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Abstract
Existing analyses of optimization in deep learning are either continuous, focusing on
(variants of) gradient flow, or discrete, directly treating (variants of) gradient descent.
Gradient flow is amenable to theoretical analysis, but is stylized and disregards
computational efficiency. The extent to which it represents gradient descent is an
open question in the theory of deep learning. The current paper studies this question.
Viewing gradient descent as an approximate numerical solution to the initial value
problem of gradient flow, we find that the degree of approximation depends on the
curvature around the gradient flow trajectory. We then show that over deep neural
networks with homogeneous activations, gradient flow trajectories enjoy favorable
curvature, suggesting they are well approximated by gradient descent. This finding
allows us to translate an analysis of gradient flow over deep linear neural networks
into a guarantee that gradient descent efficiently converges to global minimum
almost surely under random initialization. Experiments suggest that over simple
deep neural networks, gradient descent with conventional step size is indeed close
to gradient flow. We hypothesize that the theory of gradient flows will unravel
mysteries behind deep learning.1

1 Introduction
The success of deep neural networks is fueled by the mysterious properties of gradient-based
optimization, namely, the ability of (variants of) gradient descent to minimize non-convex training
objectives while exhibiting tendency towards solutions that generalize well. Vast efforts are being
directed at mathematically analyzing this phenomenon, with existing results typically falling into
one of two categories: continuous or discrete. Continuous analyses usually focus on gradient flow
(or variants thereof), which corresponds to gradient descent (or variants thereof) with infinitesimally
small step size. Compared to their discrete (positive step size) counterparts, continuous settings are
oftentimes far more amenable to theoretical analysis (e.g. they admit use of the theory of differential
equations), but on the other hand are stylized, and disregard the critical aspect of computational
efficiency (number of steps required for convergence). Works analyzing gradient flow over deep neural
networks either accept the latter shortcomings (see for example [49, 4, 46]), or attempt to reproduce
part of the results via completely separate analysis of gradient descent (cf. [30, 18, 5]). The extent
to which gradient flow represents gradient descent is an open question in the theory of deep learning.

The current paper formally studies the foregoing question. Viewing gradient descent as a numerical
method for approximately solving the initial value problem corresponding to gradient flow, we turn to
the literature on numerical analysis, and invoke a fundamental theorem concerning the approximation
error. The theorem implies that in general, the match between gradient descent and gradient flow is deter-
mined by the curvature around gradient flow’s trajectory. In particular, the “more convex” the trajectory,
i.e. the larger the (possibly negative) minimal eigenvalue of the Hessian is around the trajectory, the bet-

1Due to lack of space, essential portions of this paper were deferred to supplementary material. We refer the
reader to [21] for a self-contained version of the text.
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ter the match is guaranteed to be.2 We show that when applied to deep neural networks (fully connected
as well as convolutional) with homogeneous activations (e.g. linear, rectified linear or leaky rectified lin-
ear), gradient flow emanating from near-zero initialization (as commonly employed in practice) follows
trajectories that are “roughly convex,” in the sense that the minimal eigenvalue of the Hessian along them
is far greater than in arbitrary points in space, particularly towards convergence. This implies that over
deep neural networks, gradient descent with moderately small step size may in fact be close to its contin-
uous limit, i.e. to gradient flow. We exemplify an application of this finding by translating an analysis of
gradient flow over deep linear neural networks into a convergence guarantee for gradient descent. The
guarantee we obtain is, to our knowledge, the first to ensure that a conventional gradient-based algorithm
optimizing a deep (three or more layer) neural network of fixed (data-independent3) size efficiently
converges4 to global minimum almost surely under random (data-independent) near-zero initialization.

We corroborate our theoretical analysis through experiments with basic deep learning settings, which
demonstrate that reducing the step size of gradient descent often leads to only slight changes in its
trajectory. This confirms that, in basic settings, central aspects of deep neural network optimization
may indeed be captured by gradient flow. Recent works (e.g. [8, 33, 53]) suggest that by appropriately
modifying gradient flow it is possible to account for advanced settings as well, including ones with
momentum, stochasticity and large step size. Encouraged by these developments, we hypothesize
that the vast bodies of knowledge on continuous dynamical systems, and gradient flow in particular
(see, e.g., [23, 3]), will pave way to unraveling mysteries behind deep learning.

1.1 Contributions
The main contributions of this work are: (i) we conduct the first formal study for the discrepancy between
continuous and discrete optimization of deep neural networks; (ii) we demonstrate the use of generic
mathematical machinery for translating a continuous non-convex convergence result into a discrete
one; (iii) to our knowledge, the discrete result we obtain forms the first guarantee of random (data-
independent) near-zero initialization almost surely leading a conventional gradient-based algorithm
optimizing a deep (three or more layer) neural network of fixed (data-independent) size to efficiently con-
verge to global minimum; (iv) the fundamental theorem (from numerical analysis) we employ is seldom
used in machine learning contexts and may be of independent interest; and (v) we provide empirical evi-
dence suggesting that gradient descent over simple deep neural networks is often close to gradient flow.

2 Preliminaries: Numerical Solution of Initial Value Problems
Let d∈N. Given a function g : [0,∞)×Rd→Rd (viewed as a time-dependent vector field) and a point
θs∈Rd, consider the initial value problem:

θ(0)=θs , d
dtθ(t)=g(t,θ(t)) for t≥0 . (1)

The following result — an extension of the well known Picard-Lindelöf Theorem — establishes that
local Lipschitz continuity of g(·) suffices for ensuring existence and uniqueness of a solution θ(·).
Theorem 1 (Existence-Uniqueness). Consider the initial value problem in Equation (1), and suppose
g(·) is locally Lipschitz continuous. Then, there exists a solution θ : [0, te) → Rd, where either:
(i) te=∞; or (ii) te<∞ and limt↗te∥θ(t)∥2=∞. Moreover, the solution is unique in the sense that
any other solution θ′ : [0,t′e)→Rd must satisfy t′e≤ te and ∀t∈ [0,t′e) :θ

′(t)=θ(t).

Proof. The theorem is a direct consequence of the results in Section 1.5 of [25].5

It is typically the case that the solution to Equation (1) cannot be expressed in closed form, and a
numerical approximation is sought after. Various numerical methods for approximately solving initial
value problems have been developed over the years (see Chapter 12 in [55] for an introduction). The
most basic one, Euler’s method, is parameterized by a step size η>0, and when applied to Equation (1)
follows the recursive scheme:

2In addition to the minimal eigenvalue of the Hessian, local smoothness and Lipschitz constants also affect
the guaranteed match between gradient descent and gradient flow. However, the impact of these constants is
exponentially weaker than that of the Hessian’s minimal eigenvalue. For details see Theorem 3.

3By data-independence we mean that no assumptions on training data are made beyond it being subject to
standard whitening and normalization procedures.

4We regard convergence as efficient if its computational complexity is polynomial in training set size and
dimensions, as well as the desired level of accuracy.

5A minor subtlety is that in [25] the vector field g(·) is defined over an open domain. To account for this
requirement, simply extend g(·) to the domain (−∞,∞)×Rd by setting g(t,q)=g(0,q) for all t<0, q∈Rd.
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θk+1=θk+ηg(tk,θk) for k=0,1,2,... , (2)

where tk := kη and the initial point θ0 is typically set to θs. The motivation behind Euler’s
method is straightforward — a first order Taylor expansion of the exact solution θ(·) around time tk
yields: θ(tk+1) = θ(tk+η)≈ θ(tk)+η d

dtθ(tk) = θ(tk)+ηg(tk,θ(tk)), therefore if θ(tk) is well
approximated by θk, we may expect θk+1 to resemble θ(tk+1). The numerical solution produced
by Euler’s method may be viewed as a continuous polygonal curve:

θ̄ : [0,∞)→Rd , θ̄(0)=θ0 , d
dt θ̄(t)=g(tk,θk) for t∈(tk,tk+1) , k=0,1,2,... . (3)

The quality of the numerical solution then boils down to the distance between this curve and the exact
solution, i.e. between θ̄(t) and θ(t) for t≥ 0. Many efforts have been made to derive tight bounds
for this distance. We provide below a modern result known as “Fundamental Theorem.”
Theorem 2 (Fundamental Theorem). Consider the initial value problem in Equation (1), and
suppose g(·) is continuously differentiable. Let θ : [0,te)→Rd be the solution to this problem (see
Theorem 1), and let θ̄ : [0,∞)→Rd be a continuous polygonal curve (Equation (3)) born from Euler’s
method (Equation (2)). For any t ∈ [0, te),q ∈ Rd, denote by J(t,q) ∈ Rd,d the Jacobian of g(·)
with respect to its second argument at the point (t,q), and by λmax(t,q) the maximal eigenvalue
of 1

2 (J(t,q)+J(t,q)⊤).6 Let m : [0,te)→R be an integrable function satisfying: λmax(t,q)≤m(t)

for all t∈ [0,te) and q∈ [θ(t),θ̄(t)], where [θ(t),θ̄(t)] stands for the line segment (in Rd) between θ(t)
and θ̄(t). Let δ : [0,te)→R≥0 be an integrable function that meets: ∥ d

dt θ̄(t
+)−g(t,θ̄(t))∥2≤δ(t) for

all t∈ [0,te), where d
dt θ̄(t

+) represents the right derivative of θ̄(·) at time t. Then, for all t∈ [0,te):

∥θ(t)−θ̄(t)∥2≤eµ(t)
(
∥θ(0)−θ̄(0)∥2+∫ t0e−µ(t′)δ(t′)dt′

)
, (4)

where µ(t) :=
∫ t

0
m(t′)dt′.

Proof. The theorem is simply a restatement of Theorem 10.6 in [27].

3 Continuous vs. Discrete Optimization: Match Determined by Convexity
Let f :Rd →R, where d∈N, be a twice continuously differentiable function which we would like
to minimize. Consider continuous optimization via gradient flow initialized at θs∈Rd:

θ(0)=θs , d
dtθ(t)=−∇f(θ(t)) for t≥0 . (5)

This is a special case of the initial value problem presented in Equation (1).7 By Theorem 1, it admits
a unique solution θ : [0,te)→Rd, where either: (i) te=∞; or (ii) te<∞ and limt↗te ∥θ(t)∥2=∞.
Numerically approximating this solution via Euler’s method (Equation (2)) yields a discrete
optimization algorithm which is no other than gradient descent:

θk+1=θk−η∇f(θk) for k=0,1,2,... , (6)

where η>0 is the chosen step size. We may thus invoke the Fundamental Theorem (Theorem 2) and
obtain a bound on the distance between the trajectories of gradient flow and gradient descent.
Theorem 3. Consider the trajectory of gradient flow (solution to Equation (5)) θ : [0, te)→Rd,
and let t̃ ∈ (0, te) and ϵ > 0. Define Dt̃,ϵ :=

⋃
t∈[0,t̃ ]Bϵ(θ(t)), where Bϵ(θ(t))⊂Rd stands

for the (closed) Euclidean ball of radius ϵ centered at θ(t). Let βt̃,ϵ,γt̃,ϵ>0 be such that:
supq∈Dt̃,ϵ

∥∇2f(q)∥spectral≤βt̃,ϵ and supq∈Dt̃,ϵ
∥∇f(q)∥2≤γt̃,ϵ. Let m: [0,t̃ ]→R be an integrable

function satisfying: −λmin

(
∇2f(q)

)
≤m(t) for all t∈ [0,t̃ ] and q∈Bϵ(θ(t)), where λmin

(
∇2f(q)

)
stands for the minimal eigenvalue of ∇2f(q). Then, if the step size η>0 chosen for gradient descent
(Equation (6)) satisfies:

η< inf
t∈(0,t̃ ]

ϵ−e
∫ t
0
m(t′)dt′∥θ0−θ(0)∥2

βt̃,ϵγt̃,ϵ
∫ t

0
e
∫ t
t′m(t′′)dt′′dt′

, (7)

the first ⌊t̃/η⌋ iterates of gradient descent will ϵ-approximate the trajectory of gradient flow up to
time t̃, i.e. we will have ∥θk−θ(kη)∥2≤ϵ for all k∈{1,2,...,⌊t̃/η⌋}.

Proof sketch (for complete proof see Subappendix J.2). The result follows from applying the
Fundamental Theorem (Theorem 2) with δ(·) fixed at βt̃,ϵγt̃,ϵη.

6This maximal eigenvalue is known as the logarithmic norm of J(t,q) (cf. Section I.10 in [27]).
7The vector field in this case is time-independent (given by g(t,q) =−∇f(q) for all t ∈ [0,∞),q ∈Rd).

Initial value problems of this type are known as autonomous.
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Theorem 3 gives a sufficient condition — upper bound on step size η (Equation (7)) — for gradient
descent to follow gradient flow up to a given time t̃. The bound is inversely proportional to smoothness
and Lipschitz constants (βt̃,ϵ and γt̃,ϵ respectively), and more importantly, depends exponentially on
the integral of m(·) along the gradient flow trajectory, where m(·) corresponds to minus the minimal
eigenvalue of the Hessian. The smaller the integral of m(·), i.e. the larger (less negative or more
positive) the minimal eigenvalue of the Hessian around the trajectory is, the more relaxed the bound
will be. That is, the “more convex” the objective function is around the gradient flow trajectory, the
better the match between gradient flow and gradient descent is guaranteed to be.

Corollary 1 below coarsely applies Theorem 3 by fixing m(·) to minus the minimal eigenvalue of
the Hessian across the entire space. If m(·) ≡ m (now a constant) is negative, i.e. the objective
function f(·) is strongly convex, the upper bound on the step size η becomes constant, meaning it
is independent of the time t̃ until which gradient descent is required to follow gradient flow. If m is
equal to zero, i.e. f(·) is non-strongly convex, the upper bound on η mildly decreases with t̃, namely
it scales as 1/t̃. If on the other hand m is positive, meaning f(·) is non-convex, the bound on η shrinks
to zero (becoming prohibitively restrictive) exponentially fast as t̃ grows. This suggests that as opposed
to (strongly or non-strongly) convex objectives, over which gradient descent can easily be made to
follow gradient flow, over non-convex objectives, in the worst case, gradient descent will immediately
divert from gradient flow unless its step size is exponentially small. In Appendix B we present a simple
example of such a worst case scenario. In this worst case, the minimal eigenvalue of the Hessian is
bounded below and away from zero around the gradient flow trajectory. A question is then whether
there are non-convex objectives in which the minimal eigenvalue of the Hessian around gradient flow
trajectories is large enough for them to be followed by gradient descent. We will see that training losses
of deep neural networks can meet this property.

Corollary 1. Assume that the objective function f(·) is non-negative and β-smooth with β > 0.8
Denote m :=−infq∈Rdλmin(∇2f(q)), where λmin(∇2f(q)) stands for the minimal eigenvalue of
∇2f(q). Consider the trajectory of gradient flow (solution to Equation (5)) θ : [0,te)→Rd,9 and let
t̃∈(0,te) and ϵ>0. Then, if the step size η>0 for gradient descent (Equation (6)) satisfies:

η<


c(ϵ−∥θ0−θ(0)∥2)|m| ,if m<0 (strong convexity)

c(ϵ−∥θ0−θ(0)∥2)(1/t̃ ) ,if m=0 (non-strong convexity)

c(ϵ−∥θ0−θ(0)∥2emt̃)(emt̃−1)−1m ,if m>0 (non-convexity)

,

where c :=
(√

2β3f(θ(0))+β2ϵ
)−1

, we will have ∥θk−θ(kη)∥2≤ϵ for all k∈{1,2,...,⌊t̃/η⌋}.

Proof sketch (for complete proof see Subappendix J.3). The result follows from applying Theorem 3
with βt̃,ϵ=β, γt̃,ϵ=

√
2βf(θ(0))+βϵ and m(·)≡m.

4 Optimization of Deep Neural Networks is Roughly Convex
Section 3 has shown that the extent to which gradient descent matches gradient flow depends on “how
convex” the objective function is around the gradient flow trajectory. More precisely, the larger (less
negative or more positive) the minimal eigenvalue of the Hessian is around this trajectory, the longer
gradient descent (with given step size) is guaranteed to follow it.2 In this section we establish that over
training losses of deep neural networks (fully connected as well as convolutional) with homogeneous
activations (e.g. linear, rectified linear or leaky rectified linear), when emanating from near-zero
initialization (as commonly employed in practice), trajectories of gradient flow are “roughly convex,”
in the sense that the minimal eigenvalue of the Hessian along them is far greater than in arbitrary points
in space, particularly towards convergence. This finding suggests that when optimizing deep neural
networks, gradient descent may closely resemble gradient flow. We demonstrate a formal application
of the finding in Section 5, translating an analysis of gradient flow over deep linear neural networks
into a guarantee of efficient convergence (to global minimum) for gradient descent, which applies
almost surely with respect to a random near-zero initialization.

8Namely, ∥∇2f(q)∥spectral≤β for all q∈Rd.
9Lemma 3 in Appendix A shows that in the current context (β-smoothness of the objective function f(·)),

it necessarily holds that te =∞, i.e. the trajectory of gradient flow is defined over [0,∞). For simplicity, the
statement of the corollary does not rely on this fact.

4



4.1 Fully Connected Architectures
Consider the mappings realized by a fully connected neural network with depth n ∈ N≥2, input
dimension d0∈N, hidden widths d1,d2,...,dn−1∈N, and output dimension dn∈N:

hθ :Rd0 →Rdn , hθ(x)=Wnσ(Wn−1σ(Wn−2···σ(W1x))···) , (8)

where: Wj ∈Rdj ,dj−1 , j=1,2,...,n, are learned weight matrices; θ∈Rd, with d :=
∑n

j=1djdj−1, is
their arrangement as a vector;10 and σ :R→R is a predetermined activation function that operates
element-wise when applied to a vector.11 We assume that σ(·) is (positively) homogeneous, meaning
σ(cz)=cσ(z) for all c≥0,z∈R. This allows for linear (σ(z)=z), as well as the commonly employed
rectified linear (σ(z)=max{z,0}) and leaky rectified linear (σ(z)=max{z,ᾱz} for some 0<ᾱ<1)
activations.

Let Y be a set of possible labels, and let S=((xi,yi))
|S|
i=1, with xi∈Rd0 ,yi∈Y for i=1,2,...,|S|, be a

sequence of labeled inputs. Given a loss function ℓ :Rdn×Y→R convex and twice continuously differ-
entiable in its first argument (common choices include square, logistic and exponential losses), we learn
the weights of the neural network by minimizing its training loss — average loss over elements of S:

f :Rd→R , f(θ)=
1

|S|
∑|S|

i=1
ℓ(hθ(xi),yi) . (9)

Subsubsections 4.1.1 and 4.1.2 below show (for linear and non-linear activation functions, respectively)
that although the minimal eigenvalue of∇2f(θ) (Hessian of training loss) — denotedλmin(∇2f(θ))—
can in general be arbitrarily negative, along trajectories of gradient flow (which emanate from near-zero
initialization) it is no less than moderately negative, approaching non-negativity towards convergence.
In light of Section 3, this suggests that over fully connected deep neural networks, gradient flow
may lend itself to approximation by gradient descent — a prospect we confirm (for a case with linear
activation) in Section 5.

4.1.1 Linear Activation
Assume that the activation function of the fully connected neural network (Equation (8)) is linear,
i.e. σ(z)=z, and define the end-to-end matrix:

Wn:1 :=WnWn−1···W1∈Rdn,d0 . (10)
The mappings realized by the network can then be written as hθ(x)=Wn:1x, and the training loss
as f(θ)=ϕ(Wn:1), where

ϕ :Rdn,d0 →R , ϕ(W )=
1

|S|
∑|S|

i=1
ℓ(Wxi,yi) (11)

is convex and twice continuously differentiable. Lemma 1 below expresses ∇2f(θ) in this case.

Lemma 1. For any θ ∈ Rd, regard ∇2f(θ) not only as a (symmetric) matrix in Rd,d,
but also as a quadratic form ∇2f(θ)[·] that intakes a tuple (∆W1, ∆W2, ... , ∆Wn) ∈
Rd1,d0 × Rd2,d1 × ··· × Rdn,dn−1 , arranges it as a vector ∆θ ∈ Rd (in correspondence with
how weight matrices W1,W2,...,Wn are arranged to create θ), and returns ∆θ⊤∇2f(θ)∆θ∈R.
Similarly, for any W ∈Rdn,d0 , regard ∇2ϕ(W ) as a quadratic form ∇2ϕ(W )[·] that intakes a matrix
in Rdn,d0 and returns a scalar (non-negative since ϕ(·) is convex). Then, ∇2f(θ) is given by:

∇2f(θ)[∆W1,∆W2,...,∆Wn]=∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
(12)

+2Tr
(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
,

where Wj′:j , for any j,j′∈{1,2,...,n}, is defined as Wj′Wj′−1···Wj if j≤j′, and as an identity matrix
(with size to be inferred by context) otherwise.
Proof. See Subappendix J.4.
The following proposition makes use of Lemma 1 to show that (under mild conditions) λmin(∇2f(θ))
can be arbitrarily negative, i.e. infθ∈Rdλmin(∇2f(θ))=−∞.
Proposition 1. Assume that the network is deep (n≥ 3), and that the zero mapping is not a global
minimizer of the training loss (meaning ∇ϕ(0) ̸=0).12 Then infθ∈Rdλmin(∇2f(θ))=−∞.

10The exact order by which the entries of W1,W2,...,Wn are placed in θ is insignificant for our purposes — all
that matters is that the same order be used throughout.

11Our analysis can easily be extended to account for different activation functions at different hidden layers.
We assume identical activation functions for simplicity of presentation.

12Both of these assumptions are necessary, in the sense that removing any of them (without imposing further
assumptions) renders the proposition false — see Claim 1 in Appendix F.
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Proof. See Subappendix J.5.
Building on Lemma 1, Lemma 2 below provides a lower bound on λmin(∇2f(θ)).

Lemma 2. For any θ∈Rd:13

λmin(∇2f(θ))≥−(n−1)
√

min{d0,dn}∥∇ϕ(Wn:1)∥Frobenius max
J⊆{1,2,...,n}

|J |=n−2

∏
j∈J

∥Wj∥spectral . (13)

Proof. See Subappendix J.6.
Assuming the training loss is non-constant and the network is deep (n≥3), the infimum (over θ∈Rd)
of the lower bound in Equation (13) is minus infinity. In particular, if θ is not a global minimizer
(∇ϕ(Wn:1) ̸=0) and at least n − 2 of its weight matrices W1,W2, ... ,Wn are non-zero, then by
rescaling the latter it is possible to take the lower bound to minus infinity while keeping the end-to-end
matrixWn:1 (and thus the input-output mappinghθ(·) and the training loss value f(θ)) intact. However,
gradient flow over fully connected neural networks (with homogeneous activations) initialized near
zero is known to maintain balance between weight matrices — see [18] — and so along its trajectories
the lower bound in Equation (13) takes a much tighter form. This is formalized in Proposition 2 below.
Proposition 2. If θ ∈Rd resides on a trajectory of gradient flow (over f(·)) emanating from some
point θs∈Rd, with ∥θs∥2≤ϵ for some ϵ∈

(
0, 1

2n

]
, then:

λmin(∇2f(θ))≥−(n−1)
√

min{d0,dn}∥∇ϕ(Wn:1)∥Frobenius∥Wn:1∥1−2/n
spectral−cϵ1−2/n , (14)

where c := 4n(n−1)
(4n)2/n

√
min{d0,dn}∥∇ϕ(Wn:1)∥Frobeniusmax

{
1,max{∥Wj∥spectral}nj=1

}2(n−2)
.

Proof. See Subappendix J.7.
Assume the network is deep (n≥3), and consider a trajectory of gradient flow (over f(·)) emanating
from near-zero initialization. For every point on the trajectory, Proposition 2 may be applied with
small ϵ, leading the lower bound in Equation (14) to depend primarily on the sizes (norms) of the
end-to-end matrix Wn:1 and the gradient of the loss with respect to it, i.e. ∇ϕ(Wn:1) (see Equations
(10) and (11)). In the course of optimization,Wn:1 is initially small, and (since the loss f(θ)=ϕ(Wn:1)
is monotonically non-increasing) remains confined to sublevel sets of ϕ(·) (which is convex) thereafter.
∇ϕ(Wn:1) on the other hand tends to zero upon convergence to global minimum. We conclude
that the lower bound on λmin(∇2f(θ)) in Equation (14) starts off slightly negative, and approaches
non-negativity (if and) as the trajectory converges to global minimum. In light of Section 3, this implies
that the gradient flow trajectory may lend itself to approximation by gradient descent. Indeed, the
results of the current Subsubsection are used in Section 5 to establish proximity between gradient
flow and gradient descent, thereby translating an analysis of gradient flow into a guarantee of efficient
convergence (to global minimum) for gradient descent.

4.1.2 Non-Linear Activation
Due to lack of space, we defer our analysis for fully connected neural networks with non-linear
activation to Appendix C. This analysis is similar in spirit to the one in Subsubsection 4.1.1 treating linear
activation. In particular, it makes use of the fact that gradient flow initialized near zero maintains balance
between weight matrices — cf. [18]. A key difference brought forth by non-linear activation is that the
training loss f(·) (Equation (9)) is no longer differentiable. We circumvent this challenge by excluding
from the analysis points of non-differentiability, which form a negligible (closed and zero measure) set.

4.2 Convolutional Architectures
We account for convolutional neural networks by allowing for weight sharing and sparsity patterns
to be imposed on the layers of the fully connected model analyzed in Subsection 4.1. Namely, we
consider the exact same mappings as in Equation (8), but now, rather than being learned directly, the
matrices Wj ∈ Rdj ,dj−1 , j = 1,2, ... ,n, are determined by learned weight vectors wj ∈ Rd′

j , with
d′j ∈N, j=1,2,...,n, such that each entry of Wj is either fixed at zero or connected to a predetermined
coordinate of wj (with no repetition of coordinates within the same row). The weight setting θ∈Rd

is then simply a concatenation of the weight vectors w1,w2,...,wn, and its dimension is accordingly
d=
∑n

j=1d
′
j . Our analysis for this model (which includes convolutional neural networks as a special

case) is essentially the same as that presented for fully connected neural networks with non-linear
activation (Subsubsection 4.1.2). In particular, we use the fact that even with weight sharing and
sparsity patterns imposed on the layers of a fully connected neural network (with homogeneous
activation), when initialized near zero, gradient flow over the network maintains balance between
weights of different layers — cf. [18]. For the complete analysis see Appendix D.

13Note that by convention, an empty product (i.e. a product over the elements of the empty set) is equal to one.
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5 Continuous Proof of Discrete Convergence for Deep Linear Neural Networks
Section 3 invoked the Fundamental Theorem for numerical solution of initial value problems (The-
orem 2) to show that, in general, the extent to which gradient descent provably matches gradient flow
is determined by how large (less negative or more positive) the minimal eigenvalue of the Hessian
is around the gradient flow trajectory.2 Section 4 established that for training losses of deep neural
networks, along trajectories of gradient flow emanating from near-zero initialization (as commonly em-
ployed in practice), the minimal eigenvalue of the Hessian is far greater than in arbitrary points in space,
particularly towards convergence. In this section we combine the two findings, translating an analysis of
gradient flow over deep linear neural networks into a convergence guarantee for gradient descent. The
guarantee we obtain is, to our knowledge, the first to ensure that a conventional gradient-based algorithm
optimizing a deep (three or more layer) neural network of fixed (data-independent3) size efficiently
converges4 to global minimum almost surely under random (data-independent) near-zero initialization.

Deep linear neural networks — fully connected neural networks with linear activation (see Subsec-
tion 4.1) — are perhaps the most common subject of theoretical study in the context of optimization in
deep learning. Though trivial from an expressiveness point of view (realize only linear input-output map-
pings), they induce highly non-convex training losses, giving rise to highly non-trivial phenomena under
gradient-based optimization. In recent years, various results concerning gradient flow over deep linear
neural networks have been proven, most notably for the case of balanced initialization (see for exam-
ple [49, 4, 34, 6, 46]). Under the notations of Subsection 4.1 (in particular withW1,W2,...,Wn standing
for network weight matrices), balanced initialization means that when optimization commences:

W⊤
j+1Wj+1=WjW

⊤
j for j=1,2,...,n−1 . (15)

The condition holds approximately with any near-zero initialization, and exactly when the following
procedure (adaptation of Procedure 1 in [5]) is employed.

Procedure 1 (random balanced initialization). With a distribution P over dn-by-d0 matrices of rank at
most min{d0,d1,...,dn}, initialize Wj ∈Rdj ,dj−1 , j=1,2,...,n, via following steps: (i) sample A∼P;
(ii) take singular value decomposition A=UΣV ⊤, where U ∈Rdn,min{d0,dn} and V ∈Rd0,min{d0,dn}

have orthonormal columns, and Σ∈Rmin{d0,dn},min{d0,dn} is diagonal and holds the singular values
of A; and (iii) set Wn≃UΣ1/n,Wn−1≃Σ1/n,Wn−2≃Σ1/n,...,W2≃Σ1/n,W1≃Σ1/nV ⊤, where

“≃” stands for equality up to zero-valued padding.

Compared to gradient flow, little is known about gradient descent when it comes to optimization of
deep (three or more layer) linear neural networks. Indeed, there are relatively few results along this line
(cf. [9, 30, 5]), and these are typically highly specific, built upon technical proofs that are difficult to
generalize. Being able to obtain results via translation of gradient flow analyses is thus of prime interest.

We focus in this section on deep14 linear neural networks trained for scalar regression per least-squares
criterion. In the context of Subsection 4.1, this means that the activation function σ(·) is linear
(σ(z) = z), the output dimension dn is one, and the loss function ℓ(·) is the square loss (i.e. Y =R
and ℓ(ŷ,y) = 1

2 (ŷ−y)2). We assume that training inputs are whitened, i.e. have been transformed
such that their empirical (uncentered) covariance matrix Λxx := 1

|S|
∑|S|

i=1xix
⊤
i ∈Rd0,d0 is equal to

identity. A standard calculation (see Appendix G) shows that in this case the function ϕ(·) defined
by Equation (11) becomes ϕ(W )= 1

2∥W−Λyx∥2Frobenius+c, where Λyx :=
1
|S|
∑|S|

i=1yix
⊤
i ∈R1,d0

is the empirical (uncentered) cross-covariance matrix between training labels and inputs, and c∈R
is a constant (independent of W ). We may thus write the training loss f(·) (Equation (9)) as:

f(θ)=
1

2
∥Wn:1−Λyx∥2Frobenius+c=

1

2
∥Wn:1−Λyx∥2Frobenius+minq∈Rdf(q) , (16)

where Wn:1∈R1,d0 is the network’s end-to-end matrix (Equation (10)). We disregard the degenerate
case where Λyx=0, i.e. where the zero mapping attains the global minimum, and assume that training
labels are normalized (jointly scaled) such that Λyx has unit length (∥Λyx∥Frobenius=1).

