critic
Input–64⇥64⇥(i⇥channels)
SN, conv (64:4:2:1), l-ReLU

SN, conv (128:4:2:1), l-ReLU
SN, conv (256:4:2:1), l-ReLU

conv (512:4:2:1), l-ReLU
Linear

training, we pre-train each model for 60 epochs with the MSE objective only. Under WGAN-GP765

framework [30], we use the gradient penalty of 10 and update the encoders/decoders for every 5766

iterations. The parameters � controlling the tradeoff are in Table.7. Training takes 2 days per model767

on a single NVIDIA P100 GPU. For the MovingMNIST factor of two bound and permanence of768

error experiments, we repeat the training 3 times.
Table 6: Rate, embedding dimension dm, dr and quantization level L.

(a) P-frame encoder, R1 = 1.

R2 dm dr L
1 bit 1 0 2
2 bits 1 1 2

3.17 bits 1 1 3

(b) P-frame encoder, R1 = ✏ (12 bits).

R2 denc L
4 bit 4 2
8 bits 8 2

12 bits 12 2769

J.3 Permanence of Error on KTH Datasets770

The KTH dataset is a widely-used benchmark dataset in computer vision research, consisting of video771

sequences of human actions performed in various scenarios. We show more examples supporting772

our argument for the permanence of error on this realistic dataset. We use 16 bits for each frame. In773

general, the 0-PLF-JD decoder consistently outputs correlated but incorrect reconstructions due to the774

error induced by the first reconstructions, i.e., the P-frames will follow the wrong direction induced775

from the I-frame reconstruction. Besides the moving direction, we also notice that the type of actions776

(i.e. walking, jogging, and running) is also affected. On the other hand, while losing some temporal777

cohesion, MMSE and 0-PLF FMD decoders manage to fix the movement error.778

J.4 RDP Tradeoff for 3 frames779

We extend our experimental results for the RDP-tradeoff and the principal of universality to the case780

of GOP size 3. As mentioned in the main paper, while the universal model only requires MMSE781

representations, the optimal end-to-end model also requires the MMSE reconstructions from previous782

frames to provide best estimates for motion flow vectors. Practically, this is challenging for our783

employed architecture since only previous X̂1, X̂2 are available. As a result, to compare the RDP784
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Table 7: Perception loss and their associated �

Perception Loss �⇥ 10�3

Joint Distance (JD) 0.0, 0.7, 1.0, 1.15, 1.2, 1.25, 1.3, 1.5, 1.7
2.0, 3.0, 5.0, 8.0, 10.0, 40.0, 80.0

Frame Marginal Distance (FMD) 0.0, 0.4, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 7.0, 10.0, 40.0
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Figure 7: Additional Experimental Results for the Permanence of Error Phenomenon on KTH Dataset.

tradeoff between universal and end-to-end model, we also provide the end-to-end model with the785

MMSE estimate from previous frames while noting that this is unfeasible in practice. Interestingly,786

we show in Figure 8 the RDP tradeoff curves for the third frame X3 and its reconstruction X̂3,787

observing that the universal and optimized curves are still relatively close to each other. When788

(R1, R2, R3)=(1, ✏, ✏), we note that the distortion for X3 is larger than X2 since the allocated rate is789

not enough to correct the motion. Finally, for the case (R1, R2, R3)=(✏, ✏, ✏), we note that the curves790

again converge as in the case of (R1, R2)=(✏, ✏) due to the incorrect reconstruction in the I-frame.791

J.5 Diversity and Correlation792

When (R1, R2)=(1, ✏), our theoretical analysis predicted that the decoder optimized for JD is793

capable of producing diverse reconstructions. On the other hand, an optimized decoder for FMD will794

tend to produce reconstructions that are highly correlated with the previous reconstruction X̂1
5. In795

5
X1 = X̂1 in this regime.
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Figure 8: RDP tradeoff curves for end-to-end and universal models. We plot the tradeoff for the two regimes:
R1=1 and R1=✏ in (a) and (b) respectively. The universal and optimal curves are close to each other.

Table 8: Diversity (a) between X̂2 and Correlation Measures (b) between X̂2 and X1.

(a) Diversity Measures ".

R2 Joint Marginal
1 bit 0.0096 0.0004
2 bits 0.0082 0.0029

3.17 bits 0.0042 0.0022

(b) Correlation Measures. "

R2 Joint Marginal
1 bit 0.5218 0.6202
2 bits 0.5190 0.5969

3.17 bits 0.5205 0.5508

our experiment, we also observe such behavior, summarized in Table 8 and show several examples796

for R2 = 2 bits in Figure 9. We observe that reconstructions from the joint metric deviate more797

randomly from X1 than the marginal reconstructions. The marginal reconstructions, on the other798

hand, stay much closer to their original reconstruction X̂1.799

We measure the diversity in X̂2 reconstruction using E[Var(X̂2|X1, X2)] and the correlation with800

X̂1 by E[sim(X̂2,X1)], where sim(u, v) is the cosine distance between u, v. Table 8a shows that as801

we increase the number of bits in R2, the diversity decreases as the decoder can reconstruct the frame802

more precisely. In Table 8b, we see that the joint metric keeps the correlation relatively constant,803

showing that it actually preserves the temporal consistency. On the other hand, as the rate becomes804

larger, 0-PLF-FMD reconstruction tends to be less correlated with the previous frame X1. Finally, we805

note that our architecture innately utilizes common randomness to produce diverse reconstructions806

and does not suffer from mode-collapse behavior in general conditional GAN settings [41].807

Figure 9: Diversity in reconstruction X̂2 for 0-PLF-JD and correlation with previous frames X̂1 for 0-PLF-JMD.
We show X1 in the first column. From the second column, the light-dark region represents X1 and the color
digit represents X2, X̂2. For each perception metric, we show two samples.
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K Limitations808

This work studies the effects of different perception loss functions, namely the PLF-JD and PLF-FMD,809

on the performance of lossy causal video compression. Our theoretical analysis and experiment810

reveal the error permanence phenomenon and show the universality principle, suggesting that MMSE811

representation can be transformed into other points on the DP tradeoffs.812

In practice, one might want to combine these two losses, for example, perfect framewise realism813

(0-PLF FMD) while retaining some degree of temporal cohesion (PLF-JD small), which is not814

considered in this work. Furthermore, analysis for other types of video compression schemes, such815

as with B-frame, and scaling the universality compression architecture to high-definition videos are816

also desired.817
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