Proposition 3 below analyzes gradient flow over the training loss in Equation (16). Relying on a known
characterization for the dynamics of the end-to-end matrix (cf. [4]), it establishes convergence to global
minimum. Moreover, harnessing the results of Section 4, it derives a lower bound on (the integral
of) the minimal eigenvalue of the Hessian around the gradient flow trajectory.

14Our results apply to shallow (two layer) networks as well. We highlight the deep (three or more layer) setting
as it is far less understood (cf. [5]), and arguably more central to deep learning.
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Proposition 3. Consider minimization of the training loss f(·) in Equation (16) via gradient
flow (Equation (5)) starting from initial point θs ∈ Rd that meets the balancedness condition
(Equation (15)). Denote by Wn:1,s the initial value of the end-to-end matrix (Equation (10)), and
suppose that ∥Wn:1,s∥Frobenius∈(0,0.2] (initialization is small but non-zero). Assume that Wn:1,s is
not antiparallel to Λyx, i.e. ν :=Tr(Λ⊤

yxWn:1,s)
/(

∥Λyx∥Frobenius∥Wn:1,s∥Frobenius

)
̸=−1. Then,

the trajectory of gradient flow is defined over infinite time, and with θ : [0,∞)→Rd representing this
trajectory, for any ϵ̄>0, the following time t̄ satisfies f(θ(t̄))−minq∈Rdf(q)≤ ϵ̄:

t̄=
2n
(
max

{
1,

3
2 ·

1−ν
1+ν

})n
∥Wn:1,s∥Frobenius

ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,s∥Frobeniusmin{1,2ϵ̄}

)
. (17)

Moreover, under the notations of Theorem 3, for any t > 0 and ϵ∈
(
0, 1

2n

]
with corresponding Dt,ϵ

(ϵ-neighborhood of gradient flow trajectory up to time t), we have the smoothness and Lipschitz
constants βt,ϵ =16n and γt,ϵ =6

√
n respectively, and the following (upper) bound on the integral

of (minus) the minimal eigenvalue of the Hessian:∫ t

0

m(t′)dt′≤
15n3

(
max

{
1,

3
2 ·

1−ν
1+ν

})n
tϵ

∥Wn:1,s∥Frobenius
+ln

(
n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,s∥2
Frobenius

)
, (18)

where the function m : [0,t]→R is non-negative.
Proof. See Subappendix J.8.
Plugging the gradient flow results of Proposition 3 into the generic Theorem 3 translates them to the
following convergence guarantee for gradient descent.
Theorem 4. Assume the same conditions as in Proposition 3, but with minimization via gradient
descent (Equation (6)) instead of gradient flow.15 Then, with θ0,θ1,θ2,... representing the iterates of
gradient descent, Wn:1,0 standing for the end-to-end matrix (Equation (10)) of the initial point θ0, and
ν:=Tr(Λ⊤

yxWn:1,0)
/(

∥Λyx∥Frobenius∥Wn:1,0∥Frobenius

)
, for any ϵ̃>0, if the step size η meets:

η ≤ ∥Wn:1,0∥5
Frobeniusmin{1,ϵ̃}

n17/2e7n+6
(
max
{
1,

1−ν
1+ν

})(11n−5)/2

(
ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥Frobeniusmin{1,ϵ̃}

))−2

∈ Ω̃

(
∥Wn:1,0∥5

Frobenius ϵ̃

n17/2
(
poly

( 1−ν
1+ν

))n), (19)

it holds that f(θk)−minq∈Rdf(q)≤ ϵ̃, where:

k=

⌊
2n
(
max

{
1,

3
2 ·

1−ν
1+ν

})n
∥Wn:1,0∥Frobeniusη

ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥Frobeniusmin{1,ϵ̃}

)
+1

⌋
∈Õ

(
n
(
poly

( 1−ν
1+ν

))n
ln
( 1
ϵ̃

)
∥Wn:1,0∥Frobeniusη

)
. (20)

Proof. See Subappendix J.9.

Remark 1. Theorem 3 — our generic tool for translating analyses between gradient flow and gradient
descent — allows for the two to be initialized differently. Accordingly, the convergence guarantee
of Theorem 4 may be extended to account for initialization which is not perfectly balanced, i.e. which
satisfies Equation (15) only approximately. For details see Appendix H.
Remark 2. The convergence guarantee of Theorem 4 requires a number of iterates that scales
exponentially with network depth (n). [51] has proven that under mild conditions, for a deep linear
neural network whose input, hidden and output dimensions are all equal to one (i.e., in our notations,
d0=d1= ···=dn=1), such exponential dependence on depth is unavoidable. We defer to future work
the question of whether this also holds in the context of Theorem 4.

Combining Theorem 4 with random balanced initialization (Procedure 1) yields what is, to our
knowledge, the first guarantee of random (data-independent) near-zero initialization almost surely
leading a conventional gradient-based algorithm optimizing a deep (three or more layer) neural
network of fixed (data-independent) size to efficiently converge to global minimum.
Corollary 2. Consider minimization of the training loss f(·) in Equation (16) via gradient descent
(Equation (6)) emanating from a random balanced initialization (Procedure 1) whose underlying
distribution P is continuous and satisfies PrA∼P

[
∥A∥Frobenius ≤ 0.2

]
= 1. Assume d0 (network

input dimension) is greater than one, and let Wn:1,0 and ν be as defined in Theorem 4. Then, almost
surely with respect to (i.e. with probability one over) initialization, for any ϵ̃>0, if the step size η meets
Equation (19), the value of f(·) after k iterates will be within ϵ̃ from global minimum, where k is given
by Equation (20).

Proof. See Subappendix J.10.
15The conditions on θs in Proposition 3 are now satisfied by the initialization of gradient descent, i.e. by θ0.
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Figure 1: Over deep fully connected neural networks, trajectories of gradient descent with conventional step size
barely change when step size is reduced, suggesting they are close to the continuous limit, i.e. to trajectories of
gradient flow. Presented results were obtained on fully connected neural networks as analyzed in Subsection 4.1,
trained to classify MNIST handwritten digits (28-by-28 grayscale images, each labeled as an integer between 0
and 9 — cf. [35]). Networks had depth n=3, input dimension d0=784 (corresponding to 28 ·28=784 pixels),
hidden widths d1=d2=50 and output dimension d3=10 (corresponding to ten possible labels). Training was
based on gradient descent applied to cross-entropy loss with no regularization, starting from a near-zero point
drawn from Xavier distribution (cf. [24]). Separately on each network, we compared runs differing only in the step
size η. Specifically, with η0=0.001 (standard choice of step size) and r ranging over {2,5,10,20}, we compared,
in terms of training loss value and location in weight space, every iteration of a run using η=η0 to every r’th
iteration of a run in which η=η0/r. Left pair of plots reports results obtained on a network with linear activation
(σ(z)=z), while right pair corresponds to a network with rectified linear activation (σ(z)=max{z,0}). In each
pair, left plot displays training loss values, and right one shows (Euclidean) distances in weight space, namely,
distance between initialization and run with η=η0, alongside distances between run with η=η0 and runs having
η=η0/r for different values of r. Horizontal axes represent time in units of η=η0 iterations (meaning each time
unit corresponds to r iterations of a run with η=η0/r). Notice that the drift between runs with different step sizes
is minor compared to the distance traveled. For further implementation details, and results of similar experiments
on convolutional neural networks, see Appendix I.

6 Experiments

In this section we corroborate our theory by presenting experiments suggesting that over simple
deep neural networks, gradient descent with conventional step size is indeed close to the continuous
limit, i.e. to gradient flow. Our experimental protocol is simple — on several deep neural networks
classifying MNIST handwritten digits ([35]), we compare runs of gradient descent differing only in
the step size η. Specifically, separately on each evaluated network, with η0=0.001 (standard choice
of step size) and r ranging over {2,5,10,20}, we compare, in terms of training loss value and location
in weight space, every iteration of a run using η=η0 to every r’th iteration of a run in which η=η0/r.
Figure 1 reports the results obtained on fully connected neural networks (as analyzed in Subsection 4.1),
with both linear and non-linear activation. As can be seen, reducing the step size η leads to only slight
changes, suggesting that the trajectory of gradient descent with η=η0 is already close to the continuous
limit. Similar results obtained on convolutional neural networks (see Subsection 4.2 for corresponding
analysis) are reported by Figure 3 in Subappendix I.1.

Our experimental findings suggest that in practice, proximity between gradient descent and gradient
flow may take place even when the step size of gradient descent is larger than permitted by current
theory. Indeed, the theoretical machinery developed in this paper brings forth upper bounds on step
size that guarantee proximity, and while such upper bounds can be asymptotically tight under worst
case conditions (see Appendix B), they are by no means tight in every given scenario, and therefore
larger step sizes may also admit proximity. For illustration, a step size of η0, which in our experiments
was seemingly sufficient for ensuring proximity, is many orders of magnitude greater than the upper
bound on step size required by Theorem 4 (Equation (19)).

7 Related Work

Theoretical study of gradient-based optimization in deep learning is an extremely active area of
research. While far too wide to fully cover here, we note that analyses in this area can broadly
be categorized as continuous (see for example [49, 4, 34, 6, 1, 20, 57, 46, 31, 47, 60, 7, 62])
or discrete (e.g. [9, 26, 17, 2, 16, 66, 28]). There are works comprising analyses of both types
(cf. [18, 30, 5, 61, 39, 19, 11, 12]), but with these developed separately, wherein continuous proofs
typically serve as inspiration for discrete ones (which are often far more technical and brittle).
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When relating continuous and discrete optimization, the algorithms at play are most commonly gradient
flow and gradient descent. There are however works that draw analogies between other algorithms,
replacing gradient flow on the continuous end and/or gradient descent on the discrete one (see, e.g.,
[54, 58, 59, 45, 50, 37, 52, 63, 22, 43, 40, 8, 33, 53]). The literature includes works which, similarly to
the current paper, provide formal results concerning the accumulated (non-local) discrepancy between
continuous and discrete optimization (cf. [50, 43]). However, such works typically focus on simple ob-
jective functions (for example convex or quadratic), whereas we center on (non-convex and non-smooth)
training losses of deep neural networks. Several recent works (e.g. [8, 33, 14]) also considered continu-
ous vs. discrete optimization of deep neural networks, but they did not provide formal results concerning
the accumulated discrepancy. We are not aware of any study (prior to the current) formally quantifying
the accumulated discrepancy between continuous and discrete optimization of deep neural networks.

With regards to the convergence guarantee we obtain in Section 5 (via translation of gradient flow analy-
sis to gradient descent) — Theorem 4 and Corollary 2 — relevant results are those that establish efficient
convergence4 to global minimum for a conventional (discrete) gradient-based algorithm optimizing
a deep (three or more layer) neural network. Existing results meeting this criterion either: (i) apply
to neural networks (linear or non-linear) whose size depends on the data (i.e. is not data-independent3),
predominantly in an impractical fashion (cf. [65, 17, 2, 19, 64, 42]); or (ii) apply to linear neural
networks of fixed (data-independent) size, similarly to our guarantee. Results of type (ii) often treat the
residual setting, which boils down to (possibly scaled) identity initialization, perhaps with input and/or
output layers initialized differently (see for example [9, 61, 66]). Exceptions include [5], [16] and [28].
[5] allows for random balanced initialization, as we do. Its results account for networks with multi-
dimensional output, and require a number of iterates polynomial in network depth. Our guarantee on the
other hand is limited to networks with one-dimensional output, and calls for a number of iterates scaling
exponentially with network depth. However, while [5] demands that initialization be sufficiently close
to global minimum, thereby excluding the possibility of saddle points being encountered, our guarantee
holds almost surely (i.e. with probability one) under random (data-independent) near-zero initialization.
The fact that we account for evasion of saddle points (in particular that at the origin, which is non-strict16

when network depth is three or more) may be the source of the gap in number of iterates — see Remark 2.
As for the results of [16] and [28], these also hold with high probability under random initialization,
but they require network size to grow towards infinity in order for the probability to approach one.

8 Discussion
Our work puts forth a potential explanation to a puzzling phenomenon in deep learning, namely, the
effect of weight decay (L2 regularization). While traditionally viewed as a regularizer, it is known
(cf. [32]) that in deep learning, weight decay can assist in minimizing the training loss. In light of
our findings, a possible reason for this is that weight decay translates to adding a positive constant
to Hessian eigenvalues, thereby bringing gradient descent closer to gradient flow, which often enjoys
favorable convergence properties. Theoretical and/or empirical investigation of this prospect is a
potential avenue for future work.

Emerging evidence (cf. [38, 36, 29]) suggests that for (variants of) gradient descent optimizing deep
neural networks, large step size is often beneficial in terms of generalization (i.e. in terms of test
accuracy). While the large step size regime is not necessarily captured by standard (variants of) gradient
flow (see [14]), recent works (e.g. [8, 33, 53]) argue that it is captured by a certain modified version
of (variants of) gradient flow. Formally quantifying the discrepancy between gradient descent with
large step size and such modified version of gradient flow is a promising direction for future research.

The demonstration we provided for translation of a gradient flow analysis to gradient descent
(Section 5) culminated in a convergence guarantee, but in fact entails much more information. Namely,
since the translated gradient flow analysis includes a careful trajectory characterization, not only do we
know that gradient descent converges to global minimum (and how fast that happens), but we also have
access to information about the trajectory it takes to get there. This allows, for example, shedding light
on how saddle points (non-strict ones in particular16) are evaded. A nascent belief (cf. [5, 6]) is that
understanding the trajectories of gradient descent is key to unraveling mysteries behind optimization
and generalization (implicit regularization) in deep learning. The machinery developed in the current
paper may contribute to this understanding, by translating results from the vast bodies of literature
on continuous dynamical systems.

16A saddle point is said to be non-strict if its Hessian has no negative eigenvalues. Saddle points that are
non-strict are generally regarded as more difficult to evade — cf. [5].
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A Infinite Time for Gradient Flow Over Smooth Objective

By Theorem 1, gradient flow over a twice continuously differentiable objective function f :Rd→R
(Equation (5)) admits a unique solution θ : [0,te)→Rd, where either: (i) te=∞; or (ii) te<∞ and
limt↗te∥θ(t)∥2=∞. Lemma 3 below shows that if f(·) is β-smooth then necessarily te=∞.

Lemma 3. Let f :Rd→R be twice continuously differentiable and β-smooth with β > 0 (meaning
∥∇2f(q)∥spectral≤β for all q∈Rd). Then, for any θs∈Rd, there exists a solution θ : [0,∞)→Rd

to gradient flow over f(·) initialized at θs (Equation (5)).

Proof. In light of Theorem 1, there exists a solution (to gradient flow over f(·) initialized at θs)
θ : [0,te)→ Rd, where either: (i) te =∞; or (ii) te <∞ and limt↗te ∥θ(t)∥2 =∞. It suffices to
prove that condition (ii) is not satisfied. Assume by way of contradiction that it is. Then, there exists
t0∈ [0,te) such that for every t∈ [t0,te), ∥θ(t)∥2 ̸=0 and we may write:

d
dt∥θ(t)∥2 =

(
θ(t)/∥θ(t)∥2

)⊤ d
dtθ(t)

=
(
θ(t)/∥θ(t)∥2

)⊤(−∇f(θ(t))
)

≤ ∥∇f(θ(t))∥2
= ∥∇f(0)+∇f(θ(t))−∇f(0)∥2
≤ ∥∇f(0)∥2+∥∇f(θ(t))−∇f(0)∥2
≤ ∥∇f(0)∥2+β∥θ(t)∥2 ,

where the first transition follows from the chain rule, the second holds since θ(·) is a solution to
gradient flow over f(·), the third is an application of the Cauchy-Schwartz inequality, the fourth
is trivial, the fifth results from the triangle inequality, and the sixth is due to β-smoothness of f(·).
Dividing by the right-hand side above and integrating between t0 and some t′∈ [t0,te), we obtain:

β−1ln
(
∥∇f(0)∥2+β∥θ(t′)∥2

)
−β−1ln

(
∥∇f(0)∥2+β∥θ(t0)∥2

)
≤ t′−t0 ,

which in turn implies:

∥θ(t′)∥2≤β−1
((

∥∇f(0)∥2+β∥θ(t0)∥2
)
exp
(
β(t′−t0)

)
−∥∇f(0)∥2

)
.

We conclude that for any t′∈ [t0,te), it holds that ∥θ(t′)∥2≤c, where:

c :=β−1
((

∥∇f(0)∥2+β∥θ(t0)∥2
)
exp
(
β(te−t0)

)
−∥∇f(0)∥2

)
<∞ .

This of course contradicts limt↗te∥θ(t)∥2=∞, affirming that condition (ii) above is false.

B Worst Case Scenario

Theorem 3 in Section 3 established that if gradient descent (Equation (6)) is applied with step size η
meeting a certain upper bound (Equation (7)), then its trajectory will ϵ-approximate that of gradient
flow (Equation (5)) up to a given time t̃. The upper bound on η decays exponentially with the integral
of m(·) along the gradient flow trajectory up to time t̃, where m(·) corresponds to minus the minimal
eigenvalue of the Hessian. Replacing m(·) by a constant m equal to minus the minimal eigenvalue of
the Hessian across the entire space results in a coarse bound, which for a non-convex objective (m>0)
scales as e−mt̃ — see Corollary 1. The current appendix shows that in the worst case, such exponential
scaling is necessary. That is, there exist objective functions and initializations with which the location
of gradient flow at time t̃ will not be ϵ-approximated by the trajectory of gradient descent (at any
iteration) unless the step size of gradient descent is O(e−mt̃). We prove this via an example, whose
crux is that the gradient flow trajectories it entails traverse through regions where Hessian eigenvalues
coincide with the minimal one across space.

Let a>0, b≥3 and ϵ∈(0,1). Define the “cut points” zc :=be30+1 and z̄c :=b+1, and the “transition
width” ρ̄ :=min{e−12/2,ϵ/2b}. Consider the functions φ,φ̄ :R→R given by:
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Figure 2: Illustrations of the functions φ(·) and φ̄(·) defined in Equations (21) and (22) respectively.

φ(z)=



1
2a(zc+1)2− 5

12a−
1
2azc ,z=0

φ(0)− 1
2az

2 ,z∈(0,zc)

φ(0)− 1
2az

2+a
(
2
3+zc

)
(z−zc)

3−a
(
1
4+

1
2zc
)
(z−zc)

4 ,z∈ [zc,zc+1]

0 ,z∈(zc+1,∞)

φ(|z|) ,z∈(−∞,0)

, (21)

φ̄(z)=



1
2a(z̄c+1)2+ 1

12a−
1
2az̄c−a

(
1
2 ρ̄−

7
48 ρ̄

2
)

,z= 1
2 ρ̄−1

φ̄
(
1
2 ρ̄−1

)
− 1

4a
(
z−
(
1
2 ρ̄−1

))2
,z∈

(
1
2 ρ̄−1,1−ρ̄

)
φ̄
(
1
2 ρ̄−1

)
− 1

2a+a
(
1
2 ρ̄−

7
48 ρ̄

2
)
− 1

2az
2− 1

12aρ̄
–1(z−1)3 ,z∈ [1−ρ̄,1]

φ̄
(
1
2 ρ̄−1

)
− 1

2a+a
(
1
2 ρ̄−

7
48 ρ̄

2
)
− 1

2az
2 ,z∈(1,z̄c)

φ̄
(
1
2 ρ̄−1

)
− 1

2a+a
(
1
2 ρ̄−

7
48 ρ̄

2
)
− 1

2az
2

,z∈ [z̄c,z̄c+1]
+a
(
2
3+z̄c

)
(z−z̄c)

3−a
(
1
4+

1
2 z̄c
)
(z−z̄c)

4

0 ,z∈(z̄c+1,∞)

φ̄
(∣∣z−( 12 ρ̄−1

)∣∣+ 1
2 ρ̄−1

)
,z∈

(
−∞, 12 ρ̄−1

)

. (22)

Both φ(·) and φ̄(·) are twice continuously differentiable, non-negative and smooth,17 with minimal
curvature (second derivative) equal to −a. φ(·) comprises three parts — (i) constant zero over
(−∞,−zc − 1); (ii) quadratic with curvature −a over (−zc, zc); and (iii) constant zero over
(zc + 1,∞) — with twice continuously differentiable transitions in-between. φ̄(·) consists of
five parts — (i) constant zero over (−∞,−z̄c − 3 + ρ̄); (ii) quadratic with curvature −a over
(−z̄c−2+ ρ̄,−3+ ρ̄); (iii) quadratic with curvature −a/2 over (−3+2ρ̄,1− ρ̄); (iv) quadratic with
curvature −a over (1,z̄c); and (v) constant zero over (z̄c+1,∞) — also joined by twice continuously
differentiable transitions. Illustrations of φ(·) and φ̄(·) are presented in Figure 2.

Let d∈N≥3, and consider the objective function f :Rd→R defined by:

f(q)=φ(q1)+φ̄(q2)+6aq23 , (23)

where q1, q2 and q3 stand for the first, second and third coordinates (respectively) of q∈Rd. f(·) meets
the conditions of Corollary 1 — it is twice continuously differentiable, non-negative and smooth.18 The
minimal eigenvalue of its Hessian across space (i.e. infq∈Rdλmin(∇2f(q)), whereλmin(∇2f(q)) rep-
resents the minimal eigenvalue of∇2f(q)) is−a, meaning the constantm:=−infq∈Rdλmin(∇2f(q))

is equal to a. Building on the fact that in the region (0,zc)×(1,z̄c)×Rd−2 the Hessian has eigenvalues
coinciding with the minimum (i.e. equal to −a), Proposition 4 below establishes the sought-after
result — over f(·), there exist gradient flow trajectories whose ϵ-approximation at a given time t̃

requires gradient descent to have step size O(e−mt̃).

Proposition 4. Let θs = (θs,1, θs,2, ... , θs,d) ∈ Rd be such that θs,1∈(0.5,1), θs,2∈(e−12/2−1,
e−12−1) and θs,3>2. In the above context (in particular with the objective function f :Rd→R defined

17Their second derivatives are bounded.
18There exists β>0 such that ∥∇2f(q)∥spectral≤β for all q∈Rd.
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by Equation (23), for which m :=− infq∈Rd λmin(∇2f(q))=a), denote by θ(·) the trajectory of
gradient flow initialized at θs (solution to Equation (5)), and by θ0,θ1,θ2,... the iterates of gradient
descent with step size η>0 (Equation (6)) emanating from the same point (i.e. with θ0=θs). Then,
for any time t̃∈

[
2
a ln
( 2−3ρ̄/2
θs,2−(ρ̄/2−1)

)
+ 1

a ln
(

2
1−ρ̄

)
, 2a ln

( 2−3ρ̄/2
θs,2−(ρ̄/2−1)

)
+ 1

a ln
( 1+ρ̄/4
1−3ρ̄/4

)
+ 1

a ln(b)
]
,19 if

η≥ 1014

a e−at̃ϵ, it holds that ∥θk−θ(t̃)∥2>ϵ for all k∈N∪{0}.20

Proof sketch (for complete proof see Subappendix J.11). Since f(·) is additively separable (can be
expressed as a sum of terms, each depending on a single input variable), the dynamics in Rd induced
by gradient flow and gradient descent can be analyzed separately for different coordinates. Restricting
our attention to the first two coordinates, we observe that gradient flow and gradient descent initially
traverse through an “anisotropic” region, where curvature is −a in the first coordinate and −a/2 in the
second, and from there move to an “isotropic” region, where curvature is−a in both the first and second
coordinates. In the isotropic region, if gradient descent is placed along a gradient flow trajectory it will
continue down the same path, but otherwise, if there is any discrepancy between gradient descent and
gradient flow, this discrepancy will grow exponentially with time, namely will scale as eat. Carefully
characterizing the dynamics along the anisotropic region reveals that upon entrance to the isotropic
one, there is indeed a discrepancy between gradient descent and gradient flow, the magnitude of which
is proportional to η (step size of gradient descent). Since this magnitude scales as eat thereafter, it
will exceed ϵ at time t̃ if η /∈O(e−at̃ϵ), which is what we set out to prove. The above analysis assumes
η is no greater than a certain constant. However, larger values for η lead to divergence in the third
coordinate (due to the term 6aq23 in the definition of f(·)— Equation (23)), thus these are accounted for
as well (they preclude the possibility of gradient descent ϵ-approximating gradient flow at time t̃ ).

C Analysis for Fully Connected Architectures with Non-Linear Activation

In this appendix we provide our analysis for fully connected architectures with non-linear activation,
outlined in Subsubsection 4.1.2.

When the (homogeneous) activation function of the fully connected neural network defined in
Equation (8) (and surrounding text) is non-linear, i.e. σ(z)=αmax{z,0}−ᾱmax{−z,0} for some
α,ᾱ ∈ R, α ̸= ᾱ, the training loss f(·) (Equation (9)) is (typically) not everywhere differentiable.
It is however locally Lipschitz thus differentiable almost everywhere (see Theorem 9.1.2 in [10]).
Moreover, as established by Proposition 9 in Appendix E, for almost every θ′∈Rd there exist diagonal
matrices D′

i,j ∈Rdj ,dj , i=1,2,...,|S|, j=1,2,...,n−1, with diagonal elements in {α,ᾱ}, such that f(·)
coincides with the function

θ 7→ 1

|S|
∑|S|

i=1
ℓ(WnD

′
i,n−1Wn−1D

′
i,n−2Wn−2···D′

i,1W1xi,yi) (24)

on an open region Dθ′ ⊆Rd containing θ′, that is closed under positive rescaling of weight matrices
(i.e. under (W1,W2, ... ,Wn) 7→ (c1W1, c2W2, ... , cnWn) with c1, c2, ... , cn > 0). The notion of
gradient flow over a non-differentiable locally Lipschitz objective function is typically formalized
via differential inclusion and Clarke subdifferentials (cf. [15, 18]). To our knowledge there exists no
analogue of the Fundamental Theorem (Theorem 2) that applies to this formalization, thus we focus
on (open) regions of the form Dθ′ , where f(·) is given by Equation (24), and in particular is twice
continuously differentiable. On such regions the analysis of Section 3 applies, and since they constitute
the entire weight space but a negligible (closed and zero measure) set, they can facilitate a “piecewise
characterization” of the discrepancy between gradient flow and gradient descent.

Lemma 4 below expresses ∇2f(θ) for θ∈Dθ′ .

Lemma 4. Let θ∈Dθ′ . For any i∈{1,2,...,|S|} and j,j′∈{1,2,...,n} define (D′
i,∗W∗)j′:j to be the

matrix D′
i,j′Wj′D

′
i,j′−1Wj′−1···D′

i,jWj (where by convention D′
i,n ∈Rdn,dn stands for identity) if

j≤ j′, and an identity matrix (with size to be inferred by context) otherwise. For i∈{1,2,...,|S|} let
∇ℓi∈Rdn and ∇2ℓi∈Rdn,dn be the gradient and Hessian (respectively) of the loss ℓ(·) at the point

19Note that the upper bound on t̃ can be made arbitrarily large via suitable (sufficiently large) choice of b.
20Since f(·) is twice continuously differentiable and smooth, θ(t̃) necessarily exists (see Lemma 3 in Ap-

pendix A).
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(
(D′

i,∗W∗)n:1xi,yi
)

with respect to its first argument. Then, regarding Hessians as quadratic forms
(see examples in Lemma 1), it holds that:

∇2f(θ)[∆W1,∆W2,...,∆Wn]=
1

|S|

|S|∑
i=1

∇2ℓi

[
n∑

j=1

(D′
i,∗W∗)n:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi

]
(25)

+
2

|S|

|S|∑
i=1

∇ℓ⊤i
∑

1≤j<j′≤n

(D′
i,∗W∗)n:j′+1D

′
i,j′(∆Wj′)(D

′
i,∗W∗)j′-1:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi .

Proof sketch (for complete proof see Subappendix J.12). The proof is similar to that of Lemma 1.
Namely, it expands the function in Equation (24) and then extracts second order terms.

The following proposition employs Lemma 4 to show that (under mild conditions) there exists θ∈Rd

for which λmin(∇2f(θ)) is arbitrarily negative.
Proposition 5. Assume that: (i) the network is deep (n ≥ 3); and (ii) the loss function ℓ(·) and
training set S are non-degenerate, in the sense that there exists a weight setting θ ∈ Rd for which∑|S|

i=1∇ℓ(0, yi)
⊤hθ(xi) ̸= 0, where ∇ℓ(·) stands for the gradient of ℓ(·) with respect to its first

argument, and hθ(·) is the input-output mapping realized by the network (Equation (8)).21 Then, it
holds that infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))=−∞.

Proof sketch (for complete proof see Subappendix J.13). Let θ∈Rd be a weight setting realizing the
non-degeneracy condition, i.e. for which

∑|S|
i=1∇ℓ(0,yi)

⊤hθ(xi) ̸=0. Without loss of generality, we
may assume that θ satisfies the condition

∑|S|
i=1∇ℓ(0,yi)

⊤hθ(xi)<0 (if this is not the case then simply
flip the signs of the entries in θ corresponding to the last weight matrix Wn). From continuity, there
exists a neighborhood of θ consisting of weight settings that all meet the latter condition. There
must exist a region of the form Dθ′ intersecting this neighborhood (since these regions constitute all
of Rd but a zero measure set), so we may assume, without loss of generality, that θ∈Dθ′ . Lemma 4
then applies. Moreover, since Dθ′ is closed under positive rescaling of weight matrices (i.e. of
W1,W2,...,Wn), the lemma remains applicable even when θ is subject to such rescaling. The proof
proceeds by fixing ∆W1,∆W2,...,∆Wn to certain values, and positively rescaling W1,W2,...,Wn

in a certain way, such that the expression for ∇2f(θ)[∆W1,∆W2,...,∆Wn] provided in Lemma 4
becomes arbitrarily negative.

Relying on Lemma 4, Lemma 5 below provides a lower bound on λmin(∇2f(θ)) for θ∈Dθ′ .
Lemma 5. With the notations of Lemma 4, for any θ∈Dθ′ :13

λmin(∇2f(θ))≥−max{|α|,|ᾱ|}n−1 n−1

|S|

|S|∑
i=1

∥∇ℓi∥2∥xi∥2 max
J⊆{1,2,...,n}

|J |=n−2

∏
j∈J

∥Wj∥Frobenius. (26)

Proof sketch (for complete proof see Subappendix J.14). The proof is analogous to that of Lemma 2.
Namely, it appeals to Lemma 4, and lower bounds the right-hand side of Equation (25). Convexity
of ℓ(·) (with respect to its first argument) implies that the first summand is non-negative. For the
second summand, we use known matrix inequalities (as well as the fact that ∥D′

i,j∥spectral is no
greater than max{|α|,|ᾱ|} for j=1,2,...,n−1, and equal to one for j=n) to establish a lower bound
of c
∑n

j=1∥∆Wj∥2Frobenius, with c being the expression on the right-hand side of Equation (26).

The lower bound in Equation (26) is highly sensitive to the scales of the individual weight matrices.
Specifically, assuming the network is deep (n≥ 3), if θ does not perfectly fit all non-zero training
inputs (meaning there exists i∈{1,2,...,|S|} for which ∇ℓi ̸=0 and xi ̸=0), and if at least n−2 of
its weight matrices W1,W2,...,Wn are non-zero, then it is possible to rescale each Wj by cj>0, with∏n

j=1cj =1, such that the lower bound in Equation (26) becomes arbitrarily negative22 despite the

21Assumptions (i) and (ii) are both necessary, in the sense that removing any of them (without imposing further
assumptions) renders the proposition false — see Claim 2 in Appendix F. Assumption (ii) in particular is extremely
mild, e.g. if ℓ(·) is the square loss (i.e.Y=Rdn and ℓ(ŷ,y)= 1

2
∥ŷ−y∥22), the slightest change in a single label (yi)

corresponding to a non-zero prediction (hθ(xi) ̸=0) can ensure the inequality.
22The bound remains applicable since Dθ′ is closed under positive rescaling of weight matrices.
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input-output mapping hθ(·) (and thus the training loss value f(θ)) remaining unchanged. Nevertheless,
similarly to the case of linear activation (Subsubsection 4.1.1), we may employ the fact that gradient
flow over fully connected neural networks (with homogeneous activations) initialized near zero
maintains balance between weight matrices — cf. [18] — to show that along its trajectories, the lower
bound in Equation (26) assumes a tighter form. This is done in Proposition 6 below.

Proposition 6. If θ ∈Dθ′ resides on a trajectory of gradient flow (over f(·))23 initialized at some
point θs∈Rd, with ∥θs∥2≤ϵ for some ϵ>0, then, using the notations of Lemma 4:

λmin(∇2f(θ))≥−max{|α|,|ᾱ|}n−1 n−1

|S|

|S|∑
i=1

∥∇ℓi∥2∥xi∥2
(

min
j∈{1,2,...,n}

∥Wj∥Frobenius+ϵ
)n−2

. (27)

Proof sketch (for complete proof see Subappendix J.15). By the analysis of [18], for any
j, j′ ∈ {1,2, ... ,n}, the quantity ∥Wj′∥2Frobenius− ∥Wj∥2Frobenius is invariant (constant) along a
gradient flow trajectory. This implies that along a trajectory emanating from a point with (Euclidean)
norm O(ϵ), it holds that ∥Wj′∥2Frobenius−∥Wj∥2Frobenius ∈O(ϵ2) for all j,j′ ∈{1,2,...,n}, which
in turn implies ∥Wj′∥Frobenius ≤ minj∈{1,2,...,n} ∥Wj∥Frobenius +O(ϵ) for all j′ ∈ {1,2, ... ,n}.
Plugging this into Equation (26) yields the desired result (Equation (27)).

Assume the network is deep (n≥3), and consider a trajectory of gradient flow (over f(·)) emanating
from near-zero initialization. For every point on the trajectory, Proposition 6 may be applied with
small ϵ, leading the lower bound in Equation (27) to depend primarily on the minimal size (Frobenius
norm) of a weight matrix Wj , and on ∇ℓ1,∇ℓ2,...,∇ℓ|S| — gradients of the loss function with respect
to the predictions over the training set. In the course of optimization, W1,W2,...,Wn are initially small,
and if a perfect fit of the training set is ultimately achieved, ∇ℓ1,∇ℓ2,...,∇ℓ|S| will converge to zero.
Therefore, if not all weight matricesW1,W2,...,Wn become large during optimization, the lower bound
onλmin(∇2f(θ)) in Equation (27) will only be moderately negative before approaching non-negativity
(if and) as the trajectory converges to a perfect fit. In light of Section 3, this suggests that the gradient flow
trajectory may lend itself to approximation by gradient descent. For a case with linear activation (Sub-
subsection 4.1.1) such prospect is theoretically verified in Section 5. For non-linear activation we pro-
vide empirical corroboration in Section 6, deferring to future work a complete theoretical affirmation.

D Analysis for Convolutional Architectures

In this appendix we provide our analysis for convolutional architectures, outlined in Subsection 4.2.

Suppose we modify the fully connected neural network defined in Equation (8) (and surrounding
text) by converting each learned weight matrix Wj ∈ Rdj ,dj−1 , j = 1, 2, ... , n, into a function
Wj :Rd′

j →Rdj ,dj−1 , with d′j ∈N, that intakes a learned weight vector wj ∈Rd′
j , and returns a matrix

where each element is either fixed at zero or connected to a predetermined coordinate of wj , with no
repetition of coordinates within the same row (that is, each row of Wj(·) realizes a function of the form
wj 7→Pwj , where P∈Rdj−1,d

′
j is a matrix in which no row or column includes more than a single

non-zero element, and all non-zero elements are equal to one). This allows imposing various weight
sharing and sparsity patterns on the layers of the model, in particular ones giving rise to convolutional
neural networks. The resulting input-output mapping has the form:

hθ :Rd0→Rdn , hθ(x)=Wn(wn)σ
(
Wn-1(wn-1)σ

(
Wn-2(wn-2)···σ

(
W1(w1)x

))
···
)

, (28)

where θ ∈ Rd, with d :=
∑n

j=1 d
′
j , is the concatenation of the weight vectors w1,w2, ... ,wn,24

and as before, σ : R→R is a predetermined activation function (operating element-wise when

23Recall that in the current context, the optimized objective function f(·) is locally Lipschitz but (typically)
non-differentiable. Following a conventional formalization in such settings (cf. [15, 18]), we regard a curve in Rd

as a trajectory of gradient flow if it satisfies the differential inclusion d
dt
θ(t)∈−∂f(θ(t)) for almost every time t,

where ∂f(θ(t))⊆Rd stands for the Clarke subdifferential (see [13]) of f(·) at θ(t).
24The exact order by which w1,w2,...,wn are concatenated is insignificant for our purposes — all that matters

is that the same order be used throughout.
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applied to a vector) that is (positively) homogeneous, meaning there exist α, ᾱ ∈ R such that
σ(z)=αmax{z,0}−ᾱmax{−z,0} for all z∈R.25

Let f :Rd→R be the training loss defined by applying Equation (9) (and surrounding text) to the above
neural network (i.e. with hθ(·) given by Equation (28)). In line with our analysis of fully connected
architectures (Subsection 4.1), we will show that although the minimal eigenvalue of ∇2f(θ) (Hessian
of training loss) — denoted λmin(∇2f(θ)) — can in general be arbitrarily negative, along trajectories
of gradient flow (which emanate from near-zero initialization) it is no less than moderately negative,
approaching non-negativity towards convergence. In light of Section 3, this suggests that over deep
convolutional neural networks, gradient flow may lend itself to approximation by gradient descent — a
prospect we empirically corroborate in Subappendix I.1.

Proposition 10 in Appendix E establishes that for almost every θ′∈Rd there exist diagonal matrices
D′

i,j∈Rdj ,dj , i = 1,2, ... , |S|, j = 1,2, ... ,n− 1, with diagonal elements in {α,ᾱ}, such that f(·)
coincides with the function

θ 7→ 1

|S|
∑|S|

i=1
ℓ
(
Wn(wn)D

′
i,n-1Wn-1(wn-1)D

′
i,n-2Wn-2(wn-2)···D′

i,1W1(w1)xi,yi
)

(29)

on an open region Dθ′ ⊆Rd containing θ′, that is closed under positive rescaling of weight vectors
(i.e. under (w1,w2,...,wn) 7→ (c1w1,c2w2,...,cnwn) with c1,c2,...,cn > 0). Analogously to the
case of fully connected architectures with non-linear activation (cf. Appendix C), we will focus
on (open) regions of the form Dθ′ , where f(·) is given by Equation (29), and in particular is twice
continuously differentiable. On such regions the analysis of Section 3 applies, and since they constitute
the entire weight space but a negligible (closed and zero measure) set, they can facilitate a “piecewise
characterization” of the discrepancy between gradient flow and gradient descent.26

Lemma 6 below expresses ∇2f(θ) for θ∈Dθ′ .

Lemma 6. Let θ ∈Dθ′ . For any i∈{1,2,...,|S|} and j,j′∈{1,2,...,n} define (D′
i,∗W∗(w∗))j′:j to

be the matrix D′
i,j′Wj′(wj′)D

′
i,j′-1Wj′-1(wj′-1)···D′

i,jWj(wj) (where by convention D′
i,n∈Rdn,dn

stands for identity) if j ≤ j′, and an identity matrix (with size to be inferred by context) otherwise.
For i∈{1,2,...,|S|} let ∇ℓi ∈Rdn and ∇2ℓi ∈Rdn,dn be the gradient and Hessian (respectively) of
the loss ℓ(·) at the point

(
(D′

i,∗W∗(w∗))n:1xi,yi
)

with respect to its first argument. Then, regarding
Hessians as quadratic forms (see examples in Lemma 1), it holds that:

∇2f(θ)[∆w1,∆w2,...,∆wn]= (30)

1

|S|

|S|∑
i=1

∇2ℓi

[
n∑

j=1

(
D′

i,∗W∗(w∗)
)
n:j+1D

′
i,jWj(∆wj)

(
D′

i,∗W∗(w∗)
)
j-1:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓ⊤i
∑

1≤j<j′≤n

(
D′

i,∗W∗(w∗)
)
n:j′+1D

′
i,j′Wj′(∆wj′)

(
D′

i,∗W∗(w∗)
)
j′-1:j+1 ·

D′
i,jWj(∆wj)

(
D′

i,∗W∗(w∗)
)
j-1:1xi .

Proof sketch (for complete proof see Subappendix J.16). The proof is similar to those of Lemmas 1
and 4. Namely, it expands the function in Equation (29) and then extracts second order terms.

The following proposition employs Lemma 6 to show that (under mild conditions) there exists θ∈Rd

for which λmin(∇2f(θ)) is arbitrarily negative.

Proposition 7. Assume that: (i) the network is deep (n≥3); and (ii) the network, loss function ℓ(·)
and training set S are non-degenerate, in the sense that there exists a weight setting θ∈Rd for which∑|S|

i=1∇ℓ(0,yi)
⊤hθ(xi) ̸=0, where ∇ℓ(·) stands for the gradient of ℓ(·) with respect to its first

25Similarly to our analysis of fully connected architectures (Subsection 4.1), that of convolutional architectures
(current appendix) readily extends to the case of different (homogeneous) activation functions at different hidden
layers.

26Such “piecewise characterization” is holistic when the activation function σ(·) is linear, i.e. σ(z)=z (or
more generally, α=ᾱ). Indeed, in this case f(·) is twice continuously differentiable throughout, and we may take
Dθ′=Rd.
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argument, and hθ(·) is the input-output mapping realized by the network (Equation (28)).27 Then,
it holds that infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))=−∞.

Proof sketch (for complete proof see Subappendix J.17). The proof is analogous to that of Proposi-
tion 5. Specifically, it establishes that there exists θ∈Dθ′ for which

∑|S|
i=1∇ℓ(0,yi)

⊤hθ(xi)<0, and
then makes use of Lemma 6 to show that fixing ∆w1,∆w2,...,∆wn to certain values, and positively
rescaling w1,w2,...,wn in a certain way, leads ∇2f(θ)[∆w1,∆w2,...,∆wn] to become arbitrarily
negative.

Relying on Lemma 6, Lemma 7 below provides a lower bound on λmin(∇2f(θ)) for θ∈Dθ′ .
Lemma 7. With the notations of Lemma 6, for any θ∈Dθ′ :13

λmin(∇2f(θ))≥−max{|α|,|ᾱ|}n−1n−1

|S|

|S|∑
i=1

∥∇ℓi∥2∥xi∥2 · (31)

n∏
j=1

∥Wj(·)∥op max
J⊆{1,2,...,n}

|J |=n−2

∏
j∈J

∥wj∥2 ,

where ∥Wj(·)∥op, j=1,2,...,n, denotes the operator norm of Wj(·) induced by the Frobenius norm.28

Proof sketch (for complete proof see Subappendix J.18). The proof mirrors those of Lemmas 2
and 5 — it establishes that the right-hand side of Equation (30) in Lemma 6 is lower bounded by
c
∑n

j=1∥∆wj∥22, with c being the expression on the right-hand side of Equation (31).

The lower bound in Equation (31) is highly sensitive to the scales of the individual weight vectors.
Specifically, assuming the network is deep (n ≥ 3) and is non-degenerate, in the sense that all of
its layers can realize non-zero mappings (that is, the activation function σ(·) is not identically zero,
i.e. α and ᾱ are not both equal to zero, and for all j ∈ {1,2,...,n}, Wj(·) is not the zero mapping,
i.e. ∥Wj(·)∥op > 0), if θ does not perfectly fit all non-zero training inputs (meaning there exists
i∈{1,2,...,|S|} for which ∇ℓi ̸=0 and xi ̸=0), and if at least n−2 of its weight vectors w1,w2,...,wn

are non-zero, then it is possible to rescale each wj by cj > 0, with
∏n

j=1cj=1, such that the lower
bound in Equation (31) becomes arbitrarily negative29 despite the input-output mapping hθ(·) (and
thus the training loss value f(θ)) remaining unchanged. Nevertheless, as with fully connected
architectures (see Subsection 4.1), gradient flow over convolutional architectures (i.e. over neural
networks as defined in Equation (28) and surrounding text) initialized near zero maintains balance
between weight vectors — cf. [18] — and so along its trajectories the lower bound in Equation (31)
assumes a tighter form. This is formalized in Proposition 8 below.
Proposition 8. If θ ∈Dθ′ resides on a trajectory of gradient flow (over f(·))23 initialized at some
point θs∈Rd, with ∥θs∥2≤ϵ for some ϵ>0, then, using the notations of Lemmas 6 and 7:

λmin(∇2f(θ))≥−max{|α|,|ᾱ|}n−1n−1

|S|

|S|∑
i=1

∥∇ℓi∥2∥xi∥2 · (32)

n∏
j=1

∥Wj(·)∥op
(

min
j∈{1,2,...,n}

∥wj∥2+ϵ
)n−2

.

Proof sketch (for complete proof see Subappendix J.19). By the analysis of [18], for any
j, j′ ∈ {1, 2, ... , n}, the quantity ∥wj′∥22 − ∥wj∥22 is invariant (constant) along a gradient
flow trajectory. This implies that along a trajectory emanating from a point with (Euclidean)
norm O(ϵ), it holds that ∥wj′∥22−∥wj∥22 ∈ O(ϵ2) for all j,j′ ∈ {1,2,...,n}, which in turn implies

27Assumptions (i) and (ii) are both necessary, in the sense that removing any of them (without imposing further
assumptions) renders the proposition false — see Claim 3 in Appendix F. Assumption (ii) in particular is extremely
mild, e.g. if ℓ(·) is the square loss (i.e.Y=Rdn and ℓ(ŷ,y)= 1

2
∥ŷ−y∥22), the slightest change in a single label (yi)

corresponding to a non-zero prediction (hθ(xi) ̸=0) can ensure the inequality.
28From the structure of Wj(·) (see beginning of this appendix) it follows that ∥Wj(·)∥op is equal to square root

of the maximal number of elements in Wj(wj) connected to the same coordinate of wj .
29The bound remains applicable since Dθ′ is closed under positive rescaling of weight vectors.
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∥wj′∥2 ≤ minj∈{1,2,...,n}∥wj∥2 +O(ϵ) for all j′ ∈ {1,2, ... ,n}. Plugging this into Equation (31)
yields the desired result (Equation (32)).

Assume the network is deep (n ≥ 3) and non-degenerate (α and ᾱ are not both equal to zero, and
∥Wj(·)∥op>0 for all j∈{1,2,...,n}), and consider a trajectory of gradient flow (over f(·)) emanating
from near-zero initialization. For every point on the trajectory, Proposition 8 may be applied with
small ϵ, leading the lower bound in Equation (32) to depend primarily on the minimal size (Euclidean
norm) of a weight vector wj , and on ∇ℓ1,∇ℓ2,...,∇ℓ|S| — gradients of the loss function with respect
to the predictions over the training set. In the course of optimization, w1,w2,...,wn are initially small,
and if a perfect fit of the training set is ultimately achieved, ∇ℓ1,∇ℓ2,...,∇ℓ|S| will converge to zero.
Therefore, if not all weight vectors w1,w2,...,wn become large during optimization, the lower bound
onλmin(∇2f(θ)) in Equation (32) will only be moderately negative before approaching non-negativity
(if and) as the trajectory converges to a perfect fit. In light of Section 3, this suggests that the gradient
flow trajectory may lend itself to approximation by gradient descent. For a case of fully connected
neural networks with linear activation (analyzed in Subsubsection 4.1.1), such prospect is theoretically
verified in Section 5. For convolutional architectures (subject of the current appendix) we provide
empirical corroboration in Subappendix I.1, deferring to future work a complete theoretical affirmation.

E Regions of Differentiability

In this appendix we prove that for fully connected and convolutional architectures with non-linear
activation, there exist regions of differentiability Dθ′ as described in Appendixes C and D respectively.

Proposition 9 (regions of differentiability for fully connected architectures). Consider a fully
connected neural network as defined in Equation (8) (and surrounding text), and assume that its
(homogeneous) activation function is non-linear, i.e. σ(z) =αmax{z,0}− ᾱmax{−z,0} for some
α,ᾱ ∈ R, α ̸= ᾱ. Then, for almost every (in the sense of Lebesgue measure) θ′ ∈ Rd, there exist
diagonal matrices D′

i,j ∈Rdj ,dj , i=1,2,...,|S|, j=1,2,...,n−1, with diagonal elements in {α,ᾱ},
such that the training loss f(·) (Equation (9)) coincides with the function defined in Equation (24)
on an open region Dθ′ ⊆Rd containing θ′, that is closed under positive rescaling of weight matrices
(i.e. under (W1,W2,...,Wn) 7→(c1W1,c2W2,...,cnWn) with c1,c2,...,cn>0).

Proof. If for θ′ ∈Rd there exist diagonal matrices (D′
i,j)i,j and an open region Dθ′ as above, then

we refer to θ′ as an admissible weight setting, to (D′
i,j)i,j as its activation matrices, and to Dθ′ as

its differentiability region.30

Without loss of generality, we may assume |S|=1, i.e. that the training set comprises a single labeled
input (x,y) ∈ Rd0 ×Y , meaning the training loss takes the form f(θ) = ℓ(hθ(x),y). To see this,
assume the sought-after result holds for a single labeled input, and suppose |S|>1. We may then apply
the result separately for each labeled input (xi,yi), i=1,2,...,|S|, and obtain, for every admissible
θ′ ∈Rd, activation matrices (D′(xi,yi)

j )n−1
j=1 and a differentiability region D(xi,yi)

θ′ . Since the weight
settings not admissible for a certain labeled input (xi,yi) form a set of zero (Lebesgue) measure, those
not admissible for any of the |S| labeled inputs also constitute a zero measure set. That is, almost
every θ′∈Rd is jointly admissible for all

(
(xi,yi)

)|S|
i=1

. Given such θ′, consider the activation matrices
and differentiability regions obtained for the different labeled inputs — (D

′(xi,yi)

j )n−1
j=1 and D(xi,yi)

θ′ ,
i=1,2,...,|S|. Defining D′

i,j :=D
′(xi,yi)

j , i=1,2,...,|S|, j =1,2,...,n−1, and Dθ′ :=∩|S|
i=1D

(xi,yi)

θ′ ,
we have that θ′ is admissible for S , with activation matrices (D′

i,j)i,j and differentiability region Dθ′ .
The sought-after result thus holds for S.

In light of the above, we assume hereafter that S =
(
(x, y)

)
. Recursively define the functions

f (j) :Rd→Rdj , j=0,1,...,n−1:

f (0)(θ)≡x , f (j)(θ)=σ
(
Wjf

(j−1)(θ)
)

for j=1,2,...,n−1 .

30Note that given an admissible weight setting, activation matrices and differentiability region are not necessarily
determined uniquely.
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We will prove by induction that given j′∈{0,1,...,n−1}, for almost every θ′∈Rd, there exist diagonal
matrices D′

j ∈Rdj ,dj , j = 1,2,...,j′, with diagonal elements in {α,ᾱ}, such that f (j
′)(·) meets the

following conditions on an open region Dθ′ ⊆Rd containing θ′, that is closed under positive rescaling
of weight matrices:

(i) f (j
′)(·) coincides with the function θ 7→D′

j′Wj′D
′
j′−1Wj′−1···D′

1W1x; and

(ii) each entry of f (j
′)(·) is either nowhere zero or identically zero.

Continuing the terminology defined earlier, in the context of f (j
′)(·), j′ =0,1,...,n−1, we refer to

θ′, (D′
j)j and Dθ′ satisfying the above as admissible, activation matrices and differentiability region,

respectively. Note that the training loss f(·) can be expressed as f(θ)=ℓ(Wnf
(n−1)(θ),y), and

therefore proving the inductive hypothesis for j′=n−1 yields the desired result. The base case for
the induction (j′=0) is trivial, so all that remains is to establish the induction step.

Given j′ ∈{1,2,...,n−1}, assume that the inductive hypothesis holds for j′−1, and in the context
of f (j

′−1)(·), let θ′ be an admissible weight setting, with corresponding activation matrices (D′
j)

j′−1
j=1

and differentiability region Dθ′ . We refer to θ′ as nullifying if f (j
′−1)(θ′) = 0, which implies

f (j
′−1)(θ)=0 for allθ∈Dθ′ . In this caseθ′ is clearly admissible in the context of f (j

′)(·) (as activation
matrices we may take (D′

j)
j′−1
j=1 along with any diagonal matrixD′

j′ ∈Rdj′ ,dj′ whose diagonal elements
are in {α,ᾱ}, and as differentiability region we can simply use Dθ′). Consider now the case where θ′

is non-nullifying, i.e. where f (j
′−1)(θ′) ̸=0. We refer to θ′ as regular if all entries of W ′

j′f
(j′−1)(θ′)

are non-zero, with W ′
j′∈Rdj′ ,dj′−1 denoting the value of weight matrix j′ held in θ′. If θ′ is regular

then it is admissible in the context of f (j
′)(·). To see this, note that a valid choice of activation matrices

is (D′
j)

j′−1
j=1 along with the diagonal matrix D′

j′ ∈Rdj′ ,dj′ whose diagonal elements corresponding to
positive entries of W ′

j′f
(j′−1)(θ′) hold α, and those corresponding to negative entries hold ᾱ. From

continuity, and homogeneity with slopes α and ᾱ of the activation function σ(·), there exists an open
neighborhood of θ′ (subset of Dθ′ ) on which conditions (i) and (ii) hold. Extending this neighborhood
to include, for each of its weight settings θ, all positive rescalings of weight matrices W1,W2,...,Wn,
yields a valid differentiability region for θ′ in the context of f (j

′)(·), thereby confirming admissibility.

We conclude the proof by showing that almost every θ′∈Rd is admissible in the context of f (j
′)(·).

Per the above, if θ′ ∈ Rd does not meet this condition then it must either be inadmissible in the
context of f (j

′−1)(·), or be non-nullifying and irregular. By our inductive hypothesis, weight settings
inadmissible in the context of f (j

′−1)(·) form a set of measure zero, so it suffices to show that the
collection of non-nullifying and irregular weight settings, denoted C, is also of measure zero. Note that
whether a weight setting θ is nullifying (i.e. f (j

′−1)(θ)=0) or not depends only on the weight matrices
W1,W2,...,Wj′−1, and given these matrices, whether it is regular (i.e. all entries of W ′

j′f
(j′−1)(θ′) are

non-zero) or not depends only onWj′ . We may thus apply Fubini’s Theorem (cf. [48]), and compute the
measure ofC by integrating over non-nullifying configurations ofW1,W2,...,Wj′−1, where for each, the
measure of values forWj′ ,Wj′+1,...,Wn leading to irregularity is integrated. The latter measure is zero,
since for any 0 ̸=q∈Rdj′−1 , the set

{
W ∈Rdj′ ,dj′−1 : there exists a coordinate of Wq equal to zero

}
has measure zero, thus its Cartesian product with Rdj′+1,dj′ ×Rdj′+2,dj′+1×···×Rdn,dn−1 is also of
measure zero. This implies that C has measure zero, thereby completing the proof.

Proposition 10 (regions of differentiability for convolutional architectures). Consider a neural net-
work with weight sharing and sparsity as defined in Equation (28) (and surrounding text), and assume
that its (homogeneous) activation function is non-linear, i.e. σ(z)=αmax{z,0}−ᾱmax{−z,0} for
some α,ᾱ∈R, α ̸= ᾱ. Then, for almost every (in the sense of Lebesgue measure) θ′∈Rd, there exist
diagonal matrices D′

i,j ∈Rdj ,dj , i=1,2,...,|S|, j=1,2,...,n−1, with diagonal elements in {α,ᾱ},
such that the training loss f(·) (Equation (9)) coincides with the function defined in Equation (29)
on an open region Dθ′ ⊆Rd containing θ′, that is closed under positive rescaling of weight vectors
(i.e. under (w1,w2,...,wn) 7→(c1w1,c2w2,...,cnwn) with c1,c2,...,cn>0).

Proof. The proof begins similarly to that of Proposition 9, and then takes a slightly different (more
involved) route. We provide a self-contained presentation, repeating details from the proof of
Proposition 9 as needed.
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If for θ′∈Rd there exist diagonal matrices (D′
i,j)i,j and an open regionDθ′ as in proposition statement,

then we refer to θ′ as an admissible weight setting, to (D′
i,j)i,j as its activation matrices, and to Dθ′

as its differentiability region.30

Without loss of generality, we may assume |S|=1, i.e. that the training set comprises a single labeled
input (x,y) ∈ Rd0 ×Y , meaning the training loss takes the form f(θ) = ℓ(hθ(x),y). To see this,
assume the sought-after result holds for a single labeled input, and suppose |S|>1. We may then apply
the result separately for each labeled input (xi,yi), i=1,2,...,|S|, and obtain, for every admissible
θ′ ∈Rd, activation matrices (D′(xi,yi)

j )n−1
j=1 and a differentiability region D(xi,yi)

θ′ . Since the weight
settings not admissible for a certain labeled input (xi,yi) form a set of zero (Lebesgue) measure, those
not admissible for any of the |S| labeled inputs also constitute a zero measure set. That is, almost
every θ′∈Rd is jointly admissible for all

(
(xi,yi)

)|S|
i=1

. Given such θ′, consider the activation matrices
and differentiability regions obtained for the different labeled inputs — (D

′(xi,yi)

j )n−1
j=1 and D(xi,yi)

θ′ ,
i=1,2,...,|S|. Defining D′

i,j :=D
′(xi,yi)

j , i=1,2,...,|S|, j =1,2,...,n−1, and Dθ′ :=∩|S|
i=1D

(xi,yi)

θ′ ,
we have that θ′ is admissible for S , with activation matrices (D′

i,j)i,j and differentiability region Dθ′ .
The sought-after result thus holds for S.

In light of the above, we assume hereafter that S =
(
(x, y)

)
. Recursively define the functions

f (j) :Rd→Rdj , j=0,1,...,n−1:

f (0)(θ)≡x , f (j)(θ)=σ
(
Wj(wj)f

(j−1)(θ)
)

for j=1,2,...,n−1 .

We will prove by induction that given j′∈{0,1,...,n−1}, for almost every θ′∈Rd, there exist diagonal
matrices D′

j ∈Rdj ,dj , j = 1,2,...,j′, with diagonal elements in {α,ᾱ}, such that f (j
′)(·) meets the

following conditions on an open region Dθ′ ⊆Rd containing θ′, that is closed under positive rescaling
of weight vectors:

(i) f (j
′)(·) coincides with the function θ 7→D′

j′Wj′(wj′)D
′
j′-1Wj′-1(wj′-1) · · ·D′

1W1(w1)x;
and

(ii) each entry of f (j
′)(·) is either nowhere zero or identically zero.

Continuing the terminology defined earlier, in the context of f (j
′)(·), j′=0,1,...,n−1, we refer to θ′

, (D′
j)j and Dθ′ satisfying the above as admissible, activation matrices and differentiability region,

respectively. Note that the training loss f(·) can be expressed as f(θ)=ℓ(Wn(wn)f
(n−1)(θ),y), and

therefore proving the inductive hypothesis for j′=n−1 yields the desired result. The base case for
the induction (j′=0) is trivial, so all that remains is to establish the induction step.

Given j′ ∈{1,2,...,n−1}, assume that the inductive hypothesis holds for j′−1, and in the context
of f (j

′−1)(·), let θ′ be an admissible weight setting, with corresponding activation matrices (D′
j)

j′−1
j=1

and differentiability region Dθ′ . We define the nullity pattern of θ′ to be the vector e ∈ Rdj′−1

holding zero in the coordinates where f (j
′−1)(θ′) holds zero, and one elsewhere (that is, e is the vector

obtained by setting to one all non-zero entries of f (j
′−1)(θ′)). With 1∈Rd′

j′ standing for an all-ones
vector, we refer to the coordinates of Rdj′ where Wj′(1)e holds zero as infeasible, and to the rest
as feasible. Note that a coordinate of Rdj′ is infeasible if and only if Wj′(q)f

(j′−1)(θ′) holds zero
in that coordinate for all q∈Rd′

j′ . We shall say that θ′ is regular if Wj′(w
′
j′)f

(j′−1)(θ′) is non-zero
in all feasible coordinates, where w′

j′∈R
d′
j′ denotes the value of weight vector j′ in θ′. Hereafter

we show that regularity of θ′ implies that it is admissible in the context of f (j
′)(·). By admissibility

in the context of f (j
′−1)(·) we have that across Dθ′ , each entry of f (j

′−1)(·) is either nowhere zero
or identically zero. This implies the nullity pattern is constant across Dθ′ , which in turn means the
same for the set of infeasible coordinates. The coordinates where Wj′(w

′
j′)f

(j′−1)(θ′) holds zero
thus vanish in Wj′(wj′)f

(j′−1)(θ) for all θ ∈ Dθ′ . From continuity, and the fact that around any
z ̸= 0, the activation function σ(·) is either nowhere zero or identically zero,31 it follows that there
exists an open neighborhood N ⊆Dθ′ of θ′ on which condition (ii) holds. Let D′

j′ ∈Rdj′ ,dj′ be a
diagonal matrix whose diagonal elements corresponding to positive entries in Wj′(w

′
j′)f

(j′−1)(θ′)

31The latter is possible only if α=0 or ᾱ=0.
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hold α, those corresponding to negative entries hold ᾱ, and the rest hold either α or ᾱ. Since f (j
′−1)(·)

coincides with the function θ 7→D′
j′-1Wj′-1(wj′-1)D

′
j′-2Wj′-2(wj′-2) · · ·D′

1W1(w1)x on Dθ′ , and
since σ(·) is homogeneous with slopes α and ᾱ, condition (i) holds across N . Consider the extension
of N comprising, for each of its weight settings, all positive rescalings of weight vectors. Along with
(D′

j)
j′

j=1 as activation matrices, this extension serves as a valid differentiability region for θ′ in the
context of f (j

′)(·). The sought-after admissibility is thus established.

We conclude the proof by showing that almost every θ′∈Rd is admissible in the context of f (j
′)(·).

Per the above, if θ′ ∈ Rd does not meet this condition then either it is inadmissible in the context
of f (j

′−1)(·), or it is irregular. By our inductive hypothesis, weight settings inadmissible in the context
of f (j

′−1)(·) form a set of measure zero, so it suffices to show that the collection of irregular weight
settings, denoted C, is also of measure zero. We first establish that C is measurable. Let e∈Rdj′−1 be an
arbitrary nullity pattern (vector with entries in {0,1}), and consider the feasible coordinates it induces.
The following two sets are measurable: weight settings with nullity pattern e; and weight settings θ
for which Wj′(wj′)f

(j′−1)(θ) holds zero in at least one of the feasible coordinates induced by e. The
collection of irregular weight settings with nullity pattern e, denoted Ce, is equal to the intersection of
these two sets, and therefore is measurable. Taking union of Ce with e ranging over all (finitely many)
possible nullity patterns yields C, from which it follows that the latter is indeed measurable. Given
weight vectors w1,w2,...,wj′−1, whether or not a weight setting θ is regular depends only on wj′ .
We may thus apply Fubini’s Theorem (cf. [48]), and compute the measure of C by integrating over
configurations ofw1,w2,...,wj′−1, where for each, the measure of values forwj′ ,wj′+1,...,wn leading
to irregularity is integrated. We now establish that the latter measure is zero, which in turn implies that C
has measure zero (thereby completing the proof). Since the Cartesian product of a zero measure subset
ofRd′

j′ withRd′
j′+1×Rd′

j′+2×···×Rd′
n has zero measure, it suffices to show that given any configuration

ofw1,w2,...,wj′−1, the measure of values forwj′ leading to irregularity is zero. w1,w2,...,wj′−1 fully
determine f (j

′−1)(θ), and as a consequence, the nullity pattern of θ. Consider the feasible coordinates
induced by this nullity pattern. On each of these, the linear function wj′ 7→Wj′(wj′)f

(j′−1)(θ) is not
identically zero. The measure of values for wj′ leading Wj′(wj′)f

(j′−1)(θ) to vanish in a feasible
coordinate, i.e. leading θ to be irregular, is thus zero. This completes the proof.

F Necessity of Assumptions in Propositions 1, 5 and 7

In this appendix we prove that the assumptions in Propositions 1, 5 and 7 are necessary, in the sense
that each of the latter becomes false if any of its assumptions are removed (and no further assumptions
are imposed).
Claim 1 (necessity of assumptions in Proposition 1). In the context of Proposition 1, if the network
is shallow (n=2) or the zero mapping is a global minimizer of the training loss (meaning ∇ϕ(0)=0),
then the stated result may not hold, i.e. it may be that infθ∈Rdλmin(∇2f(θ))>−∞.

Proof. Suppose the network is shallow (n = 2). With the notations of Lemma 1, for any θ ∈ Rd,
(∆W1,∆W2)∈Rd1,d0×Rd2,d1 :

∇2f(θ)[∆W1,∆W2]=∇2ϕ(W2:1)[W2(∆W1)+(∆W2)W1]+2Tr
(
∇ϕ(W2:1)

⊤(∆W2)(∆W1)
)

≥2Tr
(
∇ϕ(W2:1)

⊤(∆W2)(∆W1)
)

≥−2∥∇ϕ(W2:1)∥Frobenius∥(∆W2)(∆W1)∥Frobenius

≥−2∥∇ϕ(W2:1)∥Frobenius∥∆W2∥Frobenius∥∆W1∥Frobenius

≥−∥∇ϕ(W2:1)∥Frobenius

(
∥∆W2∥2Frobenius+∥∆W1∥2Frobenius

)
=−∥∇ϕ(W2:1)∥Frobenius∥(∆W1,∆W2)∥2Frobenius ,

where the first transition follows from Lemma 1, the second holds since ϕ(·) is convex, the third is
an application of the Cauchy-Schwarz inequality, the fourth follows from submultiplicativity of the
Frobenius norm, and the latter two are based on simple arithmetics. It follows from the above that
λmin(∇2f(θ))≥−∥∇ϕ(W2:1)∥Frobenius. Therefore if ∇ϕ(·) is bounded (e.g. if ℓ(·) is the logistic
loss — see Equation (11)) we will have infθ∈Rdλmin(∇2f(θ))>−∞, as required.

It remains to show that if the zero mapping is a global minimizer of the training loss (meaning
∇ϕ(0) = 0), then, regardless of network depth (i.e. with either n ≥ 3 or n = 2), it may be that
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infθ∈Rdλmin(∇2f(θ))>−∞. This is trivial — simply consider the case where the training set S
is such that xi=0 for all i=1,2,...,|S|. The training loss in this case is constant (see Equations (8)
and (9)), implying infθ∈Rdλmin(∇2f(θ))=0.

Claim 2 (necessity of assumptions in Proposition 5). In the context of Proposition 5, if as-
sumptions (i) or (ii) are not satisfied, then the stated result may not hold, i.e. it may be that
infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))>−∞.

Proof. Suppose that assumption (i) is not satisfied, i.e. that the network is shallow (n=2). With the
notations of Lemma 4, for any θ∈Dθ′ , (∆W1,∆W2)∈Rd1,d0×Rd2,d1 :

∇2f(θ)[∆W1,∆W2]=
1

|S|
∑|S|

i=1
∇2ℓi

[
W2D

′
i,1(∆W1)xi+(∆W2)D

′
i,1W1xi

]
+

2

|S|
∑|S|

i=1
∇ℓ⊤i (∆W2)D

′
i,1(∆W1)xi

≥ 2

|S|
∑|S|

i=1
∇ℓ⊤i (∆W2)D

′
i,1(∆W1)xi

≥− 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥(∆W2)D

′
i,1(∆W1)xi∥2

≥− 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥(∆W2)D

′
i,1(∆W1)∥spectral

≥− 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥∆W2∥spectral∥D′

i,1∥spectral∥∆W1∥spectral

≥−max
{
|α|,|ᾱ|

} 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥∆W2∥spectral∥∆W1∥spectral

≥−max
{
|α|,|ᾱ|

} 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥∆W2∥Frobenius∥∆W1∥Frobenius

≥−max
{
|α|,|ᾱ|

} 1

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2

(
∥∆W2∥2Frobenius+∥∆W1∥2Frobenius

)
=−max

{
|α|,|ᾱ|

} 1

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥(∆W1,∆W2)∥2Frobenius ,

where the first transition follows from Lemma 4, the second holds since ℓ(·) is convex with
respect to its first argument (recall from Lemma 4 that ∇2ℓi is defined to be the Hessian of ℓ(·)
at the point (W2D

′
i,1W1xi, yi) with respect to its first argument), the third is an application of

the Cauchy-Schwarz inequality, the fourth follows from the spectral norm being the operator
norm induced by the Euclidean norm, the fifth is due to submultiplicativity of the spectral norm,
the sixth results from D′

i,1 being diagonal with diagonal elements in {α, ᾱ}, the seventh holds
since spectral norm is upper bounded by Frobenius norm, and the latter two are based on simple
arithmetics. It follows from the above that λmin(∇2f(θ))≥−max{|α|,|ᾱ|} 1

|S|
∑|S|

i=1∥∇ℓi∥2∥xi∥2.
Consider the case where the gradient of ℓ(·) with respect to its first argument has Euclidean norm
bounded by some constant c > 0 (this holds, for example, if ℓ(·) is the logistic loss). Recalling
(from Lemma 4) that ∇ℓi stands for this gradient at the point (W2D

′
i,1W1xi, yi), we obtain

λmin(∇2f(θ))≥−cmax{|α|,|ᾱ|} 1
|S|
∑|S|

i=1∥xi∥2. The latter holds for any θ belonging to any region
of the form Dθ′ . Since these regions constitute the entire weight space but a zero measure set, and
since by definition existence of ∇2f(θ) for some θ ∈ Rd implies that f(·) is twice continuously
differentiable (and therefore λmin(∇2f(·)) is continuous) on a neighborhood of θ, it necessarily holds
that infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))≥−cmax{|α|,|ᾱ|} 1

|S|
∑|S|

i=1∥xi∥2>−∞. This establishes
necessity of assumption (i).

It remains to show that if assumption (ii) is not satisfied, i.e. if
∑|S|

i=1∇ℓ(0,yi)
⊤hθ(xi) = 0 for all

θ∈Rd, then, regardless of whether or not assumption (i) holds (i.e. of whether n≥3 or n=2), it may
be that infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))>−∞. This is trivial — simply consider the case where
the training set S is such that xi = 0 for all i=1,2,...,|S|. The training loss in this case is constant
(see Equations (8) and (9)), implying infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))=0.

Claim 3 (necessity of assumptions in Proposition 7). In the context of Proposition 7, if as-
sumptions (i) or (ii) are not satisfied, then the stated result may not hold, i.e. it may be that
infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))>−∞.
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Proof. Suppose that assumption (i) is not satisfied, i.e. that the network is shallow (n=2). With the
notations of Lemmas 6 and 7, for any θ∈Dθ′ , (∆w1,∆w2)∈Rd′

1×Rd′
2 :

∇2f(θ)[∆w1,∆w2]=
1

|S|
∑|S|

i=1
∇2ℓi

[
W2(w2)D

′
i,1W1(∆w1)xi+W2(∆w2)D

′
i,1W1(w1)xi

]
+

2

|S|
∑|S|

i=1
∇ℓ⊤i W2(∆w2)D

′
i,1W1(∆w1)xi

≥ 2

|S|
∑|S|

i=1
∇ℓ⊤i W2(∆w2)D

′
i,1W1(∆w1)xi

≥− 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥W2(∆w2)D

′
i,1W1(∆w1)xi∥2

≥− 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥W2(∆w2)D

′
i,1W1(∆w1)∥spectral

≥− 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥W2(∆w2)∥spectral∥D′

i,1∥spectral∥W1(∆w1)∥spectral

≥−max
{
|α|,|ᾱ|

} 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥W2(∆w2)∥spectral∥W1(∆w1)∥spectral

≥−max
{
|α|,|ᾱ|

} 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥W2(∆w2)∥Frobenius∥W1(∆w1)∥Frobenius

≥−max
{
|α|,|ᾱ|

} 2

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥W2(·)∥op∥∆w2∥2∥W1(·)∥op∥∆w1∥2

≥−max
{
|α|,|ᾱ|

} 1

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2∥W2(·)∥op∥W1(·)∥op

(
∥∆w2∥22+∥∆w1∥22

)
=−max

{
|α|,|ᾱ|

} 1

|S|
∑|S|

i=1
∥∇ℓi∥2∥xi∥2

∏2

j=1
∥Wj(·)∥op∥(∆w1,∆w2)∥2Frobenius ,

where the first transition follows from Lemma 6, the second holds since ℓ(·) is convex with respect
to its first argument (recall from Lemma 6 that ∇2ℓi is defined to be the Hessian of ℓ(·) at the point
(W2(w1)D

′
i,1W1(w1)xi, yi) with respect to its first argument), the third is an application of the

Cauchy-Schwarz inequality, the fourth follows from the spectral norm being the operator norm induced
by the Euclidean norm, the fifth is due to submultiplicativity of the spectral norm, the sixth results
from D′

i,1 being diagonal with diagonal elements in {α,ᾱ}, the seventh holds since spectral norm is
upper bounded by Frobenius norm, the eighth is due to the definition of ∥Wj(·)∥op (operator norm
ofWj(·) induced by the Frobenius norm), and the latter two are based on simple arithmetics. The above
implies that λmin(∇2f(θ))≥−max{|α|,|ᾱ|} 1

|S|
∑|S|

i=1∥∇ℓi∥2∥xi∥2
∏2

j=1∥Wj(·)∥op. Consider the
case where the gradient of ℓ(·) with respect to its first argument has Euclidean norm bounded by some
constant c > 0 (this holds, for example, if ℓ(·) is the logistic loss). Recalling (from Lemma 6) that
∇ℓi stands for this gradient at the point (W2(w2)D

′
i,1W1(w1)xi,yi), we obtain λmin(∇2f(θ))≥

−cmax{|α|,|ᾱ|} 1
|S|
∑|S|

i=1∥xi∥2
∏2

j=1∥Wj(·)∥op. The latter holds for any θ belonging to any region
of the form Dθ′ . Since these regions constitute the entire weight space but a zero measure set, and since
by definition existence of∇2f(θ) for someθ∈Rd implies that f(·) is twice continuously differentiable
(and therefore λmin(∇2f(·)) is continuous) on a neighborhood of θ, it necessarily holds that:

infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))≥−cmax{|α|,|ᾱ|} 1

|S|

|S|∑
i=1

∥xi∥2
2∏

j=1

∥Wj(·)∥op>−∞ .

This establishes necessity of assumption (i).

It remains to show that if assumption (ii) is not satisfied, i.e. if
∑|S|

i=1∇ℓ(0,yi)
⊤hθ(xi) = 0 for all

θ∈Rd, then, regardless of whether or not assumption (i) holds (i.e. of whether n≥3 or n=2), it may
be that infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))>−∞. This is trivial — simply consider the case where
the training set S is such that xi=0 for all i=1,2,...,|S|. The training loss in this case is constant (see
Equations (28) and (9)), implying infθ∈Rd s.t.∇2f(θ) existsλmin(∇2f(θ))=0.

G Training Loss for Least-Squares Linear Regression on Whitened Data

In this appendix we derive a simplified expression for the training loss corresponding to scalar
linear regression on whitened data per least-squares criterion. Concretely, we simplify the function
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ϕ :Rdn,d0→R defined by Equation (11) in the special case where: dn=1; the empirical (uncentered)
covariance matrix of the training inputs — Λxx:=

1
|S|
∑|S|

i=1xix
⊤
i ∈Rd0,d0 — is equal to identity; and

the loss function ℓ :Rdn×Y→R is the square loss, i.e. Y=R and ℓ(ŷ,y)= 1
2 (ŷ−y)2.

Let X ∈Rd0,|S| and Y ∈R1,|S| be the matrices whose i’th columns hold, respectively, the training
input xi and its label yi, i=1,2,...,|S|. Denote by Λyx the empirical (uncentered) cross-covariance
matrix between training labels and inputs, i.e. Λyx:=

1
|S|Y X⊤∈R1,d0 . In the special case under

consideration, for any W ∈R1,d0 :

ϕ(W ) = 1
2|S|

∑|S|

i=1
(Wxi−yi)

2

= 1
2|S|∥WX−Y ∥2Frobenius

= 1
2|S|Tr

(
(WX−Y )(WX−Y )⊤

)
= 1

2|S|Tr
(
WXX⊤W⊤)− 1

|S|Tr
(
Y X⊤W⊤)+ 1

2|S|Tr
(
Y Y ⊤)

= 1
2Tr
(
WΛxxW

⊤)−Tr
(
ΛyxW

⊤)+ 1
2|S|Tr

(
Y Y ⊤) .

Since Λxx is equal to identity, we have:

ϕ(W ) = 1
2Tr
(
WW⊤)−Tr

(
ΛyxW

⊤)+ 1
2|S|Tr

(
Y Y ⊤)

= 1
2Tr
(
(W−Λyx)(W−Λyx)

⊤)− 1
2Tr
(
ΛyxΛ

⊤
yx

)
+ 1

2|S|Tr
(
Y Y ⊤)

= 1
2∥W−Λyx∥2Frobenius− 1

2Tr
(
ΛyxΛ

⊤
yx

)
+ 1

2|S|Tr
(
Y Y ⊤) .

c :=− 1
2Tr(ΛyxΛ

⊤
yx)+

1
2|S|Tr(Y Y ⊤) does not depend on W , so we arrive at the simplified form:

ϕ(W )= 1
2∥W−Λyx∥2Frobenius+c .

H Convergence with Unbalanced Initialization

In Section 5 we translated an analysis of gradient flow over deep linear neural networks — Proposition 3
— into a convergence guarantee for gradient descent — Theorem 4. In order to leverage known results
concerning gradient flow over deep linear neural networks, Proposition 3 assumed that initialization
is balanced (i.e. meets Equation (15)), which in turn led Theorem 4 to assume the same. We noted
(Remark 1), however, that the generic tool used for the translation — Theorem 3 — allows for gradient
flow and gradient descent to be initialized differently, thus it is possible to extend Theorem 4 so
that it accounts for unbalanced initialization (i.e. for initialization which satisfies Equation (15) only
approximately). The current appendix presents such an extension.

Consider the setting of Section 5 — depth n fully connected neural network as defined in Equation (8)
(and surrounding text), with linear activation (σ(z) = z) and output dimension dn = 1, learned via
minimization of square loss over whitened and normalized data, i.e. via minimization of the training
loss f(·) presented in Equation (16) (and surrounding text). For simplicity, we assume that the
network’s hidden widths are all equal to its input dimension, i.e. d0 = d1 = ···= dn−1.32 Deviation
from balancedness (Equation (15)) will be quantified per the following definition.

Definition 1. The unbalancedness magnitude of a weight setting θ∈Rd is defined to be:

maxj∈{1,2,...,n−1}∥W⊤
j+1Wj+1−WjW

⊤
j ∥nuclear , (33)

where W1,W2,...,Wn denote the weight matrices constituting θ.

By Lemma 8 below, small unbalancedness magnitude implies proximity to perfect balancedness.

Lemma 8. For any weight setting θ ∈Rd with unbalancedness magnitude (Definition 1) equal to
ϵ̂≥ 0, there exists a weight setting θ̂ ∈Rd which is balanced (has unbalancedness magnitude zero)
and meets ∥θ−θ̂∥2≤n1.5

√
ϵ̂.

32Lemma 8 is the only part of the analysis henceforth which relies on this assumption — generalizing the
lemma to account for arbitrary hidden widths will accordingly generalize the entire analysis.
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Proof sketch (for complete proof see Subappendix J.20). By Lemma 1 in [46], an analogous result
holds in the case where all weight matrices are square (i.e. d0 = d1 = ···= dn). The proof is based
on a reduction to this case, attained by replacing Wn with

√
W⊤

n Wn.

Including Lemma 8 in the translation of Proposition 3 via Theorem 3 yields Theorem 5 below — an
extension of Theorem 4 that allows for unbalanced initialization.

Theorem 5. Consider minimization of the training loss f(·) in Equation (16) via gradient descent
(Equation (6)). Denote by θ0,θ1,θ2,... the iterates of gradient descent, and by Wn:1,0 the end-to-end
matrix (Equation (10)) of the initial point θ0. Assume that ∥Wn:1,0∥Frobenius∈(0,0.1] (initialization
is small but non-zero), and that Wn:1,0 is not antiparallel to Λyx, meaning:

ν :=Tr(Λ⊤
yxWn:1,0)

/(
∥Λyx∥Frobenius∥Wn:1,0∥Frobenius

)
̸=−1 .

Let ϵ̃>0. Then, if the unbalancedness magnitude (Definition 1) of θ0 is no greater than:

ϵ̂ :=
∥Wn:1,0∥8

Frobeniusmin{1,ϵ̃2}

n15e12n+6
(
max
{
3,

3−ν
1+ν

})9n−5

(
ln

(
23nmax

{
3,

3−ν
1+ν

}
∥Wn:1,0∥Frobeniusmin{1,ϵ̃}

))−2

∈ Ω̃

(
∥Wn:1,0∥8

Frobenius ϵ̃
2

n15
(
poly
(
3−ν
1+ν

))n ), (34)

and if the step size η meets:

η≤ ∥Wn:1,0∥5
Frobeniusmin{1,ϵ̃}

n17/2e7n+10
(
max
{
3,

3−ν
1+ν

})(11n−5)/2

(
ln

(
23nmax

{
3,

3−ν
1+ν

}
∥Wn:1,0∥Frobeniusmin{1,ϵ̃}

))−2

∈ Ω̃

(
∥Wn:1,0∥5

Frobenius ϵ̃

n17/2
(
poly
(
3−ν
1+ν

))n), (35)

it holds that f(θk)−minq∈Rdf(q)≤ ϵ̃ for some k∈N satisfying:33

k≤
3n
(
3
2max

{
3,

3−ν
1+ν

})n
∥Wn:1,0∥Frobeniusη

ln

(
23nmax

{
3,

3−ν
1+ν

}
∥Wn:1,0∥Frobeniusmin{1,ϵ̃}

)
+1∈ Õ

(
n
(
poly
(
3−ν
1+ν

))n
ln
(
1
ϵ̃

)
∥Wn:1,0∥Frobeniusη

)
. (36)

Proof sketch (for complete proof see Subappendix J.21). The proof begins by invoking Lemma 8
for obtaining a weight setting θ̂0 which is balanced and meets ∥θ0 − θ̂0∥2 ≤ n1.5

√
ϵ̂. It is then

shown that as an initial point for gradient flow, θ̂0 satisfies the conditions of Proposition 3 (namely,
in addition to being balanced, its end-to-end matrix has Frobenius norm in (0, 0.2] and is not
antiparallel to Λyx). From this point on, the proof is similar to that of Theorem 4 — it confirms that
f(θk)−minq∈Rd f(q)≤ ϵ̃ by invoking Theorem 3 to establish that gradient descent approximates
gradient flow sufficiently well until gradient flow is sufficiently close to global minimum. Throughout
this process, the only deviation from the proof of Theorem 4 is that gradient descent and gradient flow
are initialized differently — the former starts at θ0, whereas the latter sets off from the nearby point θ̂0.
Such discrepancy between initializations is permitted by Theorem 3.

I Further Experiments and Implementation Details

I.1 Further Experiments

Figure 3 supplements Figure 1 from Section 6 by reporting results obtained on convolutional neural
networks.

I.2 Implementation Details

Below are implementation details omitted from our experimental reports (Section 6 and Subap-
pendix I.1). Source code for reproducing the results, based on the PyTorch framework ([44]), can
be found in https://github.com/elkabzo/cont_disc_opt_dnn.

33In addition to an upper bound (Equation (36)), the theorem’s proof (Subappendix J.21) also establishes an
exact expression for k (Equation (92)). This expression includes terms that depend on θ̂0 — balanced weight
setting near θ0 whose existence is guaranteed by Lemma 8. Means for computing θ̂0 based on θ0 are not provided
by the lemma’s statement, but are brought forth by its proof (Subappendix J.20) — a constructive reduction to
Lemma 1 in [46], which itself is proven constructively.
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Figure 3: Over deep convolutional neural networks, trajectories of gradient descent with conventional step size
barely change when step size is reduced, suggesting they are close to the continuous limit, i.e. to trajectories of
gradient flow. This figure is identical to Figure 1, except that the results it reports were obtained on convolutional
(rather than fully connected) neural networks. Specifically, left pair of plots reports results obtained on a network
taken from the online tutorial “Deep Learning with PyTorch: A 60 Minute Blitz” (it comprises two convolutional
layers followed by three linear layers, with rectified linear activation in each hidden layer, and max pooling in each
convolutional layer),34 while right pair corresponds to the same network slightly adapted (namely, with no biases
in convolutional and linear layers, and with max pooling replaced by regular subsampling, i.e. by summarizing
each pooling window through its top-left entry) so that it is captured by our theory (cf. Subsection 4.2). For further
details see caption of Figure 1, as well as Subappendix I.2.

As customary, MNIST images were normalized before being used — we computed mean and standard
deviation across all pixels in the dataset, and used those to shift and scale each pixel so as to ensure zero
mean and unit standard deviation. To reduce run-time, rather than applying gradient descent to the full
MNIST training set (60,000 labeled images), a subset of 1,000 labeled images (chosen once, uniformly
at random) was used (altering the size of this subset did not yield a noticeable change in terms of
final results). The Xavier distribution employed for initializing neural network weights was of type
“uniform” (implemented by calling PyTorch torch.nn.init.xavier_uniform_() method with
default parameters). Experiments ran on an internal Intel Xeon server with eight NVIDIA GeForce
RTX 2080 Ti graphical processing units.

J Deferred Proofs

J.1 Notations

We introduce notations to be used throughout the appendix. Beginning with matrix norms, we use
∥·∥F for Frobenius norm, ∥·∥n for nuclear norm and ∥·∥s for spectral norm. We extend the notation
established in Lemma 1 by regarding Hessians not only as matrices and quadratic forms, but also
as bilinear forms. Namely, for any θ ∈ Rd, we regard ∇2f(θ) not only as a (symmetric) matrix
in Rd,d and a quadratic form ∇2f(θ)[·] :Rd1,d0 ×Rd2,d1 ×···×Rdn,dn−1 →R, but also as a bilinear
form ∇2f(θ)[·,·] that intakes two tuples (∆W1,∆W2,...,∆Wn),(∆W ′

1,∆W ′
2,...,∆W ′

n)∈Rd1,d0×
Rd2,d1×···×Rdn,dn−1 as its first and second arguments (respectively), arranges them as (respective)
vectors ∆θ,∆θ′∈Rd (in correspondence with how weight matrices W1,W2,...,Wn are arranged to
create θ), and returns ∆θ⊤∇2f(θ)∆θ′∈R. Additionally, for any W ∈Rdn,d0 , we extend the view of
∇2ϕ(W ) as a quadratic form, and also see it as a bilinear form ∇2ϕ(W )[·,·] that intakes two matrices
inRdn,d0 and returns a scalar. We similarly extend the notation of Lemma 4, regarding the matrix∇2ℓi∈
Rdn,dn , for any i∈{1,2,...,|S|}, as a bilinear form (in addition to its view as a quadratic form)∇2ℓi[·,·] :
Rdn×Rdn →R defined by ∇2ℓi[v,u]=v⊤∇2ℓiu. Finally, for any j∈N we denote [j] :={1,2,...,j}.

J.2 Proof of Theorem 3

Let θ̄(·) be the continuous polygonal curve corresponding to the iterates of gradient descent:

θ̄ : [0,∞)→Rd , θ̄(0)=θ0 , d
dt θ̄(t)=−∇f(θk) for t∈(kη,(k+1)η) , k=0,1,2,... .

34For exact specification of network see https://pytorch.org/tutorials/beginner/blitz/neural_
networks_tutorial.html#sphx-glr-beginner-blitz-neural-networks-tutorial-py. Note that
zero padding (two pixels wide, on each side) was applied to MNIST images for compliance with specified
input size (32-by-32).
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If ∥θ̄(t)−θ(t)∥2 ≤ ϵ for all t∈ [0,t̃ ] then we are done. Assume by contradiction that this is not the
case, and define tϵ := inf{t∈ [0,t̃ ] :∥θ̄(t)−θ(t)∥2>ϵ}. It necessarily holds that ∥θ̄(0)−θ(0)∥2<ϵ
(otherwise the expression on the right-hand side of Equation (7) becomes negative as t↘ 0, in
contradiction to it being greater than η > 0 for all t∈ (0,t̃ ]). By continuity, this implies tϵ > 0 and
∥θ̄(tϵ)−θ(tϵ)∥2=ϵ. The trajectory of θ̄(·) between times 0 and tϵ, i.e. θ̄([0,tϵ]) :={θ̄(t) : t∈ [0,tϵ]},
is contained in Dt̃,ϵ. For any t∈ [0,tϵ], the line segment (in Rd) between θ̄(⌊t/η⌋η) and θ̄(t) is a subset
of θ̄([0,tϵ]), thus is contained in Dt̃,ϵ as well. We therefore have, for any t∈ [0,tϵ]:

∥ d
dt θ̄(t

+)−(−∇f(θ̄(t)))∥2 = ∥−∇f(θ̄(⌊t/η⌋η))−(−∇f(θ̄(t)))∥2
≤ βt̃,ϵ∥θ̄(t)−θ̄(⌊t/η⌋η)∥2
= βt̃,ϵ∥∇f(θ̄(⌊t/η⌋η))∥2(t−⌊t/η⌋η)
≤ βt̃,ϵγt̃,ϵη ,

where d
dt θ̄(t

+) represents the right derivative of θ̄(·) at time t. The Fundamental Theorem (Theorem 2)
may thus be applied with δ(t)=βt̃,ϵγt̃,ϵη for all t∈ [0,tϵ], yielding:

∥θ(tϵ)−θ̄(tϵ)∥2≤e
∫ tϵ
0

m(t′)dt′∥θ(0)−θ̄(0)∥2+βt̃,ϵγt̃,ϵη∫
tϵ
0 e

∫ tϵ
t′ m(t′′)dt′′dt′ .

By our assumption on the step size (Equation (7)):

η<
ϵ−e

∫ tϵ
0

m(t′)dt′∥θ0−θ(0)∥2
βt̃,ϵγt̃,ϵ

∫ tϵ
0
e
∫ tϵ
t′ m(t′′)dt′′dt′

.

Combining the latter two inequalities, we obtain ∥θ(tϵ)−θ̄(tϵ)∥2<ϵ. Since it was previously noted
that ∥θ̄(tϵ)−θ(tϵ)∥2=ϵ, our proof by contradiction is complete.

J.3 Proof of Corollary 1

Non-negativity and β-smoothness of f(·) imply ∥∇f(q)∥2 ≤
√

2βf(q) for all q∈Rd. Using this
inequality, along with the fact that f(·) is non-increasing during gradient flow, we have:

supt∈[0,te)∥∇f(θ(t))∥2≤supt∈[0,te)

√
2βf(θ(t))≤

√
2βf(θ(0)) .

If q∈Rd lies no more than ϵ-away from θ(·), i.e. ∃t∈ [0,te) : ∥q−θ(t)∥2 ≤ ϵ, then β-smoothness
implies ∥∇f(q)∥2 ≤∥∇f(θ(t))∥2+βϵ, which in turn means ∥∇f(q)∥2 ≤

√
2βf(θ(0))+βϵ. We

may therefore call Theorem 3 with γt̃,ϵ =
√

2βf(θ(0)) + βϵ, alongside βt̃,ϵ = β and m(·) ≡ m.
Simplifying the resulting bound on the step size (Equation (7)) then completes the proof.

J.4 Proof of Lemma 1

J.4.1 Sketch

With ∆θ an arbitrary vector in Rd, and (∆W1,∆W2,...,∆Wn) its corresponding matrix tuple, we
expand:

f(θ+∆θ)=ϕ
(
(Wn+∆Wn)(Wn−1+∆Wn−1)···(W1+∆W1)

)
,

and extract ∇2f(θ) from the second order terms.

J.4.2 Complete Proof

Recall that θ∈Rd is an arrangement of (W1,W2,...,Wn)∈Rd1,d0×Rd2,d1×···×Rdn,dn−1 as a vector.
Let (∆W1,∆W2,...,∆Wn)∈Rd1,d0×Rd2,d1×···×Rdn,dn−1 , and denote by∆θ∈Rd its arrangement
as a vector in corresponding order. Denote:

∆(1) :=
∑n

j=1Wn:j+1(∆Wj)Wj−1:1,

∆(2) :=
∑

1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1,

∆(3:n) :=(Wn+∆Wn)···(W1+∆W1)−Wn:1−∆(1)−∆(2) .

(37)
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We now develop a second-order Taylor expansion of f(θ). Since the matrix tuple corresponding to
(θ+∆θ) is

(
(W1+∆W1),...,(Wn+∆Wn)

)
, and f(θ)=ϕ(Wn:1) (see beginning of Subsubsection

4.1.1) on an open region containing θ, for sufficiently small ∆θ we obtain:

f(θ+∆θ)=ϕ
(
(Wn+∆Wn)...(W1+∆W1)

)
=ϕ
(
Wn:1+∆(1)+∆(2)+∆(3:n)

)
. (38)

Let ∆W ∈Rdn,d0 , the second-order Taylor expansion of the twice continuously differentiable ϕ(·)
at the point Wn:1 is given by:

ϕ(Wn:1+∆W )=ϕ(Wn:1)+
〈
∇ϕ(Wn:1),∆W

〉
+ 1

2∇
2ϕ(Wn:1)[∆W ]+O(∥∆W∥2F ) , (39)

where the O(·) notation refers to some expression satisfying lima→0

(
O(a)/a

)
=0. We continue to

develop Equation (38) using Equation (39):

f(θ+∆θ)=ϕ
(
Wn:1+(∆(1)+∆(2)+∆(3:n))

)
=ϕ(Wn:1)+

〈
∇ϕ(Wn:1),∆

(1)+∆(2)+∆(3:n)
〉
+

1

2
∇2ϕ(Wn:1)

[
∆(1)+∆(2)+∆(3:n)

]
+O(

∥∥∆(1)+∆(2)+∆(3:n)
∥∥2
F
)

=ϕ(Wn:1)+
〈
∇ϕ(Wn:1),∆

(1)
〉
+
〈
∇ϕ(Wn:1),∆

(2)
〉
+
〈
∇ϕ(Wn:1),∆

(3:n)
〉
+

1

2
∇2ϕ(Wn:1)

[
∆(1)

]
+
1

2
∇2ϕ(Wn:1)

[
∆(2)+∆(3:n)

]
+

2· 1
2
∇2ϕ(Wn:1)

[
∆(1),∆(2)+∆(3:n)

]
+O(

∥∥∆(1)+∆(2)+∆(3:n)
∥∥2
F
) ,

where in the last transition we view ∇2ϕ as both a quadratic and a bilinear form (see Subap-
pendix J.1). Notice that the following terms

〈
∇ϕ (Wn:1) ,∆

(3:n)
〉
, ∇2ϕ (Wn:1)

[
∆(2)+∆(3:n)

]
,

∇2ϕ(Wn:1)
[
∆(1),∆(2)+∆(3:n)

]
and O(

∥∥∆(1)+∆(2)+∆(3:n)
∥∥2
F
) are all O(∥∆θ∥2F ), thus:

f(θ+∆θ)

=ϕ(Wn:1)+
〈
∇ϕ(Wn:1),∆

(1)
〉
+
〈
∇ϕ(Wn:1),∆

(2)
〉
+
1

2
∇2ϕ(Wn:1)

[
∆(1)

]
+o
(
∥∆θ∥2F

)
.

This is a Taylor expansion of f(·) at θ with a constant term ϕ(Wn:1), a linear term
〈
∇ϕ(Wn:1),∆

(1)
〉
,

a quadtratic term
〈
∇ϕ (Wn:1) , ∆(2)

〉
+ 1

2∇
2ϕ (Wn:1)

[
∆(1)

]
, and a remainder term of

O(∥∆θ∥2F ). From uniqueness of the Taylor expansion it follows that the quadratic term is
equal to 1

2∇
2f(θ)[∆W1,...,∆Wn]. This implies:

∇2f(θ)[∆W1,...,∆Wn]=∇2ϕ(Wn:1)
[
∆(1)

]
+2
〈
∇ϕ(Wn:1),∆

(2)
〉

=∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
+

2Tr
(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
,

where the last transition follows from plugging in the definitions of ∆(1) and ∆(2) (see Equation (37)).

J.5 Proof of Proposition 1

J.5.1 Sketch

The proof is constructive — with c>0 arbitrary, we define a point θ∈Rd, and a non-zero translation
vector ∆θ∈Rd\{0}, such that ∆θ⊤∇2f(θ)∆θ=−c∥∆θ∥22.

J.5.2 Complete Proof

Since ∇ϕ(0) ̸= 0, there exists (∆W ′
1, ∆W ′

2) ∈ Rd1,d0 × Rd2,d1 and (W ′
3, ..., W

′
n) ∈

Rd3,d2×···×Rdn,dn−1 such that
〈
∇ϕ(0),W ′

n···W ′
3∆W ′

2∆W ′
1

〉
>0. Notice that none of the following
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matrices ∆W ′
1,∆W ′

2,W
′
3,...,W

′
n are equal to zero. Define (while recalling the assumption of n≥3):

∆W1 :=∆W ′
1∈Rd1,d0 ,

∆W2 :=∆W ′
2∈Rd2,d1 ,

∆W3 :=0∈Rd3,d2 ,

∆Wj :=0∈Rdj ,dj−1 for j∈{1,2,...,n}/{1,2,3} .

For some arbitrary c>0, we define:

W1 :=0∈Rd1,d0 ,

W2 :=0∈Rd2,d1 ,

W3 :=W ′
3

−c·
∑

1≤j≤n

∥∥∆Wj

∥∥2
F

2
〈
∇ϕ(0),W ′

n···W ′
3∆W ′

2∆W ′
1

〉 ∈Rd3,d2 ,

Wj :=W ′
j ∈Rdj ,dj−1 for j∈{1,2,...,n}/{1,2,3} .

Recall that we denote byθ∈Rd the arrangement of (W1,W2,...,Wn) as a vector. As shown in Lemma 1:

∇2f(θ)[∆W1,...,∆Wn]=∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
+2Tr

(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
.

(40)

Notice the first summand in the right-hand side of Equation (40) is equal to zero:

∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
=∇2ϕ(Wn:1)

[
Σn

j=10
]
=0 . (41)

We develop the expression of the second summand in the right-hand side of Equation (40):

2Tr
(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
=2
〈
∇ϕ(Wn:1),

∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

〉
=2
〈
∇ϕ(0),Wn···W3∆W2∆W1

〉
=−c·

∑
1≤j≤n

∥∥∆Wj

∥∥2
F

,

(42)

where the last transition follows by plugging in the definitions of∆W1,∆W2 andWj for j∈ [n]/{1,2}.
Plugging in Equations (41) and (42) in Equation (40), we obtain:

∇2f(θ)[∆W1,...,∆Wn]=−c·
∑

1≤j≤n

∥∥∆Wj

∥∥2
F

. (43)

Noticing that
∑

1≤j≤n∥∆Wj∥2F ̸=0, Equation (43) implies λmin
(
∇2f(θ)

)
≤−c. This bound holds

for every c>0, thus yielding the desired result (i.e. infθ∈Rdλmin
(
∇2f(θ)

)
=−∞).

J.6 Proof of Lemma 2

J.6.1 Sketch

Appealing to Lemma 1, we lower bound the right-hand side of Equation (12). Convexity of ϕ(·)
implies that the first summand is non-negative. For the second summand, we use known matrix
inequalities to establish a lower bound of c

∑n
j=1∥∆Wj∥2Frobenius, with c being the expression on

the right-hand side of Equation (13).

J.6.2 Complete Proof

Recall that θ∈Rd is an arrangement of (W1,W2,...,Wn)∈Rd1,d0×Rd2,d1×···×Rdn,dn−1 as a vector.
Let (∆W1,∆W2,...,∆Wn)∈Rd1,d0×Rd2,d1×···×Rdn,dn−1 , and denote by∆θ∈Rd its arrangement
as a vector in corresponding order. As shown in Lemma 1:

∇2f(θ)[∆W1,...,∆Wn]=∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
+2Tr

(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
.
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Convexity of ϕ(·) implies that ∇2ϕ(Wn:1) is positive semi-definite, thus:

∇2f(θ)[∆W1,...,∆Wn]≥2Tr
(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
.

Using a simple corollary of Von-Neumann’s trace inequality (see [41]):
∇2f(θ)[∆W1,...,∆Wn]

≥−2∥∇ϕ(Wn:1)∥n ·
∥∥∥∑1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

∥∥∥
s

.
(44)

Upper bound the nuclear norm:

∥∇ϕ(Wn:1)∥n≤
√
min{d0,dn}∥∇ϕ(Wn:1)∥F . (45)

The following bound holds:∥∥∥∑1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

∥∥∥
s

≤
∑

1≤j<j′≤n∥Wn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1∥s
≤
∑

1≤j<j′≤n

∥∥∆Wj′
∥∥
s

∥∥∆Wj

∥∥
s
·
∏

k∈[n]/{j,j′}
∥∥Wk

∥∥
s

≤ max
J⊆[n]

|J |=n−2

∏
j∈J

∥∥Wj

∥∥
s
·
∑

1≤j<j′≤n

∥∥∆Wj′
∥∥
s

∥∥∆Wj

∥∥
s

,

(46)

where the first transition follows from triangle inequalities, the second inequality follows from
sub-multiplicativity of the spectral norm, and the last inequality follows from maximizing the term∏

k∈[n]/{j,j′}
∥∥Wk

∥∥
s

over j,j′. Plugging Equations (45) and (46) into Equation (44), we have:

∇2f(θ)[∆W1,...,∆Wn]

≥−2
√
min{d0,dn}∥∇ϕ(Wn:1)∥F max

J⊆[n]
|J |=n−2

∏
j∈J

∥Wj∥s ·
∑

1≤j<j′≤n∥∆Wj′∥s∥∆Wj∥s .

It holds that: ∑
1≤j<j′≤n∥∆Wj′∥s∥∆Wj∥s

≤
∑

1≤j<j′≤n∥∆Wj′∥F ∥∆Wj∥F

= 1
2

(∑n
j=1∥∆Wj∥F

)2
− 1

2

∑n
j=1∥∆Wj∥2F

≤ n
2

∑n
j=1∥∆Wj∥2F − 1

2

∑n
j=1∥∆Wj∥2F

= n−1
2

∑n
j=1∥∆Wj∥2F ,

where the last inequality follows from the fact that the one-norm of a vector in Rn is never greater
than

√
n times its euclidean-norm. This leads us to:

∇2f(θ)[∆W1,...,∆Wn]

≥−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1)∥F max

J⊆[n]
|J |=n−2

∏
j∈J

∥Wj∥s ·
∑n

j=1∥∆Wj∥2F .

The desired result readily follows:

λmin(∇2f(θ))≥−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1)∥F max

J⊆[n]
|J |=n−2

∏
j∈J

∥Wj∥s .

J.7 Proof of Proposition 2

J.7.1 Sketch

By the analysis of [18], the quantities W⊤
j+1Wj+1−WjW

⊤
j , j=1,2,...,n−1, are invariant (constant)

along a gradient flow trajectory, and therefore small if initialization is such. This implies that along
a trajectory emanating from near-zero initialization, for every j =1,2,...,n−1, the singular values
of Wj are similar to those of Wj+1, and the left singular vectors of Wj match the right ones of Wj+1.
Products of adjacent weight matrices thus simplify, and we obtain ∥Wj∥spectral≈∥Wn:1∥1/nspectral for
j=1,2,...,n. Plugging this into Equation (13) yields the desired result (Equation (14)).
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J.7.2 Complete Proof

Denote by θ(t) the time dependent gradient flow trajectory starting at θs (i.e. θ(0) = θs) and by
W1(t),...,Wn(t) the corresponding time dependent curves of weight matrices induced by the flow. From
the assumption ∥θs∥2≤ϵ we can infer ∥Wj(0)∥F ≤ϵ for all j∈{1,2,...,n}. For j∈{1,2,...,n−1}:

∥W⊤
j+1(0)Wj+1(0)−Wj(0)W

⊤
j (0)∥s

≤∥W⊤
j+1(0)Wj+1(0)∥s+∥Wj(0)W

⊤
j (0)∥s

=∥Wj+1(0)∥2s+∥Wj(0)∥2s
≤∥Wj+1(0)∥2F +∥Wj(0)∥2F ≤2ϵ2≤(2ϵ)2 .

Theorem 2.2 from [18] states that ∂
∂t

(
Wj(t)W

⊤
j (t)−W⊤

j+1(t)Wj+1(t)
)
=0 for all j∈{1,2,...,n−1}

and t≥0, thus:

∥W⊤
j+1(t)Wj+1(t)−Wj(t)W

⊤
j (t)∥s=∥W⊤

j+1(0)Wj+1(0)−Wj(0)W
⊤
j (0)∥s≤(2ϵ)2 .

We can rely on this condition in order to apply Lemma 9 below and get that for all t≥0:

maxj∈{1,...,n}∥Wj(t)∥n≤∥Wn:1(t)∥s+4nϵ·max
(
1,{∥Wj(t)∥s}j∈[n]

)2n
.

Combining the latter inequality together with the result of Lemma 2 (Equation (13)), we get:

λmin(∇2f(θ(t)))

≥−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1(t))∥F max

J⊆[n]
|J |=n−2

∏
j∈J ∥Wj(t)∥s

≥−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1(t))∥F maxj∈[n]∥Wj(t)∥n−2

s

=−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1(t))∥F

(
maxj∈[n]∥Wj(t)∥ns

)n−2
n

≥−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1(t))∥F

(
∥Wn:1(t)∥s+4nϵmax

(
1,{∥Wj(t)∥s}j∈[n]

)2n)n−2
n

≥−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1(t))∥F ∥Wn:1(t)∥

n−2
2

s

−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1(t))∥F

(
4nϵmax

(
1,{∥Wj(t)∥s}j∈[n]

)2n)n−2
n ,

where the last inequality follows from sub-additivity of any power between zero and one. Rewriting
the inequality such that we remove the time notation as to be consistent with the proposition statement,
we obtain:

λmin(∇2f(θ))≥−(n−1)
√
min{d0,dn}∥∇ϕ(Wn:1)∥F ∥Wn:1∥1−2/n

s

−(n−1)
√

min{d0,dn}∥∇ϕ(Wn:1)∥F (4n)
n−2
n max

(
1,{∥Wj(t)∥s}j∈[n]

)2(n−2)
ϵ

n−2
n .

Lemma 9. Let Ai∈Rdi,di−1 for i∈ [n]. Denote ∆i :=A⊤
i+1Ai+1−AiA

⊤
i for i∈ [n−1]. Assume that

∥∆i∥s≤ 1
2n for i∈ [n−1]. It holds that:

maxi∈[n]∥Ai∥ns ≤∥An:1∥s+2n
√
maxi∈[n−1]∥∆i∥s ·maxA∈{I,A1,...,An}∥A∥2ns ,

where we denote Aj:i as Aj ···Ai+1Ai for 1≤ i < j ≤ n and as an identity matrix (with size to be
inferred by context) otherwise.

Proof. Define Amax :=maxA∈{I,A1,...,An}∥A∥s and ∆max :=maxi∈[n−1]∥∆i∥s. Let v ∈Rd0 such
that v∈argmax∥u∥=1∥A1u∥2. Define ai :=v⊤A⊤

n−i:1(A
⊤
n−(i−1)An−(i−1))

iAn−i:1v for i∈ [n]. For
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i∈ [n−1] we have:

ai−ai+1

=v⊤A⊤
n−i:1(A

⊤
n−(i−1)An−(i−1))

iAn−i:1v−v⊤A⊤
n−(i+1):1(A

⊤
n−iAn−i)

i+1An−(i+1):1v

=v⊤A⊤
n−i:1(A

⊤
n−(i−1)An−(i−1))

iAn−i:1v−v⊤A⊤
n−(i+1):1A

⊤
n−i(An−iA

⊤
n−i)

iAn−iAn−(i+1):1v

=v⊤A⊤
n−i:1(A

⊤
n−(i−1)An−(i−1))

iAn−i:1v−v⊤A⊤
n−i:1(An−iA

⊤
n−i)

iAn−i:1v

=v⊤A⊤
n−i:1(An−iA

⊤
n−i+∆n−i)

iAn−i:1v−v⊤A⊤
n−i:1(An−iA

⊤
n−i)

iAn−i:1v

=v⊤A⊤
n−i:1

(
(An−iA

⊤
n−i+∆n−i)

i−(An−iA
⊤
n−i)

i
)
An−i:1v

=v⊤A⊤
n−i:1

(∑
(b1,...,bi)∈{0,1}i

∏
b∈{b1,...,bi}

(
bAn−iA

⊤
n−i+(1−b)∆n−i

)
−(An−iA

⊤
n−i)

i
)
An−i:1v

=v⊤A⊤
n−i:1

(∑
(b1,...,bi)∈{0,1}i\(1,...,1)

∏
b∈{b1,...,bi}

(
bAn−iA

⊤
n−i+(1−b)∆n−i

))
An−i:1v ,

where the fourth transition follows from the definition of ∆n−i and the second to last transition follows
from unrolling (An−iA

⊤
n−i+∆n−i)

i. Taking absolute value on ai−ai+1 we obtain:

|ai−ai+1|

=
∣∣∣v⊤A⊤

n−i:1

(∑
(b1,...,bi)∈{0,1}i\(1,...,1)

∏
b∈{b1,...,bi}

(
bAn−iA

⊤
n−i+(1−b)∆n−i

))
An−i:1v

∣∣∣
≤
∑

(b1,...,bi)∈{0,1}i\(1,...,1)

∣∣∣v⊤A⊤
n−i:1

(∏
b∈{b1,...,bi}

(
bAn−iA

⊤
n−i+(1−b)∆n−i

))
An−i:1v

∣∣∣
≤
∑

(b1,...,bi)∈{0,1}i\(1,...,1)∥An−i:1v∥2
∥∥∥∏b∈{b1,...,bi}

(
bAn−iA

⊤
n−i+(1−b)∆n−i

)∥∥∥
s
∥An−i:1v∥2

≤
∑

(b1,...,bi)∈{0,1}i\(1,...,1)∥An−i:1∥s
(∏

b∈{b1,...,bi}
∥∥bAn−iA

⊤
n−i+(1−b)∆n−i

∥∥
s

)
∥An−i:1∥s

≤
∑

(b1,...,bi)∈{0,1}i\(1,...,1)∥An−i:1∥2s
∏

b∈{b1,...,bi}

(
b
∥∥An−iA

⊤
n−i

∥∥
s
+(1−b)∥∆n−i∥s

)
≤
∑

(b1,...,bi)∈{0,1}i\(1,...,1)A
2n
max

∏
b∈{b1,...,bi}

(
bA2

max+(1−b)∆max

)
An

max

=A2n
max ·

((
A2

max+∆max

)i−A2i
max

)
,

where the second transition follows from the triangle inequality, the third from Cauchy–Schwarz and
the definition of the spectral norm, the fourth from sub-multiplicativity of the spectral norm, the fifth
from sub-additivity of the spectral norm and the sixth from the definitions of Amax and ∆max. We
continue by unrolling

(
A2

max+∆max

)i
:

|ai−ai+1|

≤A2n
max ·

(∑i
k=0

(
i
k

)
A2(i−k)

max ∆k
max−A2i

max

)
=A2n

max ·
(∑i

k=1

(
i
k

)
A2(i−k)

max ∆k
max

)
≤A2n

max ·
(∑i

k=1n
kA2n

max∆
k
max

)
=A4n

max ·
(∑i

k=1

(
n∆max

)k)
≤A4n

max ·
(∑∞

k=1

(
n∆max

)k)
=A4n

max · n∆max

1−n∆max

≤A4n
max ·2n∆max ,

where the two last transitions follow from geometric series formula and the assumption ∆max≤ 1
2n .

Overall we have that for i∈ [n−1]:

|ai−ai+1|≤2nA4n
max ·∆max . (47)

36



The following bound holds:

∥An:1∥2s≥∥An:1v∥22
=v⊤A⊤

n:1An:1v

=v⊤A⊤
n−1:1(A

⊤
nAn)

1An−1:1v

=a1
≥a2−|a2−a1|
≥a3−|a3−a2|−|a2−a1|

...

≥an−
∑n−1

i=1 |ai+1−ai|
≥an−

∑n−1
i=1 2nA

4n
max ·∆max

≥an−2n2A4n
max ·∆max

=v⊤(A⊤
1 A1)

nv−2n2A4n
max ·∆max

=∥A1∥2ns −2n2A4n
max ·∆max ,

where the second to last inequality follows from Equation (47). Overall we have:
∥A1∥2ns ≤∥An:1∥2s+2n2A4n

max ·∆max . (48)
For all i∈ [n−1]:

∥Ai∥2s=∥AiA
⊤
i ∥s

=∥A⊤
i+1Ai+1−∆i∥s

≥∥A⊤
i+1Ai+1∥s−∥∆i∥s

≥∥Ai+1∥2s−∆max .
It follows that for i∈ [n−1]:

∥Ai+1∥2ns ≤
(
∥Ai∥2s+∆max

)n
=
∑n

k=0

(
n
k

)
∥Ai∥2(n−k)∆k

max

=∥Ai∥2ns +
∑n

k=1

(
n
k

)
∥Ai∥2(n−k)∆k

max

≤∥Ai∥2ns +A2n
max

∑∞
k=1

(
n∆max

)k
=∥Ai∥2ns +A2n

max · n∆max

1−n∆max

≤∥Ai∥2ns +2nA2n
max ·∆max ,

where the two last transitions follow from geometric series formula and the assumption ∆max≤ 1
2n .

Using the above result repeatedly, we get that for i∈ [n−1]:

∥Ai+1∥2ns ≤∥Ai∥2ns +2nA2n
max ·∆max

...

≤∥A1∥2ns +i·2nA2n
max ·∆max

≤∥A1∥2ns +2n2A2n
max ·∆max .

Overall we have that for i∈ [n]:

∥Ai∥2ns ≤∥A1∥2ns +2n2A2n
max ·∆max . (49)

Combining Equations (49) and (48) we get for i∈ [n]:

∥Ai∥2ns ≤∥A1∥2ns +2n2A2n
max ·∆max≤∥An:1∥2s+4n2A4n

max ·∆max .
This leads us to:

maxi∈[n]∥Ai∥ns ≤
√
∥An:1∥2s+4n2A4n

max ·∆max

≤
√
∥An:1∥2s+

√
4n2A4n

max ·∆max

=∥An:1∥s+2n
√

maxi∈[n−1]∥∆i∥s ·maxA∈{I,A1,...,An}∥A∥2ns ,
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where the second transition follows from sub-additivity of square root and the last transition follows
from the definitions of Amax and ∆max.

J.8 Proof of Proposition 3

Subsubappendix J.8.1 below provides a brief proof sketch. The complete proof is delivered by the
subsequent subsubappendixes, organized as follows. Subsubappendix J.8.2 establishes preliminaries.
Subsubappendix J.8.3 proves that the trajectory of gradient flow is defined over infinite time.
Subsubappendix J.8.4 defines a reparameterization of the gradient flow trajectory, to be used as a
technical tool. Subsubappendix J.8.5 lower bounds the minimal distance of the reparameterized
trajectory from the origin. Subsubappendix J.8.6 confirms that the reparameterized trajectory
escapes the origin. Subsubappendix J.8.7 establishes subsequent convergence, during which the
reparameterized trajectory approaches global minimum exponentially fast. Subsubappendix J.8.8
shows that at time t̄ (defined in Equation (17)) the (original) gradient flow trajectory reaches
ϵ̄-optimality. Subsubappendix J.8.9 analyzes the geometry of the optimization landscape around the
gradient flow trajectory, namely, it confirms validity of the smoothness and Lipschitz constants βt,ϵ

and γt,ϵ (given in statement of Proposition 3) respectively, and bounds the integral of the minimal
eigenvalue of the Hessian in accordance with Equation (18). Finally, Subsubappendix J.8.10 concludes.

J.8.1 Sketch

By result of [4], gradient flow induces on the end-to-end matrix the following dynamics:

d
dtWn:1(t)=−∇ϕ

(
Wn:1(t)

)(
∥Wn:1(t)∥2−2/n

FrobeniusId0
+(n−1)

[
W⊤

n:1(t)Wn:1(t)
]1−1/n

)
,

where Id0 ∈ Rd0,d0 represents identity, and [ · ]c, c ≥ 0, stands for a power operator defined over
positive semi-definite matrices (with c = 0 yielding identity by definition). Carefully analyzing
these dynamics, we characterize Wn:1(·) — trajectory of end-to-end matrix — and show that, with t̄
given by Equation (17), 1

2∥Wn:1(t̄)−Λyx∥2Frobenius≤ ϵ̄ as required. For establishing Equation (18),
we use the characterization of Wn:1(·), along with a lower bound on the minimal eigenvalue of the
Hessian provided in Subsubsection 4.1.1. The expressions for βt,ϵ and γt,ϵ are also derived using the
characterization of Wn:1(·) and geometric bounds (bounds on Hessian eigenvalues and gradient norm,
respectively), but they involve much coarser computations.

J.8.2 Preliminaries

We assume ϵ̄≤ 1
2 without loss of generality (a proof that is valid for ϵ̄= 1

2 automatically accounts for
ϵ̄> 1

2 as well). Throughout the proof we identify matrices in R1,d0 with vectors in Rd0 . For example,
we identify the end-to-end matrix Wn:1∈R1,d0 (Equation (10)) with the vector wn:1∈Rd0 , and the
empirical (uncentered) cross-covariance matrix between training labels and inputs, Λyx∈R1,d0 , with
the vector λyx ∈ Rd0 . Accordingly, we overload notation by regarding the function ϕ(·) (defined
in Equation (11)) not only as a mapping from R1,d0 to R, but also as one from Rd0 to R. Under
the latter view, ϕ(·) is defined by ϕ(w) = 1

2∥w−λyx∥22+minq∈Rdf(q). For t≥ 0, we denote by
W1(t) ∈ Rd1,d0 ,W2(t) ∈ Rd2,d1 , ... ,Wn−1(t) ∈ Rdn−1,dn−2 ,Wn(t) ∈ R1,dn−1 the weight matrices
constituting θ(t)∈Rd (gradient flow trajectory at time t), and by Wn:1(t)∈R1,d0 (or wn:1(t)∈Rd0)
the corresponding end-to-end matrix (i.e. Wn:1(t) :=Wn(t)Wn−1(t)···W1(t)).

Definition 2. Define h :Rd0 →Rd0 by:

h(w) :=
(
∥w∥2−

2
n

2 Id0
+(n−1)

[
ww⊤]1− 1

n

)
∇ϕ(w) ,

where Id0 ∈Rd0,d0 represents identity, and [·]c, c≥0, stands for a power operator defined over positive
semi-definite matrices (with c=0 yielding identity by definition).

The importance of the vector field h(·) lies in the fact that it characterizes the dynamics of the
end-to-end matrix — a result proven in [4], stated hereafter for completeness.
Lemma 10. wn:1(t) is a solution to the following initial value problem:

wn:1(0)=wn:1,s , d
dtwn:1(t)=−h

(
wn:1(t)

)
.
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Proof. The lemma follows directly from Theorem 1 in [4].

The following lemma will be used throughout the proof.

Lemma 11. Let t ∈ [0,∞) ∪ {∞}. Let q, q̄ : [0, t) → R be differentiable functions, and let
g : [0,t)×R→R be some locally Lipschitz function. Assume that:

(i) q(0)≤ q̄(0) ;

(ii) d
dtq(t

′)≤g
(
t′,q(t′)

)
for all t′∈ [0,t) ; and

(iii) d
dt q̄(t

′)≥g
(
t′,q̄(t′)

)
for all t′∈ [0,t) .

Then q(t′)≤ q̄(t′) for all t′∈ [0,t).

Proof. The lemma is a direct consequence of Theorem 10.3 in [27].

J.8.3 Infinite Time

One of the assertions of Proposition 3 is that the gradient flow trajectory is defined over infinite time.
This is confirmed by the following lemma.

Lemma 12. The trajectory of gradient flow is defined over infinite time.

Proof. by Theorem 1 we may denote the gradient flow trajectory by θ : [0,te)→Rd, where either:
(i) te =∞; or (ii) te <∞ and limt↗te ∥θ(t)∥2 =∞. Our objective is to show that te =∞, thus it
suffices to establish that θ(·) is bounded, i.e. there exists a constant larger than ||θ(t)|| for all t∈ [0,te).
Recall that θs meets the balancedness condition (Equation (15)). Theorem 2.2 in [18] implies that
the balancedness condition is preserved along the gradient flow trajectory, i.e. for any j∈ [n−1] and
t∈ [0,te), it holds that:

W⊤
j+1(t)Wj+1(t)=Wj(t)W

⊤
j (t). (50)

Using this relation repeatedly, we obtain:

∥wn:1(t)∥22=w⊤
n:1(t)wn:1(t)

=Wn:1(t)W
⊤
n:1(t)

=Wn:2(t)W1(t)W
⊤
1 (t)W⊤

n:2(t)

=Wn:2(t)W
⊤
2 (t)W2(t)W

⊤
n:2(t)

=Wn:3(t)W2(t)W
⊤
2 (t)W2(t)W

⊤
2 (t)W⊤

n:3(t)

=Wn:3(t)W
⊤
3 (t)W3(t)W

⊤
3 (t)W3(t)W

⊤
n:3(t)

...

=
(
Wn(t)W

⊤
n (t)

)n
=∥Wn(t)∥2nF .

Since the balancedness condition implies that ∥Wj(t)∥F = ∥Wj+1(t)∥F for any t ∈ [0, te) and
j ∈ [n − 1] (to see this, simply apply trace to both sides of Equation (50)), we may conclude
∥Wj(t)∥2F =∥wn:1(t)∥2/n2 for any j∈ [n]. Gradient flow monotonically non-increases the objective it
optimizes, i.e. f

(
θ(t)

)
is non-increasing. In particular it holds that f

(
θ(t)

)
≤f
(
θ(0)

)
for all t∈ [0,te).

Relying on Equation (16), we obtain ∥wn:1(t)−λyx∥2≤∥wn:1(0)−λyx∥2 for all t∈ [0,te). By the
triangle inequality we have that ∥wn:1(t)∥2≤∥wn:1(0)∥2+2∥λyx∥2. Thus, for all t∈ [0,te):

∥θ(t)∥22=
n∑

j=1

∥Wj(t)∥2F =n∥wn:1(t)∥2/n2 ≤n
(
∥wn:1(0)∥2+∥λyx∥2

)2/n
.

This completes the proof.

39



J.8.4 Reparameterization

Consider the initial value problem:

u(0)=wn:1(0) , d
dtu(t)=−∥u(t)∥2

(
nu(t)−λyx

)
+(n−1)∥u(t)∥−1

2 u(t)u(t)⊤λyx . (51)

Lemma 13 below establishes existence of a unique solution to this problem.

Lemma 13. The initial value problem in Equation (51) admits a solution u : [0,te)→Rd0\{0}, where
either: (i) te=∞; or (ii) te<∞ and limt↗te∥u(t)∥2∈{0,∞}. Moreover, the solution is unique in the
sense that any other solution u′ : [0,t′e)→Rd0\{0} must satisfy t′e≤ te and ∀t∈ [0,t′e) :u

′(t)=u(t).

Proof. Define g : [0,∞)×Rd0\{0}→Rd0 by:

g(t,w) :=−∥w∥2
(
nw−λyx

)
+(n−1)∥w∥−1

2 ww⊤λyx .

The dynamics in Equation (51) can be written as d
dtu(t)=g

(
t,u(t)

)
. Since g(·) is locally Lipschitz

continuous, the lemma follows directly from the results in Section 1.5 of [25].5

Hereafter, we denote by u : [0,te)→Rd0\{0} the (unique) solution to Equation (51). In the remainder
of the current subsubappendix we will show that u(·) is a reparameterization of the gradient flow
trajectory, or more precisely, of wn:1(·).
The following definition overloads notation by extending the scalar ν (defined in the statement of
Proposition 3) to a function.

Definition 3. Define ν : [0,te)→ [−1,1] by ν(t)=
λ⊤

yxu(t)

∥λyx∥2∥u(t)∥2
.

Notice that ν(0) coincides with the original (scalar) definition of ν. Lemma 14 below makes use of ν(·)
for characterizing the dynamics of the norm of u(·).
Lemma 14. For all t∈ [0,te):

d
dt∥u(t)∥2=n∥u(t)∥2

(
ν(t)−∥u(t)∥2

)
.

Proof. Recall that ∥λyx∥=1. For all t∈ [0,te), it holds that:

d
dt∥u(t)∥2=

u(t)⊤

∥u(t)∥2

d
dtu(t)

= u(t)⊤

∥u(t)∥2

(
−∥u(t)∥2

(
nu(t)−λyx

)
+(n−1)∥u(t)∥−1

2 u(t)u(t)⊤λyx

)
=−n∥u(t)∥22+∥u(t)∥2ν(t)+(n−1)∥u(t)∥2ν(t)

=n∥u(t)∥2
(
ν(t)−∥u(t)∥2

)
,

where the first transition follows from the chain rule and derivative of a (non-zero) vector norm, and
the second transition follows from u(·) being a solution to Equation (51).

Relying on Lemma 14, Lemma 15 below derives upper and lower bounds for the norm of u(·).
Lemma 15. For all t∈ [0,te):

∥u(0)∥2e−2nt≤∥u(t)∥2≤∥u(0)∥2ent .

Proof. We start by proving the upper bound. Recall that by Lemma 14 we have that
d
dt∥u(t)∥2 = n∥u(t)∥2

(
ν(t) − ∥u(t)∥2

)
. It holds that d

dt∥u(t)∥2 ≤ n∥u(t)∥2, as ν(t) ≤ 1
(by Definition 3). Integrating over time:

ln(∥u(t)∥2)−ln(∥u(0)∥2)=
∫ t

0

1
∥u(t′)∥2

d
dt∥u(t

′)∥2dt′≤
∫ t

0

ndt′=nt.

It follows that ∥u(t)∥2≤∥u(0)∥2 ent.
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Moving on to the lower bound, define g : [0,te)×R→R by:

g(t,z) :=

{
−nz

(
1+z

)
z≥1

−2nz z<1
.

Note that g(·) is locally Lipschitz continuous. For all t∈ [0,te), it holds that:

∥u(0)∥2e−2nt≤∥u(0)∥2=∥wn:1(0)∥2<1 ,

where the equality follows from u(·) being a solution to Equation (51), and the last inequality follows
from an assumption made in Proposition 3. Using this fact, the following holds for all t∈ [0,te):

d
dt

(
∥u(0)∥2e−2nt

)
=−2n∥u(0)∥2e−2nt=g

(
t,∥u(0)∥2e−2nt

)
.

On the other hand, recalling that ν(t)≥−1 (by Definition 3) for all t∈ [0,te), it holds (for both cases
∥u(t)∥<1 and ∥u(t)∥≥1) that:

d
dt∥u(t)∥2=n∥u(t)∥2

(
ν(t)−∥u(t)∥2

)
≥g
(
t,∥u(t)∥2

)
.

We may now use Lemma 11 to conclude ∥u(0)∥2 e−2nt≤∥u(t)∥2 for all t∈ [0,te).

Taken together, Lemmas 13 and 15 imply that u(·) is defined over infinite time. We formalize this
in Lemma 16 below.
Lemma 16. It holds that te=∞, i.e. we may write u : [0,∞)→Rd0\{0}.

Proof. Assume by contradiction that te<∞. Lemma 13 implies limt↗te∥u(t)∥2∈{0,∞}. On the
other hand, by Lemma 15 we have that liminft↗te ≥∥u(0)∥2e−2nte and limsupt↗te ≤∥u(0)∥ente ,
which is a contradiction. Hence it must be that te=∞.

Finally, we are in a position to prove that u(·) is indeed a (monotonic) reparameterization of wn:1(·).
Lemma 17. For all t≥0:

wn:1

(
ξ(t)

)
=u(t) ,

where ξ : [0,∞)→R≥0 is defined by ξ(t) :=
∫ t

0
∥u(t′)∥−(1−2/n)

2 dt′.

Proof. Define g : [0,∞)×Rd0/{0} → Rd0 by g(t,w) :=−h(w)
/
∥u(t)∥1−2/n

2 . Note that g(·) is
locally Lipschitz continuous. Define the following initial value problem:

q(0)=wn:1(0) , d
dtq(t)=g

(
t,q(t)

)
. (52)

We will show both u(·) and wn:1(ξ(·)) are solutions to Equation (52), which by uniqueness implies
u(·)=wn:1(ξ(·)) for all t≥0, as required. By the definition ofu(·) (solution to Equation (51)) it holds
that u(0)=wn:1(0)=wn:1(ξ(0)). With the help of Lemma 10 we establish the following for t≥0:

d
dt

(
wn:1(ξ(t))

)
= d

dtwn:1

(
ξ(t)

)
· dξdt (t)=−h

(
wn:1(ξ(t))

)/
∥u(t)∥1−2/n

2 =g
(
t,wn:1(ξ(t))

)
.

Recall that u(·) is a solution to Equation (51). For all t≥0, it holds that:
d
dtu(t)=−∥u(t)∥2

(
nu(t)−λyx

)
+(n−1)∥u(t)∥−1

2 u(t)u(t)⊤λyx

=−∥u(t)∥2
(
u(t)−λyx

)
−(n−1)∥u(t)∥2u(t)+(n−1)∥u(t)∥−1

2 u(t)u(t)⊤λyx

=−∥u(t)∥2
(
u(t)−λyx

)
−(n−1)

[
u(t)u(t)⊤

] 1
2u(t)+(n−1)

[
u(t)u(t)⊤

] 1
2λyx

=−∥u(t)∥2
(
u(t)−λyx

)
−(n−1)

[
u(t)u(t)⊤

] 1
2
(
u(t)−λyx

)
=−∥u(t)∥2

(
u(t)−λyx

)
−(n−1)

[
u(t)u(t)⊤

] 1
2∇ϕ

(
u(t)

)
=−

(
∥u(t)∥2−2/n

2

(
u(t)−λyx

)
+(n−1)

[
u(t)u(t)⊤

]1−1/n∇ϕ
(
u(t)

))/
∥u(t)∥1−2/n

2

=−h
(
u(t)

)/
∥u(t)∥1−2/n

2

=g
(
t,u(t)

)
.

The above confirms that u(·) and wn:1(ξ(·)) are both solutions to Equation (52), thereby completing
the proof.
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J.8.5 Minimal Distance From Origin

In this subsubappendix we derive a lower bound on the minimal distance of u(·) — solution to
Equation (51), which by Lemma 17 is a reparameterization of wn:1(·) — from the origin. We denote
this minimal distance by umin, i.e. we let umin :=inft≥0∥u(t)∥2.

Recall the function ν(·) from Definition 3. Lemma 18 below establishes several properties of this
function.

Lemma 18. For all t≥0, the following hold:

(i) ν(t)∈(−1,1] ;

(ii) d
dtν(t)=1−ν(t)2;

(iii) ν(t)=1−2· 1−ν(0)
1+ν(0)

/( 1−ν(0)
1+ν(0)+e2t

)
; and

(iv) limt↗∞ν(t)=1 .

Proof. Recall ∥λyx∥2=1. It holds that:

d
dtν(t)=λ⊤

yx
d
dt

(
u(t)

∥u(t)∥2

)
=λ⊤

yx

d
dtu(t)∥u(t)∥2−u(t) d

dt∥u(t)∥2
∥u(t)∥22

=
λ⊤
yx

∥u(t)∥2

d
dtu(t)∥u(t)∥2−u(t) d

dt∥u(t)∥2
∥u(t)∥2

.

Plugging in the expression for d
dtu(t) from Equation (51) and the one of d

dt∥u(t)∥2 from Lemma 14
(while dividing by ∥u(t)∥2) affirms property (ii):

d
dtν(t)=

λ⊤
yx

∥u(t)∥2

((
(n−1)u(t)u(t)⊤

∥u(t)∥2
λyx−∥u(t)∥2

(
nu(t)−λyx

))
−
(
u(t)n

(
ν(t)−∥u(t)∥2

)))
=
(
(n−1)ν(t)2−∥u(t)∥2

(
nν(t)−1/∥u(t)∥2

))
−
(
ν(t)n

(
ν(t)−∥u(t)∥2

))
=(n−1)ν(t)2−nν(t)∥u(t)∥2+1−nν(t)2+nν(t)∥u(t)∥2

=1−ν(t)2.

By Theorem 1, the initial value problem which ν(t) solves (i.e. ν(0) = 0 and d
dtν(t) = 1− ν(t)2)

admits a unique solution. Since t 7→ 1−2 ·
( 1−ν(0)
1+ν(0)

)/( 1−ν(0)
1+ν(0) +e2t

)
is a solution to this problem, it

must be that ν(t)=1−2 ·
( 1−ν(0)
1+ν(0)

)/( 1−ν(0)
1+ν(0) +e2t

)
. This confirms property (iii). Properties (i) and

(iv) immediately follow.

Below we define a point in time that will turn out to be one at which the distance of u(·) from the origin
is minimal (i.e. is equal to umin).

Definition 4. Let tm := inf{t≥0:ν(t)≥∥u(t)∥2}, where by convention tm=∞ if ν(t)<∥u(t)∥2
for all t≥0.

Lemma 19 below establishes that tm is finite, that the norm of u(·) is monotonically decreasing
until tm and monotonically non-decreasing thereafter, and that this norm remains smaller than one.

Lemma 19. It holds that:

(i) tm<∞ ;

(ii) d
dt∥u(t)∥2<0 for all t∈[0,tm) ;

(iii) d
dt∥u(t)∥2≥0 for all t∈[tm,∞) ; and

(iv) ∥u(t)∥2<1 for all t≥0 .
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Proof. We start by treating the special case where ν(0)=1. Recall that by assumption ∥wn:1(0)∥<1.
Together with Equation (51) this implies ∥u(0)∥2=∥wn:1(0)∥2<1=ν(0). Thus, by definition tm=0.
We trivially obtain properties (i) and (ii). By Lemma 14 together with property (iii) from Lemma 18 it
holds that d

dt∥u(t)∥2=n∥u(t)∥2
(
1−∥u(t)∥2

)
. These dynamics, along with the initial value ∥u(0)∥2,

induce an initial value problem whose unique solution is ∥u(t)∥2=ent
/(

ent+∥u(0)∥−1−1
)
. This

confirms properties (iii) and (iv). From this point onward we assume ν(0) ̸=1.

By definition of tm, it holds that ∥u(t)∥2>ν(t) for t∈ [0,tm). Together with Lemma 14 this implies
property (ii).

Relying on property (ii), we have ∥u(t)∥2≤∥u(0)∥2<1 for t∈ [0,tm), where we used the fact that
∥u(0)∥2 = ∥wn:1(0)∥2 < 1. Assume by contradiction that property (i) does not hold, i.e. tm =∞.
This means that ν(t) < ∥u(t)∥2 ≤ ∥u(0)∥2 < 1 for all t ≥ 0. On the other hand, by Lemma 18,
limt↗∞ν(t)=1 — a contradiction. Thus, property (i) must hold.

From the definition of tm, together with continuity of ν(t) and ∥u(t)∥2, it must be that ν(tm) ≥
∥u(tm)∥2. Define t̄m :=inf{t≥ tm :ν(t)<∥u(t)∥2}, where by convention the infimum of the empty
set is equal to infinity. Property (iii) of Lemma 18 together with ν(0)<1 imply that ν(t)<1 for all t≥0
(recall that we are treating the case ν(0) ̸=1). We have previously shown (in the proof of this lemma)
that ∥u(t)∥<1 for t∈ [0,tm). By definition of t̄m, it holds that ∥u(t)∥2≤ν(t)<1 for all t∈ [tm,t̄m).
Relying on this inequality together with Lemma 14, we have that d

dt∥u(t)∥ ≥ 0 for t∈ [tm,t̄m). If
t̄m=∞, then we obtain properties (iii) and (iv), thereby finishing the proof. Assume by contradiction
that this is not the case, i.e. t̄m<∞. From continuity ∥u(t̄m)∥=ν(t̄m). By Lemmas 14 and 18:

d
dtν(t)

∣∣
t=t̄m

=1−ν(t̄m)2>0=n∥u(t̄m)∥2
(
ν(t̄m)−∥u(t̄m)∥2

)
= d

dt∥u(t)∥2
∣∣
t=t̄m

,

implying existence of a right neighborhood of t̄m which contradicts its definition.

As a direct consequence of Lemma 19, we obtain that the distance of u(·) from the origin is indeed
minimal at time tm. This is formalized in Lemma 20 below.
Lemma 20. It holds that ∥u(tm)∥2=umin. Moreover, if ν(0)≤∥u(0)∥2 then ν(tm)=umin.

Proof. ∥u(tm)∥2=umin directly follows from properties (ii) and (iii) of Lemma 19. In the case where
ν(0)≤∥u(0)∥2, from continuity of ν(t) and ∥u(t)∥2, and from the definition of tm, it must be that
∥u(tm)∥2=ν(tm). Together with ∥u(tm)∥2=umin, this concludes the proof.

Finally, we are ready to establish a lower bound for umin.
Lemma 21. It holds that:

umin≥
∥∥wn:1(0)

∥∥
2
min

{
1,
(

2
3·

1+ν(0)
1−ν(0)

)n}
,

where in the case ν(0)=1 the fraction (1+ν(0))/(1−ν(0)) is to be interpreted as equal to infinity,
leading to umin≥∥wn:1(0)∥2.

Proof. We split the proof into two possible cases: (i) ∥u(0)∥2≤ν(0); and (ii) ∥u(0)∥2>ν(0).

In case (i), by definition tm = 0. By taking Lemma 20 together with Equation (51), we obtain
umin=∥u(tm)∥2=∥u(0)∥2=∥wn:1(0)∥2.

Moving on to case (ii), recall that by assumption ∥wn:1(0)∥2≤0.2 and ν(0) ̸=−1. By Equation (51),
we have that ∥u(0)∥2 = ∥wn:1(0)∥2. Define tb :=

1
2 ln
( 1+∥u(0)∥2

1−∥u(0)∥2
· 1−ν(0)
1+ν(0)

)
, which we will show

upper bounds tm. Plugging t = tb into the explicit expression for ν(t) given in property (iii)
of Lemma 18, we have that ν(tb) = ∥u(0)∥2. Taking this together with Lemma 20, we obtain
ν(tb) = ∥u(0)∥2 ≥ umin = ν(tm). Note that ν(0)< ∥u(0)∥2 < 1, and property (iii) of Lemma 18,
together imply that ν(t) is (strictly) monotonically increasing. Thus, it must be that tb≥ tm. Combining
this observation with Lemma 15 yields:

umin=∥u(tm)∥2
≥∥u(0)∥2exp

(
−2ntm

)
≥∥u(0)∥2exp

(
−2ntb

)
=∥u(0)∥2

( 1+∥u(0)∥2

1−∥u(0)∥2
· 1−ν(0)
1+ν(0)

)−n
.
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Recalling that ∥u(0)∥2=∥wn:1(0)∥2≤0.2 enables us to conclude the proof for this case.

J.8.6 Escape From Origin

Recall that u(·) is the (unique) solution to Equation (51), which by Lemma 17 is a reparameterization
of wn:1(·). Recall also the function ν(·) from Definition 3, which quantifies the alignment between
u(·) and λyx. The current subsubappendix defines a certain point in time (Definition 5), establishes
that after this point u(·) and λyx are highly aligned (Lemma 22), and shows that this alignment is
accompanied by an escape of u(·) from the origin (Lemma 23).

Definition 5. Define ta := 1
2 ln
(
max

{
5· 1−ν(0)

1+ν(0) ,1
})

.

Lemma 22. For all t≥ ta: ν(t)≥ 2
3 .

Proof. We split the proof into two possible cases: (i) ν(0)≥ 2
3 ; and (ii) ν(0)< 2

3 .

For case (i), it holds that ta=0. We conclude the proof for this case by relying on Lemma 18, which
implies that ν(t) is monotonically non-decreasing.

Moving on to case (ii), it holds that ta= 1
2 ln
(
5· 1−ν(0)

1+ν(0)

)
. Plugging t= ta into the explicit expression

for ν(t) given in Lemma 18, we obtain ν(ta)=
2
3 . We conclude the proof for this case by once again

relying on the fact that ν(t) is monotonically non-decreasing.

Lemma 23. For all t≥0: ∥∥u(ta+t)
∥∥
2
≥ 2

3
·

exp( 23nt)

exp( 23nt)+
2
3u

−1
min−1

,

where (as defined in Subsubappendix J.8.5) umin :=inft≥0∥u(t)∥2.

Proof. Define g : [0,∞)→R by g(z) :=nz( 23 −z). Notice that g(·) is locally Lipschitz continuous.
Define ū : [0,∞)→R by ū(t) := 2

3 exp
(
2
3nt
)/(

exp
(
2
3nt
)
+ 2

3u
−1
min−1

)
. It holds that ∥u(ta)∥2 ≥

umin= ū(0). By Lemmas 14 and 22, d
dt∥u(t)∥2≥g

(
∥u(t)∥2

)
for all t≥ ta. Furthermore, notice that

d
dt ū
(
t
)
=g
(
ū(t)

)
. We may now use Lemma 11 to obtain ∥u(ta+t)∥2≥ ū(t) for all t≥0.

J.8.7 Convergence

Recall that u(·) is the (unique) solution to Equation (51), and (by Lemma 17) a reparameterization
of wn:1(·). Recall also the (alignment guaranteeing) time ta from Definition 5, the notation
umin :=inft≥0∥u(t)∥2, and the fact that (by Lemma 21) umin>0. In this subsubappendix we define
a certain time duration (Definition 6), and show that after it elapses from ta: (i) the norm of u(·) is
on the order of one, which is the norm of the target solution λyx (Lemma 24); and (ii) u(·) converges
to λyx exponentially fast (Lemma 25).

Definition 6. Define tc := 3
2n ln

(
2n

3umin

)
.35

Lemma 24. For all t≥0: ∥u(ta+tc+t)∥2≥ 2n
3(n+1) .

Proof. Let t≥0. From Lemma 23:

∥u(ta+tc+t)∥2≥ 2
3 ·

exp
(

2
3n(tc+t)

)
exp
(

2
3n(tc+t)

)
+ 2

3u
−1
min−1

≥ 2
3 ·

exp
(

2
3ntc

)
exp
(

2
3ntc

)
+ 2

3u
−1
min

= 2
3 ·

n
(

2
3u

−1
min

)
n
(

2
3u

−1
min

)
+
(

2
3u

−1
min

)= 2n
3(n+1) .

Lemma 25. For all t≥0: ∥λyx−u(ta+tc+t)∥2≤ 6
5exp

(
− 2n

3(n+1) t
)
.

35Note that, since n≥2 and umin≤∥u(0)∥2=∥wn:1(0)∥2≤0.2, the time duration tc is necessarily positive.
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Proof. Property (iv) from Lemma 19 together with ∥λyx∥2=1 imply that ∥λyx−u(t)∥2 ̸=0 for all
t≥0. Relying on Equation (51), while recalling the function ν(·) from Definition 3, we obtain:

d
dt∥λyx−u(t)∥2=

(λyx−u(t))
⊤

∥λyx−u(t)∥2

d
dt

(
λyx−u(t)

)
=

(λyx−u(t))
⊤

∥λyx−u(t)∥2

(
∥u(t)∥2

(
nu(t)−λyx

)
−(n−1)∥u(t)∥−1

2 u(t)u(t)⊤λyx

)
=

(λyx−u(t))
⊤

∥λyx−u(t)∥2

(
∥u(t)∥2

(
u(t)−λyx

)
+(n−1)∥u(t)∥2u(t)−(n−1)ν(t)u(t)

)
=

(λyx−u(t))
⊤

∥λyx−u(t)∥2

(
∥u(t)∥2

(
u(t)−λyx

)
+(n−1)

(
∥u(t)∥2−ν(t)

)
u(t)

)
=−∥u(t)∥2∥λyx−u(t)∥2+(n−1)

(
∥u(t)∥2−ν(t)

)ν(t)∥u(t)∥2−∥u(t)∥2
2

∥λyx−u(t)∥2

=−∥u(t)∥2∥λyx−u(t)∥2− (n−1)∥u(t)∥2

∥λyx−u(t)∥2

(
∥u(t)∥2−ν(t)

)2
,

for all t ≥ 0. By Lemma 24, we may bound d
dt∥λyx − u(t)∥2 ≤ − 2n

3(n+1)∥λyx − u(t)∥2 for all
t≥ ta+tc. Let t′≥0. We integrate d

dt∥λyx−u(t)∥2/∥λyx−u(t)∥2 from t= ta+tc to t= ta+tc+t′

in order to obtain ∥λyx−u(ta+ tc+ t′)∥2 ≤ ∥λyx−u(ta+ tc)∥2exp
(
− 2n

3(n+1) t
′ ). Recall that by

assumption ∥wn:1(0)∥≤ 0.2. By Equation (51) we have that ∥u(0)∥2= ∥wn:1(0)∥2. We conclude
the proof by noting that ∥λyx−u(0)∥2≤∥λyx∥2+∥u(0)∥2≤ 6

5 .

J.8.8 Time to Convergence

Recall that u(·) is the (unique) solution to Equation (51), and that Lemma 17 presents a monotonically
increasing function ξ(·) satisfying wn:1

(
ξ(t)

)
=u(t) for all t≥0. Recall also the function ν(·) from

Definition 3, quantifying the alignment between u(·) and λyx. Finally, recall the times ta and tc
from Definitions 5 and 6, which guarantee alignment and initiation of exponential convergence,
respectively. The current subsubappendix makes use of the above to establish that at the time t̄ defined
in Equation (17), wn:1(·) is ϵ̄-optimal, i.e. 1

2∥wn:1(t̄)−λyx∥22≤ ϵ̄.

We begin by defining a certain time duration (Definition 7), and showing that it elapsing from ta+tc
ensures that u(·) is ϵ̄-optimal (Lemma 26).

Definition 7. Define tϵ̄ :=
3(n+1)

2n ln
(

6
5
√
2ϵ̄

)
.36

Lemma 26. It holds that 1
2∥u(ta+tc+tϵ̄)−λyx∥22≤ ϵ̄.

Proof. The proof follows from plugging t= tϵ̄ into the result of Lemma 25.

Moving from the reparameterized to the original gradient flow trajectory, i.e. from u(·) to wn:1(·),
we immediately obtain ϵ̄-optimality of wn:1(·) at time ξ(ta+tc+tϵ̄).

Lemma 27. It holds that 1
2∥wn:1(ξ(ta+tc+tϵ̄))−λyx∥22≤ ϵ̄.

Proof. The proof immediately follows from Lemmas 17 and 26.

Lemma 28 below shows that the time t̄ defined in Equation (17) (recall that the scalar ν there, defined
in the preceding text, coincides with the value taken by the function ν(·) at zero) is greater than or
equal to ξ(ta+tc+tϵ̄).

Lemma 28. It holds that t̄≥ξ(ta+tc+tϵ̄).

Proof. By Lemma 19 we have that ∥u(t)∥2<1 for all t≥0. Recall the notationumin :=inft≥0∥u(t)∥2,

and the fact that (by Lemma 21) umin≥
∥∥wn:1(0)

∥∥
2
min

{
1,
(

2
3·

1+ν(0)
1−ν(0)

)n}
. For all t≥0:

ξ(t)=
∫ t

0
∥u(t′)∥−(1−2/n)

2 dt′≤
∫ t

0
u−1
mindt

′= tu−1
min. (53)

36Note that tϵ̄>0, since we assume ϵ̄≤1/2 without loss of generality (cf. Subsubappendix J.8.2).
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Recall from Subsubappendix J.8.2 that we assume (without loss of generality) ϵ̄≤ 1
2 . The following

holds:
ta+tc+tϵ̄=

1
2 ln
(
max

{
5· 1−ν(0)

1+ν(0) ,1
})

+ 3
2n ln

(
2n

3umin

)
+ 3(n+1)

2n ln
(

6
5
√
2ϵ̄

)
≤ 1

2 ln
(
5max

{ 1−ν(0)
1+ν(0) ,1

})
+ln

(
2n

3umin

)
+4ln

(
1√
ϵ̄

)
≤ ln

(√
5max

{ 1−ν(0)
1+ν(0) ,1

}
· 2n
3umin

·(1/ϵ̄)2
)

≤ ln
(
5nmax

{ 1−ν(0)
1+ν(0) ,1

}
·(1/ϵ̄)2 ·u−1

min

)
.

(54)

Using Equations (53) and (54), we conclude the proof:
ξ(ta+tc+tϵ̄)

≤(ta+tc+tϵ̄)u
−1
min

≤ ln
(
5nmax

{ 1−ν(0)
1+ν(0) ,1

}
·(1/ϵ̄)2 ·u−1

min

)
·u−1

min

≤ ln
(
5n(1/ϵ̄)2

∥∥wn:1(0)
∥∥−1

2
max

{
1,
(
3
2·

1−ν(0)
1+ν(0)

)n+1 })·∥∥wn:1(0)
∥∥−1

2
max

{
1,
(
3
2·

1−ν(0)
1+ν(0)

)n}
≤ ln

(
15n(1/2ϵ̄)

∥∥wn:1(0)
∥∥−1

2
max

{
1, 1−ν(0)

1+ν(0)

})
·2n
∥∥wn:1(0)

∥∥−1

2
max

{
1,
(
3
2·

1−ν(0)
1+ν(0)

)n}
= t̄.

Combining Lemmas 27 and 28 with the fact that, in general, gradient flow monotonically non-increases
the objective it optimizes, we obtain the result which the current subsubappendix set out to
prove — ϵ̄-optimality of wn:1(·) at time t̄.
Lemma 29. It holds that f

(
θ( t̄ )

)
−minq∈Rdf(q)= 1

2∥wn:1(t̄)−λyx∥22≤ ϵ̄.

Proof. The proof follows directly from Equation (16), Lemmas 27 and 28, and the fact that f(θ(·))
is monotonically non-increasing.

J.8.9 Geometric Analysis

The current subsubappendix analyzes the geometry of the optimization landscape around the gradient
flow trajectory. Namely, under the notations of Theorem 3, for t>0, ϵ∈

(
0, 1

2n

]
and correspondingDt,ϵ

(ϵ-neighborhood of gradient flow trajectory up to time t), it establishes a smoothness constantβt,ϵ=16n,
a Lipschitz constant γt,ϵ = 6

√
n, and the (upper) bound on the integral of (minus) the minimal

eigenvalue of the Hessian given in Equation (18) (with the function m(·) there being non-negative).

Recall (from Lemma 19) that the (Euclidean) norm of u(·) — the (unique) solution to Equation (51) —
is upper bounded by one. Since (by Lemma 17) u(·) is a reparameterization of wn:1(·), the norm
of wn:1(·) is upper bounded by one as well. This allows proving the following result.
Lemma 30. For all t′≥0: (

∥wn:1(t
′)∥1/n2 +ϵ

)n≤∥wn:1(t
′)∥2+2nϵ .

Proof. For all t′≥0:(
∥wn:1(t

′)∥1/n2 +ϵ
)n

=
∑n

j=0

(
n
j

)
∥wn:1(t

′)∥(n−j)/n
2 ϵj

≤
∑n

j=0n
j∥wn:1(t

′)∥(n−j)/n
2 ϵj

=∥wn:1(t
′)∥2+

∑n
j=1n

j∥wn:1(t
′)∥(n−j)/n

2 ϵj .

By Lemma 17 we have that wn:1

(
ξ(t′)

)
= u(t′), where ξ(t′) :=

∫ t′

0
∥u(t′′)∥−(1−2/n)

2 dt′′. ξ(·) is
unbounded since ∥u(·)∥2 is bounded by property (iv) of Lemma 19. It follows that:(

∥wn:1(t
′)∥1/n2 +ϵ

)n≤∥wn:1(t
′)∥2+

∑∞
j=1

(
nϵ
)j

=∥wn:1(t
′)∥2+

nϵ

1−nϵ

≤∥wn:1(t
′)∥2+2nϵ ,
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where the second transition follows from the formula for geometric sum (notice that nϵ<1 since by
assumption ϵ≤1/2n), and the last transition follows from the assumption ϵ≤1/2n.

Building on Lemma 30, and the fact that (by assumption) the gradient flow trajectory θ(·) emanates
from a balanced initialization (i.e. an initialization whose weight matrices satisfy the condition in
Equation (15)) — which by [18] implies that θ(t′) is balanced for any t′≥0 — the lemma below
establishes different properties for weight settings lying ϵ-away from the trajectory.

Lemma 31. Let t′ ≥ 0 and let θϵ ∈ Rd be a weight setting satisfying ∥θϵ − θ(t′)∥2 ≤ ϵ. Denote
by W1,ϵ ∈ Rd1,d0 ,W2,ϵ ∈ Rd2,d1 , ... ,Wn−1,ϵ ∈ Rdn−1,dn−2 ,Wn,ϵ ∈ R1,dn−1 the weight matrices
constituting θϵ, and by wn:1,ϵ ∈Rd0 the corresponding end-to-end matrix Wn,ϵWn−1,ϵ ···W1,ϵ (in
vectorized form). Then, the following hold:

(i) ∥wn:1,ϵ−wn:1(t
′)∥2≤

(
∥wn:1(t

′)∥1/n2 +ϵ
)n−∥wn:1(t

′)∥2 ;

(ii) ∥∇ϕ(wn:1,ϵ)∥2≤∥∇ϕ(wn:1(t
′))∥2+2nϵ ; and

(iii) for any J ⊆ [n]\∅,
∏

j∈J
∥Wj,ϵ∥F ≤

(
∥wn:1(t

′)∥2+2nϵ
) |J |

n .

Proof. For brevity, throughout this proof we omit the time t′ from our notation, i.e. we denote θ(t′),
wn:1(t

′), Wn:1(t
′) and W1(t

′),...,Wn(t
′) by θ, wn:1, Wn:1 and W1,...,Wn respectively.

Starting with property (i), we have that:∥∥wn:1,ϵ−wn:1

∥∥
2

=
∥∥Wn:1,ϵ−Wn:1

∥∥
F

=
∥∥(Wn+Wn,ϵ−Wn)···(W1+W1,ϵ−W1)−Wn:1

∥∥
F

=
∥∥∥∑(b1,..,bn)∈{0,1}n

(
bnWn+(1−bn)(Wn,ϵ−Wn)

)
···
(
b1W1+(1−b1)(W1,ϵ−W1)

)
−Wn:1

∥∥∥
F

=
∥∥∥∑(b1,..,bn)∈{0,1}n\{1}n

(
bnWn+(1−bn)(Wϵ,n−Wn)

)
···
(
b1W1+(1−b1)(Wϵ,1−W1)

)∥∥∥
F

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

∥∥(bnWn+(1−bn)(Wϵ,n−Wn)
)
···
(
b1W1+(1−b1)(Wϵ,1−W1)

)∥∥
F

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

∥∥bnWn+(1−bn)(Wϵ,n−Wn)
∥∥
F
···
∥∥b1W1+(1−b1)(Wϵ,1−W1)

)∥∥
F

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

(
bn∥Wn∥F+(1−bn)∥Wn,ϵ−Wn∥F

)
···
(
b1∥W1∥F+(1−b1)∥W1,ϵ−W1∥F

)
≤
∑

(b1,..,bn)∈{0,1}n\{1}n

(
bn∥Wn∥F +(1−bn)ϵ

)
···
(
b1∥W1∥F +(1−b1)ϵ

)
,

(55)
where the inequalities follow from sub-multiplicativity and sub-additivity of Frobenius norm, as well
as the assumption ∥θϵ−θ∥2 ≤ ϵ. Recall that θs meets the balancedness condition (Equation (15)).
Theorem 2.2 from [18] implies that the balancedness condition holds along the gradient flow trajectory.
Therefore, θ is balanced, i.e. for any j∈ [n−1] it holds that W⊤

j+1Wj+1=WjW
⊤
j . Using this relation

repeatedly, we obtain:
∥wn:1∥22=w⊤

n:1wn:1

=Wn:1W
⊤
n:1

=Wn:2W1W
⊤
1 W⊤

n:2

=Wn:2W
⊤
2 W2W

⊤
n:2

=Wn:3W2W
⊤
2 W2W

⊤
2 W⊤

n:3

=Wn:3W
⊤
3 W3W

⊤
3 W3W

⊤
n:3

...

=
(
WnW

⊤
n

)n
=∥Wn∥2nF .

(56)
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Since the balancedness condition implies that ∥Wj∥F = ∥Wj+1∥F for any j ∈ [n− 1], we may
conclude ∥Wj∥F =∥wn:1∥1/n2 for any j∈ [n]. This, along with Equation (55), establishes property (i):∥∥wn:1,ϵ−wn:1

∥∥
2

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

(
bn∥wn:1∥1/n2 +(1−bn)ϵ

)
···
(
b1∥wn:1∥1/n2 +(1−b1)ϵ

)
=
∑

(b1,..,bn)∈{0,1}n

(
bn∥wn:1∥1/n2 +(1−bn)ϵ

)
···
(
b1∥wn:1∥1/n2 +(1−b1)ϵ

)
−∥wn:1∥2

=
(
∥wn:1∥1/n2 +ϵ

)n−∥wn:1∥2 .

Moving to property (ii), we have that:

∥∇ϕ(wn:1,ϵ)∥2=∥wn:1,ϵ−λyx∥2
=∥wn:1−λyx+wn:1,ϵ−wn:1∥2
≤∥wn:1−λyx∥2+∥wn:1,ϵ−wn:1∥2
=∥∇ϕ(wn:1)∥2+∥wn:1,ϵ−wn:1∥2.

applying property (i), together with Lemma 30, we obtain property (ii):

∥∇ϕ(wn:1,ϵ)∥2≤∥∇ϕ(wn:1)∥2+
(
∥wn:1∥1/n2 +ϵ

)n−∥wn:1∥2≤∥∇ϕ(wn:1)∥2+2nϵ.

Regarding property (iii), for any J ⊆ [n] we have that:∏
j∈J

∥Wj,ϵ∥F =
∏

j∈J
∥Wj+Wj,ϵ−Wj∥F

≤
∏

j∈J

(
∥Wj∥F +∥Wj,ϵ−Wj∥F

)
≤
∏

j∈J

(
∥Wj∥F +ϵ

)
=
∏

j∈J

(
∥wn:1∥1/n2 +ϵ

)
=
(
∥wn:1∥1/n2 +ϵ

)|J |

=
((

∥wn:1∥1/n2 +ϵ
)n) |J |

n

,

where the third transition follows from the assumption ∥θϵ−θ∥2≤ϵ, and the fourth from Equation (56).
Applying Lemma 30 concludes the proof of property (iii), and the entire lemma.

The following lemma analyzes the Hessian and gradient of the training loss f(·), bounding their
spectral and Euclidean norms respectively.

Lemma 32. For any weight setting θ ∈ Rd with corresponding weight matrices
W1∈Rd1,d0 ,W2∈Rd2,d1 ,...,Wn−1∈Rdn−1,dn−2 ,Wn∈R1,dn−1 , the following hold:13

(i) ∥∇2f(θ)∥s≤n max
J⊆[n]

|J |=n−1

∏
j∈J

∥Wj∥2F +2n∥∇ϕ(wn:1)∥2 max
J⊆[n]

|J |=n−2

∏
j∈J

∥Wj∥F ; and

(ii) ∥∇f(θ)∥2≤
√
n∥∇ϕ(wn:1)∥2 max

J⊆[n]
|J |=n−1

∏
j∈J

∥Wj∥F .

Proof. Let ∆W1∈Rd1,d0 ,∆W2∈Rd2,d1 ,...,∆Wn−1∈Rdn−1,dn−2 ,∆Wn∈R1,dn−1 .

We begin with property (i). By Lemma 1 we have that:

∇2f(θ)[∆W1,...,∆Wn]=∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
+2Tr

(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
,

(57)
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where Wj′:j , for any j,j′∈{1,2,...,n}, is defined as Wj′Wj′−1···Wj if j≤j′, and as an identity matrix
(with size to be inferred by context) otherwise. We will upper bound each of the two summands on
the right-hand side of Equation (57). We bound the first summand as follows:

∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
=
∥∥∥∑n

j=1Wn:j+1(∆Wj)Wj−1:1

∥∥∥2
F

≤
(∑n

j=1

∥∥Wn:j+1(∆Wj)Wj−1:1

∥∥
F

)2
≤n
∑n

j=1

∥∥Wn:j+1(∆Wj)Wj−1:1

∥∥2
F

≤n
∑n

j=1

∥∥Wn

∥∥2
F
···
∥∥Wj+1

∥∥2
F

∥∥∆Wj

∥∥2
F

∥∥Wj−1

∥∥2
F
···
∥∥W1

∥∥2
F

≤n max
J⊆[n]

|J |=n−1

∏
j∈J ∥Wj∥2F ·

∑n
j=1

∥∥∆Wj

∥∥2
F

,

(58)

where the first transition follows from the fact that the Hessian of ϕ(·) is an identity (since
ϕ(W )= 1

2∥W−Λyx∥2F +c), the second trasition follows from the triangle inequality, the third trasition
follows from the one-norm of a vector in Rn being no greater than

√
n times its Euclidean norm, and

the fourth transition follows from sub-multiplicativity of Frobenius norm. Moving on to bounding
the second summand on the right-hand side of Equation (57):

2Tr
(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
≤2∥∇ϕ(Wn:1)∥F

∥∥∥∑1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

∥∥∥
F

≤2∥∇ϕ(Wn:1)∥F
∑

1≤j<j′≤n∥Wn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1∥F
≤2∥∇ϕ(Wn:1)∥F

∑
1≤j<j′≤n

∥∥∆Wj′
∥∥
F

∥∥∆Wj

∥∥
F
·
∏

j′′∈[n]/{j,j′}
∥∥Wj′′

∥∥
F

≤2∥∇ϕ(Wn:1)∥F max
J⊆[n]

|J |=n−2

∏
j∈J

∥∥Wj

∥∥
F
·
∑

1≤j<j′≤n

∥∥∆Wj′
∥∥
F

∥∥∆Wj

∥∥
F

,

where the first transition follows from Cauchy-Schwartz inequality, the second and third from
sub-additivity and sub-multiplicativity of Frobenius norm respectively. It holds that:∑

1≤j<j′≤n∥∆Wj′∥F ∥∆Wj∥F ≤
(∑n

j=1∥∆Wj∥F
)2

≤n
∑n

j=1∥∆Wj∥2F ,

where the last transition follows from the fact that the one-norm of a vector in Rn is never greater than√
n times its Euclidean norm. This leads us to:

2Tr
(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
≤2n∥∇ϕ(Wn:1)∥F max

J⊆[n]
|J |=n−2

∏
j∈J

∥∥Wj

∥∥
F
·
∑n

j=1∥∆Wj∥2F . (59)

Plugging Equations (58) and (59) into Equation (57), we obtain:

∇2f(θ)[∆W1,..,∆Wn]≤(
n max

J⊆[n]
|J |=n−1

∏
j∈J ∥Wj∥2F +2n∥∇ϕ(Wn:1)∥F max

J⊆[n]
|J |=n−2

∏
j∈J ∥Wj∥F

)∑n
j=1∥∆Wj∥2F .

This proves property (i).

Moving on to property (ii), we overload notation by allowing the function f(·) to intake the tuple
(W1,W2,...,Wn) (in which case W1,...,Wn are arranged as θ, and the value f(θ) is returned). In
Appendix A of [4] it is shown that:

∇f(W1,...,Wn)=(
(Wn:2)

⊤∇ϕ(Wn:1),..,(Wn:j+1)
⊤∇ϕ(Wn:1)(Wj−1:1)

⊤,..,∇ϕ(Wn:1)(Wn−1:1)
⊤
)

.
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It follows that:
∥∇f(θ)∥22=∥∇f(W1,...,Wn)∥2Frobenius

=
∑n

j=1

∥∥(Wn:j+1)
⊤∇ϕ(Wn:1)(Wj−1:1)

⊤∥∥2
F

≤
∑n

j=1

∥∥∇ϕ(Wn:1)
∥∥2
F

∏
i∈[n]/{j}∥Wj∥2F

≤n
∥∥∇ϕ(Wn:1)

∥∥2
F

max
J⊆[n]

|J |=n−1

∏
j∈J ∥Wj∥2F ,

where the second transition follows from sub-multiplicativity of Frobenius norm. Taking square root
of both sides of the inequality concludes the proof of property (ii), and the entire lemma.

Combining Lemmas 31 and 32, Lemma 33 below establishes the smoothness and Lipschitz constants
βt,ϵ=16n and γt,ϵ=6

√
n respectively.

Lemma 33. It holds that supq∈Dt,ϵ
∥∇2f(q)∥s≤16n and supq∈Dt,ϵ

∥∇f(q)∥2≤6
√
n.

Proof. Under the conditions and notations of Lemma 31, for any J ⊆ [n]:∏
j∈J

∥Wj,ϵ∥F ≤
(
∥wn:1(t

′)∥2+2nϵ
) |J |

n . (60)

By Lemma 17 we have that wn:1

(
ξ(t′)

)
= u(t′), where ξ(t′) :=

∫ t′

0
∥u(t′′)∥−(1−2/n)

2 dt′′. ξ(·) is
unbounded since ∥u(·)∥2 < 1 by property (iv) of Lemma 19. This implies ∥wn:1(t

′)∥2 < 1, which
together with the fact that by definition ϵ≤1/2n, means:∏

j∈J
∥Wj,ϵ∥F ≤

(
1+1

) |J |
n ≤2. (61)

It holds that:

∥∇ϕ(wn:1,ϵ)∥2≤
∥∇ϕ(wn:1(t

′))∥2+2nϵ=∥wn:1(t
′)−λyx∥2+2nϵ≤∥wn:1(t

′)∥2+∥λyx∥2+2nϵ≤3,
(62)

where the first transition follows from Lemma 31, and the last from ∥wn:1(t
′)∥2<1, ∥λyx∥2=1 and

ϵ≤1/2n. We conclude the proof by plugging Equations (61) and (62) into the results of Lemma 32,
while noticing that arbitrary t′≥0 and θϵ account for all q∈Dt,ϵ.

Lemma 34 below employs Lemma 2 from our analysis in Section 4, along with Lemma 31 above,
for deriving a lower bound on the minimal eigenvalue of the Hessian (of the training loss f(·)) in the
vicinity of a point along the gradient flow trajectory.

Lemma 34. For all t′≥0:

inf
q∈Rd

∥q−θ(t′)∥2≤ϵ

λmin(∇2f(q))≥−(n−1)
(
∥∇ϕ(wn:1(t

′))∥2+2nϵ
)(
∥wn:1(t

′)∥2+2nϵ
)1− 2

n ,

where λmin(∇2f(q)) stands for the minimal eigenvalue of ∇2f(q).

Proof. Let θϵ∈Rd be a weight setting satisfying ∥θϵ−θ(t′)∥2≤ϵ. Denote by W1,ϵ∈Rd1,d0 ,W2,ϵ∈
Rd2,d1 ,...,Wn−1,ϵ∈Rdn−1,dn−2 ,Wn,ϵ∈R1,dn−1 the weight matrices constituting θϵ, and by wn:1,ϵ∈
Rd0 the corresponding end-to-end matrix Wn,ϵWn−1,ϵ···W1,ϵ (in vectorized form). Lemma 2 ensures:

λmin(∇2f(θϵ))≥−(n−1)∥∇ϕ(wn:1,ϵ)∥2 max
J⊆[n]

|J |=n−2

∏
j∈J

∥Wj,ϵ∥s .

We conclude the proof by bounding spectral norms with Frobenius norms, and applying properties
(ii) and (iii) from Lemma 31.
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Lemma 34 implies that, under the notations of Theorem 3, we may choose the function m(·) to be
as follows:

m : [0,t]→R , m(t′)=(n−1)(∥∇ϕ(wn:1(t
′))∥2+2nϵ)(∥wn:1(t

′)∥2+2nϵ)1−
2
n . (63)

Lemma 35 below bounds the integral of this choice of m(·) in accordance with Equation (18) (recall
that the scalar ν there, defined in the preceding text, coincides with the value taken by the function ν(·)
from Definition 3 at zero). For doing so, it makes use of the reparameterized trajectory u(·), and splits
the reparameterized integral into two parts corresponding to two time intervals: before exponentially
fast convergence is guaranteed to have commenced (i.e. until time ta+tc — see Subsubappendix J.8.7),
and afterwards.
Lemma 35. With the function m(·) defined by Equation (63), Equation (18) is satisfied.

Proof. We apply a change of variable using the (continuously differentiable and strictly increasing)
function ξ(·) defined in Lemma 17:∫ t

0

m(t′)dt′=

∫ ξ−1(t)

ξ−1(0)

m
(
ξ(t′)

)
d
dt′ ξ(t

′)dt′.

Notice that ξ(0) = 0 and d
dt′ ξ(t

′) = ∥u(t′)∥−(1−2/n). Plugging this and the definition of m(.)
(Equation (63)) into the above leads to:∫ t

0

m(t′)dt′=

∫ ξ−1(t)

0

(n−1)
(∥∥∇ϕ

(
wn:1

(
ξ(t′)

))∥∥
2
+2nϵ

)(∥∥wn:1

(
ξ(t′)

)∥∥
2
+2nϵ

)1− 2
n ∥∥u(t′)∥∥ 2

n−1
dt′.

Since (by Lemma 17) wn:1(ξ(t))=u(t), we have that:∫ t

0

m(t′)dt′=

∫ ξ−1(t)

0

(n−1)
(∥∥∇ϕ

(
u(t′)

)∥∥
2
+2nϵ

)(∥∥u(t′)∥∥
2
+2nϵ

)1− 2
n ∥∥u(t′)∥∥ 2

n−1
dt′.

Recall the notation umin :=inft≥0∥u(t)∥2 and that, by Lemma 21, umin>0. It holds that:∫ t

0

m(t′)dt′=

∫ ξ−1(t)

0

(n−1)
(∥∥∇ϕ

(
u(t′)

)∥∥
2
+2nϵ

)(
1+2nϵ∥u(t′)∥−1

)1− 2
n

dt′

≤
∫ ξ−1(t)

0

(n−1)
(∥∥∇ϕ

(
u(t′)

)∥∥
2
+2nϵ

)(
1+2nϵ∥u(t′)∥−1

)
dt′

≤
∫ ξ−1(t)

0

(n−1)
(∥∥∇ϕ

(
u(t′)

)∥∥
2
+2nϵ

)(
1+2nϵu−1

min

)
dt′

=(n−1)
(
1+2nϵu−1

min

)(∫ ξ−1(t)

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+2nϵξ−1(t)

)
.

Per Lemma 19 we know that ∥u(t′)∥2<1 for all t′≥0. Thus, by the definition of ξ(·), for all t′≥0
it holds that ξ(t′)≥ t′, which (since ξ(·) is strictly increasing) implies ξ−1(t)≤ t. This leads to:∫ t

0

m(t′)dt′

≤(n−1)
(
1+2nϵu−1

min

)(∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+2nϵt

)
=(n−1)

∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+(n−1)2nϵt+(n−1)2nϵu−1

min

(∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+2nϵt

)
≤(n−1)

∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+2n2ϵt+4n3ϵ2u−1

mint+2n2ϵu−1
min

∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′.

It holds that ∥∇ϕ
(
u(t′)

)
∥2 = ∥u(t′)−λyx∥2 ≤ ∥u(t′)∥2 + ∥λyx∥2 ≤ 2 for all t′ ≥ 0 (recall that

∥λyx∥2=1 by assumption). Thus:∫ t

0

m(t′)dt′≤(n−1)
∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+2n2ϵt+4n3ϵ2u−1

mint+2n2ϵu−1
min ·2t

≤(n−1)
∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+3·max

{
2n2ϵt,4n3ϵ2u−1

mint,4n
2ϵu−1

mint
}

≤(n−1)
∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+3·4n3ϵu−1

mint.

(64)
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We may bound the latter integral as follows:∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′≤

∫∞
0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′

=
∫ ta+tc
0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′+

∫∞
ta+tc

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′

=
∫ ta+tc
0

∥∥u(t′)−λyx

∥∥
2
dt′+

∫∞
0

∥∥u(ta+tc+t′)−λyx

∥∥
2
dt′,

where ta and tc are given by Definitions 5 and 6 respectively. Notice that
∥∥u(t′)−λyx

∥∥
2

is monotoni-
cally non-increasing (since u(·) is a monotonic reparameterization of wn:1(·), and gradient flow mono-
tonically non-increases the objective it optimizes). Applying this fact, as well as Lemma 25, we obtain:∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′≤

∫ ta+tc
0

∥∥u(0)−λyx

∥∥
2
dt′+ 6

5

∫∞
0

exp
(
− 2n

3(n+1) t
′)dt′

=
∥∥u(0)−λyx

∥∥
2

(
ta+tc

)
+ 6

5 ·
3(n+1)

2n

≤ 6
5

(
ta+tc

)
+3,

where the last transition follows from the assumptions ∥wn:1(0)∥2 ≤ 0.2 and ∥λyx∥2 = 1. Plug in
the definitions of ta and tc (Definitions 5 and 6 respectively):∫ t

0

∥∥∇ϕ
(
u(t′)

)∥∥
2
dt′

≤ 6
5

(
1
2 ln
(
max

{
5· 1−ν(0)

1+ν(0) ,1
})

+ 3
2n ln

(
2n

3umin

))
+3

= 3
5 ln
(
max

{
5· 1−ν(0)

1+ν(0) ,1
})

+ 9
5n ln

(
2n

3umin

)
+3

= 3
5n ln

(
max

({
5· 1−ν(0)

1+ν(0) ,1
})n ·( 2n

3umin

)3 ·e5n)
≤ 3

5n ln
(
5nmax

({ 1−ν(0)
1+ν(0) ,1

})n ·( 2n3 )3max
({

3
2 ·

1−ν(0)
1+ν(0) ,1

})3n∥wn:1(0)∥−3
2 ·e5n

)
≤ 3

5n ln
(
n3∥wn:1(0)∥−3

2 e8nmax
({ 1−ν(0)

1+ν(0) ,1
})4n)

,

(65)

where the fourth transition follows from Lemma 21. Plug Equation (65) into Equation (64):∫ t

0

m(t′)dt′

≤ 3(n−1)
5n ln

(
n3∥wn:1(0)∥−3

2 e8nmax
({ 1−ν(0)

1+ν(0) ,1
})4n)

+12n3ϵu−1
mint

≤ ln
(
n2∥wn:1(0)∥−2

2 e5(n−1)max
({ 1−ν(0)

1+ν(0) ,1
}) 5

2 (n−1)
)
+15n3u−1

minϵt.

We conclude the proof with the help of Lemma 21:∫ t

0

m(t′)dt′≤
15n3max

({
3
2 ·

1−ν(0)
1+ν(0) ,1

})n
tϵ

∥wn:1(0)∥2
+ln

(n2e5(n−1)max
({ 1−ν(0)

1+ν(0) ,1
}) 5

2
(n−1)

∥wn:1(0)∥2
2

)
.

J.8.10 Conclusion

Lemmas 12, 29, 33 and 35, along with the fact that by the definition of m(·) (Equation (63)) it is
non-negative, together form a complete proof for Proposition 3.

J.9 Proof of Theorem 4

J.9.1 Sketch

Proof sketch (for complete proof see Subappendix J.9). The proof calls Proposition 3 with ϵ̄ and ϵ
small enough such that for any t > 0 and q′ ∈ Rd, if gradient flow at time t is ϵ̄-optimal (meaning
f(θ(t))−minq∈Rdf(q)≤ ϵ̄ ) and is ϵ-approximated by q′ (i.e. ∥q′−θ(t)∥2≤ϵ), then q′ is ϵ̃-optimal
(f(q′)−minq∈Rdf(q)≤ ϵ̃ ). The proposition implies that gradient flow is ϵ̄-optimal at the time t̄ given
in Equation (17). Since gradient flow monotonically non-increases f(·), it is ϵ̄-optimal at any time after t̄
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as well. With η and k adhering to Equations (19) and (20) respectively, we have kη≥ t̄, so it suffices to
show that when its step size is η, the first k iterates of gradient descent ϵ-approximate the trajectory of
gradient flow up to time kη. This follows directly from delivering to Theorem 3 the geometric results of
Proposition 3 (bound on integral of minimal eigenvalue of the Hessian, as well as smoothness and Lips-
chitz constants) corresponding toDkη,ϵ — ϵ-neighborhood of gradient flow trajectory up to timekη.

J.9.2 Complete Proof

Let ϵ̃>0, and consider η>0 and k∈N adhering to Equations (19) and (20) respectively. We would like
to show that with step size η, iterate k of gradient descent is ϵ̃-optimal, i.e. f(θk)−minq∈Rdf(q)≤ ϵ̃.
Without loss of generality, we may assume ϵ̃≤1 (a proof that is valid for ϵ̃=1 automatically accounts
for ϵ̃>1 as well). Define:

ϵ̄ := ϵ̃/2 , ϵ :=
∥Wn:1,0∥F ϵ̃

15n3
(
max
{
1,

3
2 ·

1−ν
1+ν

})n
kη

. (66)

Invoking Proposition 3 with initial point θs = θ0, time t= kη and ϵ̄, ϵ as defined above (note that
ϵ ∈ (0, 1/(2n)]), we obtain that the gradient flow trajectory emanating from θ0 is defined over
infinite time, and with θ : [0,∞) → Rd representing this trajectory, the following time t̄ satisfies
f(θ(t̄))−minq∈Rdf(q)≤ ϵ̄:

t̄=
2n
(
max
{
1,

3
2 ·

1−ν
1+ν

})n
∥Wn:1,0∥F

ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥Fmin{1,2ϵ̄}

)
. (67)

Moreover, we obtain that under the notations of Theorem 3, in correspondence with Dkη,ϵ

(ϵ-neighborhood of gradient flow trajectory up to time kη) are the smoothness and Lipschitz constants
βkη,ϵ=16n and γkη,ϵ=6

√
n respectively, and the following (upper) bound on the integral of (minus)

the minimal eigenvalue of the Hessian:

∫ kη

0

m(t′)dt′≤
15n3

(
max
{
1,

3
2 ·

1−ν
1+ν

})n
kηϵ

∥Wn:1,0∥F
+ln

(
n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,0∥2
F

)
, (68)

where the function m : [0,kη]→R is non-negative.

Notice that k=⌊t̄/η+1⌋ and therefore kη≥ t̄. Combining this with the fact that the gradient flow trajec-
tory is ϵ̄-optimal at time t̄, and that in general gradient flow monotonically non-increases the objective it
optimizes, we infer ϵ̄-optimality of the gradient flow trajectory at timekη, i.e.θ(kη)−minq∈Rdf(q)≤ ϵ̄.
We will invoke Theorem 3 for showing that, in addition to being ϵ̄-optimal, the gradient flow trajectory
at time kη is also ϵ-approximated by iterate k of gradient descent, i.e. ∥θk−θ(kη)∥2≤ϵ. This, along
with f(·) being 6

√
n-Lipschitz acrossDkη,ϵ (ϵ-neighborhood of gradient flow trajectory up to time kη),

yields the desired result — ϵ̃-optimality for iterate k of gradient descent:

f
(
θk

)
−minq∈Rdf(q)

=
(
f
(
θk

)
−f
(
θ(kη)

))
+
(
f
(
θ(kη)

)
−minq∈Rdf(q)

)
≤
(
6
√
n
∥∥θk−θ(kη)

∥∥
2

)
+
(
f
(
θ(kη)

)
−minq∈Rdf(q)

)
≤6

√
n·ϵ+ϵ̄

≤ ϵ̃ ,

where the last transition follows from the definitions of ϵ and ϵ̄ (Equation (66)).
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We conclude the proof by showing that indeed ∥θk−θ(kη)∥2≤ϵ. Equation (68), the definition of ϵ
(Equation (66)) and the condition ϵ̃≤1 together imply:∫ kη

0

m(t′)dt′ ≤
15n3

(
max
{
1,

3
2 ·

1−ν
1+ν

})n
kηϵ

∥Wn:1,0∥F
+ln

(
n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,0∥2
F

)
(69)

= ϵ̃+ln

(
n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,0∥2
F

)
≤ 1+ln

(
n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,0∥2
F

)
< ln

(
3n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,0∥2
F

)
.

Recalling the fact that k = ⌊t̄/η+1⌋, the expression for t̄ (Equation (67)), and the definition of ϵ̄
(Equation (66)), we have:

kη=⌊t̄/η+1⌋η≤ t̄+η=
2n
(
max
{
1,

3
2 ·

1−ν
1+ν

})n
∥Wn:1,0∥F

ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥F ϵ̃

)
+η (70)

<
3n
(
max
{
1,

3
2 ·

1−ν
1+ν

})n
∥Wn:1,0∥F

ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥F ϵ̃

)
,

where the last transition makes use of the upper bound on η given in Equation (19). It holds that:

ϵ−1βkη,ϵγkη,ϵkηe
∫ kη
0

m(t′)dt′

<
15n3

(
max
{
1,

3
2 ·

1−ν
1+ν

})n
kη

∥Wn:1,0∥F ϵ̃ ·16n·6
√
n·kη ·

3n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,0∥2
F

<
4500n13/2e6n−5

(
max
{
1,

1−ν
1+ν

})(7n−5)/2

∥Wn:1,0∥3
F ϵ̃

(kη)2

<
4500n13/2e6n−5

(
max
{
1,

1−ν
1+ν

})(7n−5)/2

∥Wn:1,0∥3
F ϵ̃

·
9n2
(
max
{
1,

3
2 ·

1−ν
1+ν

})2n
∥Wn:1,0∥2

F

(
ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥F ϵ̃

))2

<
n17/2e7n+6

(
max
{
1,

1−ν
1+ν

})(11n−5)/2

∥Wn:1,0∥5
F ϵ̃

(
ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥F ϵ̃

))2

≤1/η ,

where the first transition follows from Equation (69) and the definition of ϵ (Equation (66)); the
third makes use of Equation (70); and the last is due to the upper bound on η given in Equation (19).
Rearrange the derived inequality:

η<
ϵ

βkη,ϵγkη,ϵkηe
∫ kη
0

m(t′)dt′
.

Since m(·) is non-negative, it holds that:

ϵ

βkη,ϵγkη,ϵkηe
∫ kη
0

m(t′)dt′
≤ inf

t∈(0,kη]

ϵ

βkη,ϵγkη,ϵ
∫ t

0
e
∫ t
t′m(t′′)dt′′dt′

,

and therefore:
η< inf

t∈(0,kη]

ϵ

βkη,ϵγkη,ϵ
∫ t

0
e
∫ t
t′m(t′′)dt′′dt′

. (71)

We now invoke Theorem 3 with ϵ as we have defined (Equation (66)), time t̃= kη, and βkη,ϵ, γkη,ϵ
and m(·) as produced by Proposition 3. Recalling that in our context gradient flow and gradient
descent are initialized identically, i.e. θ(0) = θ0, we conclude from Equation (71) that the first
⌊kη/η⌋ = k iterates of gradient descent ϵ-approximate the gradient flow trajectory up to time kη,
i.e. ∥θk′−θ(k′η)∥2≤ϵ for all k′∈{1,2,...,k}. In particular ∥θk−θ(kη)∥2≤ϵ, as required.

54



J.10 Proof of Corollary 2

It suffices to show that the conditions of Theorem 4 are almost surely satisfied. Initialization is balanced
by construction, and since Wn:1,0 (initial end-to-end matrix) follows the distribution P , it almost
surely has Frobenius norm no greater than 0.2. Moreover, since P is continuous, and the line in R1,d0

passing through the origin and Λyx has (Lebesgue) measure zero, Wn:1,0 is almost surely not equal
to zero and not antiparallel to Λyx. This completes the proof.

J.11 Proof of Proposition 4

The proof is organized as follows. Subsubappendix J.11.1 establishes preliminaries. Subsubappendixes
J.11.2, J.11.3 and J.11.4 respectively analyze the trajectories of gradient flow and gradient descent in
three different regions of the objective function: (i) “anisotropic” region where curvatures in first and
second coordinates differ; (ii) transition region between the previous and the next; and (iii) “isotropic”
region where curvatures in first and second coordinates are identical. Subsubappendix J.11.5 shows
that the location of gradient flow at time t̃ is not ϵ-approximated by different portions of the gradient
descent trajectory. Finally, Subsubappendix J.11.6 concludes.

J.11.1 Preliminaries

Consider an arbitrary time

t̃∈
[
2
a ln
( 2−3ρ̄/2
θs,2−(ρ̄/2−1)

)
+ 1

a ln
(

2
1−ρ̄

)
, 2a ln

( 2−3ρ̄/2
θs,2−(ρ̄/2−1)

)
+ 1

a ln
( 1+ρ̄/4
1−3ρ̄/4

)
+ 1

a ln(b)
]

,

and suppose the step size η is greater than or equal to 1014

a e−at̃ϵ. We aim to prove ∥θk−θ(t̃)∥2>ϵ
for all k∈N∪{0}.

Since the objective function f(·) (defined in Equation (23)) is additively separable (can be expressed
as a sum of terms, each depending on a single input variable), the dynamics in Rd induced by gradient
flow and gradient descent can be analyzed separately for different coordinates. Lemma 36 below
analyzes the dynamics in the third coordinate, establishing the sought after result for the case where η
is greater than 1

6a .

Lemma 36. Assume η> 1
6a . Then ∥θk−θ(t̃)∥2>ϵ for all k∈N∪{0}.

Proof. Denote by θ̂(·) the third coordinate of the gradient flow trajectory θ(·). Similarly, for any
k∈N∪{0}, denote by θ̂k the third coordinate of the gradient descent iterate θk. For any k∈N∪{0},
it holds that:

|θ̂k+1|= |θ̂k−η ∂f
∂q3

(θk)|= |θ̂k−12aηθ̂k|= |θ̂k|·|1−12aη|> |θ̂k|.

Thus, we may conclude |θ̂k|> |θ̂0| for any k ∈N. The solution to the gradient flow equation of the
third coordinate (i.e. d

dt θ̂(t)=−12aθ̂(t)) is θ̂(t)= θ̂(0)e−12at. Recall that θ̂(0)= θ̂0> 2 and notice
that t̃≥ ln(2)

12a . For any k∈N∪{0} we have:

∥θ(t̃)−θk∥2≥|θ̂(t̃)−θ̂k|≥|θ̂k|−|θ̂(t̃)|≥|θ̂0|−
∣∣θ̂( ln(2)12a

)∣∣= |θ̂0|− 1
2 |θ̂0|>1>ϵ.

It remains to treat the case where η is no greater than 1
6a . In the remainder of the proof we restrict our

attention to this case, i.e. we assume η∈
[
1014

a e−at̃ϵ, 1
6a

]
. Special focus will be devoted to the dynamics

in the first two coordinates. Denote by θ(·) and θ̄(·) the first and second coordinates, respectively, of the
gradient flow trajectory θ(·). Similarly, for k∈N∪{0}, denote by θk and θ̄k the first and second coor-
dinates, respectively, of the gradient descent iterate θk. The following lemma shows that in the first two
coordinates, the trajectories of gradient flow and gradient descent are monotonically non-decreasing.
Lemma 37. The functions θ(·) and θ̄(·), and the series (θk)∞k=0 and (θ̄k)

∞
k=0, are all monotonically

non-decreasing.

Proof. The results follows from the fact that the derivative of φ(·) over [0,∞), and that of φ̄(·) over
[ ρ̄2−1,∞), are both non-positive.
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With Lemma 37 at hand, we consider three regions (in Rd) which may be traversed by the trajectories
of gradient flow and gradient descent: (i) “anisotropic” region [0 ,zc)× [ρ̄/2− 1 ,1− ρ̄)×Rd−2,
where the curvatures of f(·) in the first and second coordinates differ (namely, they equal −a
and −a/2 respectively); (ii) transition region [0,zc)×[1− ρ̄,1)×Rd−2; and (iii) “isotropic” region
[0,zc)×[1,z̄c)×Rd−2, where the curvatures of f(·) in the first and second coordinates are identical
(namely, they both equal −a). As we now show, throughout the above regions, the trajectories of
gradient flow and gradient descent admit simple characterizations for their first coordinate.

Lemma 38. It holds that θ(t)=θ(0)eat for all t∈
[
0,a−1ln

(
zc/θ(0)

)]
, and θk=θ0(1+aη)k for all

k∈
{
0,1,...,

⌈
ln(zc/θ0)

/
ln(1+aη)

⌉}
.

Proof. Notice that θ(0)∈(0,zc). For any t∈ [0,∞) such that θ(t)∈(0,zc), we obtain:

dθ
dt (t)=−dφ

dz

(
θ(t)

)
=aθ(t).

The function t 7→ θ(0)eat is a solution to this initial value problem valid through t∈
(
0,ln( zcθ0 )

/
a
)
,

and from uniqueness of the solution together with continuity of θ(·), we conclude that θ(t)=θ(0)eat

for t∈
[
0,ln( zcθ0 )

/
a
]
.

Moving on to gradient descent. Notice that θ0∈(0,zc), and for any k∈N such that θk−1∈(0,zc) we
have:

θk=θk−1−η dφ
dz (θk−1)=θk−1+aηθk−1=θk−1(1+aη).

It follows that θk = θ0(1+ aη)k for any k ∈
{
0,1,..,

⌈
ln( zcθ0 )/ln(1+ aη)

⌉}
, where by plugging in

k=
⌈
ln( zcθ0 )/ln(1+aη)

⌉
we obtain θk−1<zc.

Compared to the first coordinate, in the second coordinate the trajectories of gradient flow and
gradient descent are more involved — analyses for the anisotropic, transition and isotropic regions
are conducted in Subsubappendixes J.11.2, J.11.3 and J.11.4 respectively.

J.11.2 Anisotropic Region

The current subsubappendix analyzes the second coordinate of the gradient flow and gradient descent
trajectories throughout the anisotropic region, or more specifically, when the second coordinate is
in the range [ρ̄/2−1,1−ρ̄). Beginning with gradient flow, we recall that (by Lemma 37) the second
coordinate of the trajectory is monotonically non-decreasing, and consider the time at which it exits
the range [ρ̄/2−1,1−ρ̄).

Definition 8. Define t1−ρ̄ :=inf{t≥0: θ̄(t)≥1−ρ̄}.37

Lemma 39 below provides an explicit expression for t1−ρ̄, and for the second coordinate of the gradient
flow trajectory until this time.

Lemma 39. The following hold:

(i) t1−ρ̄=
2
a ln
(
(4−3ρ̄)

/
(2θ̄(0)+2−ρ̄)

)
; and

(ii) θ̄(t)=
(
θ̄(0)−(ρ̄/2−1)

)
eat/2+(ρ̄/2−1) for all t∈ [0,t1−ρ̄] .

Proof. Notice that θ̄(0)∈( ρ̄2−1,1−ρ̄). For any t∈ [0,∞) such that θ̄(t)∈( ρ̄2−1,1−ρ̄), we obtain:

dθ̄
dt (t)=−dφ̄

dz

(
θ̄(t)

)
= a

2

(
θ̄(t)−( ρ̄2−1)

)
.

The function t 7→
(
θ̄(0) − ( 12 ρ̄ − 1)

)
eat/2 +

(
1
2 ρ̄ − 1

)
is a solution to this initial value problem

valid through t ∈
(
0, 2

a ln((4 − 3ρ̄)
/
(2θ̄(0) + 2 − ρ̄))

)
, and from uniqueness of the solution

together with continuity of θ̄(·), we conclude that θ̄(t) =
(
θ̄(0) − ( 12 ρ̄ − 1)

)
eat/2 +

(
1
2 ρ̄ − 1

)
for t ∈

[
0, 2a ln((4− 3ρ̄)

/
(2θ̄(0) + 2− ρ̄))

]
. This, along with the definition of t1−ρ̄, implies that

t1−ρ̄=
2
a ln((4−3ρ̄)

/
(2θ̄(0)+2−ρ̄)).

37Note that by convention, the infimum of the empty set is equal to infinity.
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Moving on to gradient descent, we provide a treatment analogous to that of gradient flow. Namely,
we recall that (by Lemma 37) the second coordinate of the trajectory is monotonically non-decreasing,
consider the iteration at which it exits the range [ρ̄/2−1,1− ρ̄), and present an explicit expression
for the index of this iteration as well as the second coordinate of the gradient descent trajectory until
the iteration is reached.

Definition 9. Define k1−ρ̄ :=inf
{
k∈N∪{0} : θ̄k≥1−ρ̄

}
.37

Lemma 40. The following hold:

(i) k1−ρ̄=
⌈(
ln(2−3ρ̄/2)−ln(θ̄0+1−ρ̄/2)

)/
ln(1+aη/2)

⌉
; and

(ii) θ̄k=
(
θ̄0−(ρ̄/2−1)

)
(1+aη/2)k+(ρ̄/2−1) for all k∈{0,1,...,k1−ρ̄} .

Proof. Notice that θ̄0∈( ρ̄2−1,1−ρ̄). For any k∈N such that θ̄k−1∈( ρ̄2−1,1−ρ̄), we obtain:

θ̄k= θ̄k−1−η dφ̄
dz (θ̄k−1)= θ̄k−1+

a
2η
(
θ̄k−1−( ρ̄2−1)

)
.

Subtract ( ρ̄2−1) from both sides of the equation:(
θ̄k−( ρ̄2−1)

)
=
(
θ̄k−1−( ρ̄2−1)

)
+ a

2η
(
θ̄k−1−( ρ̄2−1)

)
.

This leads us to: (
θ̄k−( ρ̄2−1)

)
=
(
θ̄k−1−( ρ̄2−1)

)
(1+ a

2η).

It follows that
(
θ̄k−( ρ̄2−1)

)
=
(
θ̄0−( ρ̄2−1)

)
(1+ a

2η)
k for any k∈{0,1,...,k1−ρ̄}. From the definition

of k1−ρ̄ it must be equal to
⌈(
ln(2−3ρ̄/2)−ln(θ̄0+1−ρ̄/2)

)/
ln(1+aη/2)

⌉
, as if it is smaller we get

θ̄k1−ρ̄
<1−ρ̄, and if it is larger we get θ̄k1−ρ̄−1

≥1−ρ̄, both contradicting the definition of k1−ρ̄.

We conclude this subsubappendix by combining its results with Lemma 38, thereby showing that
the gradient flow trajectory between initialization and time t1−ρ̄, and the gradient descent trajectory
between initialization and iteration k1−ρ̄, both lie in the anisotropic region.

Lemma 41. It holds that
(
θ(t), θ̄(t)

)
∈ [0 , zc) × [ρ̄/2 − 1 , 1 − ρ̄) for all t ∈ [0 , t1−ρ̄), and

(θk,θ̄k)∈ [0,zc)×[ρ̄/2−1,1−ρ̄) for all k∈{0,1,...,k1−ρ̄−1}.

Proof. We start by proving the result for gradient flow. By assumption it holds that θ̄(0) ∈
[ρ̄/2 − 1 , 1 − ρ̄). From monotonicity of θ̄(·) (Lemma 37) together with the definition of t1−ρ̄,
we have that θ̄(t) ∈

[
ρ̄/2− 1,1− ρ̄) for all t ∈

[
0, t1−ρ̄). Recall that we assume θ(0) ∈ (0.5,1).

By Lemma 38 we have that θ(t) ∈
[
θ(0),zc

)
for all t ∈

[
0, 1a ln

(
zc/θ(0)

))
. By Lemma 39 t1−ρ̄ =

2
a ln
(
(4−3ρ̄)

/
(2θ̄(0)+2−ρ̄)

)
. Since 2

a ln
(
(4−3ρ̄)

/
(2θ̄(0)+2−ρ̄)

)
≤ 1

a ln
(
zc/θ(0)

)
(can be verified

by recalling the assumptions on a, zc, ρ̄, θ(0) and θ̄(0)), it follows that θ(t)∈
[
0,zc

)
for all t∈

[
0,t1−ρ̄).

In conclusion, we have shown that
(
θ(t),θ̄(t)

)
∈ [0,zc)×[ρ̄/2−1,1−ρ̄) for all t∈ [0,t1−ρ̄).

Moving on to gradient descent, by assumption it holds that θ̄0∈ [ρ̄/2−1,1−ρ̄). From monotonicity
of (θ̄k)∞k=0 (Lemma 37) together with the definition of k1−ρ̄, we have that θ̄k∈

[
ρ̄/2−1,1−ρ̄) for all

k∈{0,1,...,k1−ρ̄−1}. Recall that we assume θ0∈(0.5,1). By Lemma 38 we have that θk∈
[
θ(0),zc

)
for all k ∈

{
0,1,...,

⌈
ln(zc/θ0)

/
ln(1+aη)

⌉
−1
}

. By Lemma 40 k1−ρ̄ =
⌈(
ln(2−3ρ̄/2)− ln(θ̄0+

1− ρ̄/2)
)/

ln(1+aη/2)
⌉
. Since k1−ρ̄ ≤

⌈
ln(zc/θ0)

/
ln(1+aη)

⌉
(can be verified by recalling the

assumptions on a, zc, ρ̄, θ0 and θ̄0), it follows that θk ∈
[
0,zc

)
for all k ∈ {0,1, ... ,k1−ρ̄ − 1}. In

conclusion, we have shown that (θk,θ̄k)∈ [0,zc)×[ρ̄/2−1,1−ρ̄) for all k∈{0,1,...,k1−ρ̄−1}.

J.11.3 Transition Region

The current subsubappendix analyzes the second coordinate of the gradient flow and gradient descent
trajectories throughout the transition region, or more specifically, when the second coordinate is in the
range [1−ρ̄,1). Beginning with gradient flow, we recall that (by Lemma 37) the second coordinate of the
trajectory is monotonically non-decreasing, and consider the time at which it exits the range [1−ρ̄,1).

Definition 10. Define t1 :=inf{t≥0: θ̄(t)≥1}.37
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Using t1−ρ̄ from Definition 8, Lemma 42 below provides lower and upper bounds for t1, and an upper
bound for the ratio between the second coordinate of the gradient flow trajectory at time t1, and its
first coordinate at the same time.
Lemma 42. The following hold:

(i) t1−ρ̄+a−1ln
(
(4+ρ̄)/(4−3ρ̄)

)
≤ t1≤ t1−ρ̄+a−1ln

(
1/(1−ρ̄)

)
; and

(ii) θ̄(t1)/θ(t1)≤
(
(θ̄(0)+1−ρ̄/2)

/
(2−3ρ̄/2)

)2/
θ(0) .

Proof. We start by proving property (i). Lemma 39 implies θ̄(t1−ρ̄)=1−ρ̄. Recall that by Lemma 37,
θ̄(·) is monotonically non-decreasing. For any t∈ [0,∞) such that θ̄(t)∈ [1−ρ̄,1], we have:

dθ̄
dt (t)=−dφ̄

dz

(
θ̄(t)

)
=aθ̄(t)+ a

4ρ̄

(
θ̄(t)−1

)2
. (72)

By lower bounding Equation (72) we get dθ̄
dt (t) ≥ aθ̄(t) (which implies t1 < ∞). Divid-

ing both sides of this inequality by θ̄(t) and integrating over time from t1−ρ̄ until t1 we have that
θ̄(t1)≥(1−ρ̄)ea(t1−t1−ρ̄). From continuity of θ̄(·), the definition of t1 and the fact that t1<∞, we have
that θ(t1)=1. This implies (1−ρ̄)ea(t1−t1−ρ̄)≤1. We may conclude t1≤ t1−ρ̄+a−1ln

(
1/(1−ρ̄)

)
.

We now turn to upper bound Equation (72). For any t∈ [0,∞) such that θ̄(t)∈ [1−ρ̄,1]:

dθ̄
dt (t)≤aθ̄(t)+ a

4ρ̄

(
ρ̄
)2

=aθ̄(t)+ aρ̄
4 .

Dividing both sides of this inequality by θ̄(t) and integrating over time from t1−ρ̄ until t1, we have
that θ̄(t1)≤

(
1− 3

4 ρ̄
)
ea(t1−t1−ρ̄)− ρ̄

4 . Since θ(t1)=1, this implies
(
1− 3

4 ρ̄
)
ea(t1−t1−ρ̄)− ρ̄

4 ≥1. We
may conclude t1≥ t1−ρ̄+a−1ln

(
(4+ρ̄)/(4−3ρ̄)

)
.

Moving on to property (ii), by property (i) we know that t1 <∞. Recall that θ̄(t1)= 1. Lemma 39
showed that t1−ρ̄ = 2

a ln
(
(4 − 3ρ̄)

/
(2θ̄(0) + 2 − ρ̄)

)
. Lemma 38 ensures θ(t) = θ0e

at for
t∈
[
0,ln( zc

θ(0) )
/
a
]
. Notice that t1≤ t1−ρ̄+a−1ln

(
1/(1−ρ̄)

)
≤ ln( zc

θ(0) )
/
a, where the first inequality

follows from property (i). It holds that:

θ̄(t1)
/
θ(t1)=1

/(
θ(0)eat1

)
≤1
/(

θ(0)eat1−ρ̄
)
≤
( 2θ̄(0)+2−ρ̄

4−3ρ̄

)2/
θ(0).

Moving on to gradient descent, we recall that here too the second coordinate of the trajectory is
monotonically non-decreasing (see Lemma 37), and consider the iteration at which this second
coordinate exits the range [1−ρ̄,1).

Definition 11. Define k1 :=inf
{
k∈N∪{0} : θ̄k≥1

}
.37

Using k1−ρ̄ from Definition 9, Lemma 43 below provides an upper bound for k1, and a lower bound
for the ratio between the second coordinate of the gradient descent trajectory at iteration k1, and its
first coordinate at the same iteration.
Lemma 43. The following hold:

(i) k1≤k1−ρ̄+
⌈
max

{
0,−ln(θ̄k1−ρ̄

)
/
ln(1+aη)

}⌉
; and

(ii) θ̄k1
/θk1

≥
(
(θ̄0+1−ρ̄/2)

/
(2−3ρ̄/2)

)2/(
θ0(1−aη/10)

)
.

Proof. We start by proving property (i). By the definition of θ̄k1−ρ̄ (and from the fact that it is finite
from Lemma 40), we know that θ̄k1−ρ̄ ≥ 1− ρ̄. Recall that by Lemma 37 (θ̄k)

∞
k=0 is monotonically

non-decreasing. Notice that it is possible for k1 to be equal to k1−ρ̄; this will be the case if θ̄k1−ρ̄ ≥1.
For any k∈N such that θ̄k−1∈ [1−ρ̄,1], we obtain:

θ̄k= θ̄k−1−η dφ̄
dz (θ̄k−1)= θ̄k−1+η

(
aθ̄k−1+

a
4ρ̄ (θ̄k−1−1)2

)
≥ θ̄k−1+aηθ̄k−1= θ̄k−1(1+aη).

It follows that θ̄k ≥ θ̄k1−ρ̄
(1 + aη)k−k1−ρ̄ for any k ∈ {k1−ρ̄, k1−ρ̄ + 1, ..., k1}. Plugging

k=k1−ρ̄+
⌈
max{0,−ln(θ̄k1−ρ̄

)
/
ln(1+aη)}

⌉
yields θ̄k1−ρ̄

(1+aη)k−k1−ρ̄ ≥1. From monotonicity
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of (θ̄k)∞k=0, we may conclude that k1≤k1−ρ̄+
⌈
max{0,−ln(θ̄k1−ρ̄)

/
ln(1+aη)}

⌉
, thereby finishing

the proof of property (i).

Moving on to property (ii), with the help of Lemma 38, Lemma 40 and property (i), we obtain:
θk1

θ̄k1

≤θk1

=θ0(1+aη)k1

=θ0exp
(
ln(1+aη)k1

)
≤θ0exp

(
ln(1+aη)

(⌈
ln(2−3ρ̄/2)−ln(θ̄0+1−ρ̄/2)

ln(1+aη/2)

⌉
+
⌈−ln(θ̄k1−ρ̄

)

ln(1+aη)

⌉))
≤θ0exp

(
ln(1+aη)

(
2+ ln(2−3ρ̄/2)−ln(θ̄0+1−ρ̄/2)

ln(1+aη/2) −
ln(θ̄k1−ρ̄

)

ln(1+aη)

))
=θ0

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

) ln(1+aη)
ln(1+aη/2) 1

θ̄k1−ρ̄

(1+aη)2

≤ θ0
1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

) ln(1+aη)
ln(1+aη/2)

(1+aη)2.

Equation (3) in [56] states that 2z
2+z ≤ ln(1 + z) ≤ z

2 · 2+z
1+z for all z ≥ 0. This, along with the

fact that η ≤ 1
6a (see Subsubappendix J.11.1), leads us to ln(1+aη)

ln(1+aη/2) ≤
(
aη
2 · 2+aη

1+aη

)/(
aη

2+aη/2

)
=

4+3aη+(aη)2/2
2+2aη =2+ (aη)2/2−aη

2+2aη ≤2−aη/3. Thus:

θk1

θ̄k1

≤ θ0
1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2−aη/3

(1+aη)2= θ0
1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2(
θ̄0+1−ρ̄/2
2−3ρ̄/2

)aη/3
(1+aη)2.

By assumption on θ̄0 and ρ̄, namely θ̄0≤e−12−1 and ρ̄∈ [0,e−12/2], we may bound as follows:

θk1

θ̄k1

≤ θ0
1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2(
e−12

)aη/3
(1+aη)2= θ0

1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2
e−4aη(1+aη)2.

Since 1+z≤ez for all z≥0, we have that:

θk1

θ̄k1

≤ θ0
1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2
1

1+4aη (1+aη)2= θ0
1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2(
1− 4

1+4aηaη
)(

1+2aη+(aη)2
)

.

Once again relying on the fact that η≤ 1
6a , we obtain:

θk1

θ̄k1

≤ θ0
1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2(
1− 12

5 aη
)(
1+ 11

5 aη
)
≤ θ0

1−ρ̄

(
2−3ρ̄/2

θ̄0+1−ρ̄/2

)2
(1−aη/5).

We will show that (1−aη/5)
/
(1−ρ̄) ≤ 1 − aη/10, thereby finishing the proof, as this leads to

θ̄k1/θk1 ≥
(
(θ̄0+1−ρ̄/2)

/
(2−3ρ̄/2)

)2/(
θ0(1−aη/10)

)
. It holds that:

at̃≤2ln
( 2−3ρ̄/2

θ̄0−(ρ̄/2−1)

)
+ln

( 1+ρ̄/4
1−3ρ̄/4

)
+ln(b)≤2ln

(
2

e−12/4

)
+ln

(
e
)
+ln(b)≤30+ln(b), (73)

where the first transition follows from the upper bound for t̃; and the second follows from the definition
ρ̄ :=min{e−12/2,ϵ/2b} together with the assumption θ̄0∈(e−12/2−1, e−12−1). The following holds:

ρ̄≤ ϵ
2b =1013ϵ· 1

1013·2b ≤1013ϵ· 1
e30b =1013ϵ·e−(30+ln(b))≤1013ϵ·e−at̃≤aη/10,

where the first transition follows from the definition of ρ̄; the fifth from Equation (73); and the last
from the assumption η≥e−at̃ ·1014ϵ/a. It follows that:

1−aη/5
1−ρ̄ ≤ 1−aη/5

1−aη/10 =1− aη/10
1−aη/10 ≤1−aη/10.

We conclude this subsubappendix by combining its results with Lemma 38, thereby showing that
the gradient flow trajectory between times t1−ρ̄ and t1, and the gradient descent trajectory between
iterations k1−ρ̄ and k1, both lie in the transition region.
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Lemma 44. It holds that
(
θ(t), θ̄(t)

)
∈ [0 , zc) × [1 − ρ̄ , 1) for all t ∈ [t1−ρ̄ , t1), and

(θk,θ̄k)∈ [0,zc)×[1−ρ̄,1) for all k∈{k1−ρ̄,k1−ρ̄+1,...,k1−1}.

Proof. We start by proving the result for gradient flow. Lemma 39 implies t1−ρ̄<∞, and similarly
Lemma 42 implies t1<∞. From continuity of θ̄(·) together with the definitions of t1−ρ̄ and t1, we have
that θ̄(t1−ρ̄)=1−ρ̄ and θ̄(t1)=1. By monotonicity of θ̄(·) (Lemma 37) we conclude θ(t)∈

[
1−ρ̄,1)

for all t∈ [t1−ρ̄,t1). Recall that we assume θ(0)∈ (0.5,1). Lemma 38 implies θ(t)∈
[
θ(0),zc

)
for

all t∈
[
0,a−1ln

(
zc/θ(0)

))
. By Lemma 42 t1 ≤ t1−ρ̄+a−1ln

(
1/(1− ρ̄)

)
. By recalling the explicit

expression for t1−ρ̄ from Lemma 39, and all the assumptions on a, zc, ρ̄, θ(0) and θ̄(0), it can be
seen that t1−ρ̄+a−1ln

(
1/(1−ρ̄)

)
≤a−1ln

(
zc/θ(0)

)
, which implies t1≤a−1ln

(
zc/θ(0)

)
. It follows

that θ(t)∈
[
0,zc

)
for all t∈

[
t1−ρ̄,t1). Overall we proved that

(
θ(t),θ̄(t)

)
∈ [0,zc)× [1− ρ̄,1) for all

t∈ [t1−ρ̄,t1), as required.

Moving on to gradient descent, Lemma 40 implies k1−ρ̄ < ∞, and similarly Lemma 43
implies k1 < ∞. By definition of k1−ρ̄ we have that θ̄k1−ρ̄

≥ 1 − ρ̄, and by definition of
k1 it holds that θ̄k1−1 < 1. From monotonicity of (θ̄k)

∞
k=0 (Lemma 37) and the definitions

of k1−ρ̄ and k1 (from Definitions 9 and 11 respectively), we know that θ̄k ∈
[
1 − ρ̄, 1) for

all k ∈ {k1−ρ̄, k1−ρ̄ + 1, ... , k1 − 1}. Recall that we assume θ0 ∈ (0.5, 1). Lemma 38
implies θk ∈

[
θ0, zc

)
for all k ∈

{
0, 1, ... ,

⌈
ln(zc/θ0)

/
ln(1 + aη)

⌉
− 1

}
. By Lemma 43,

k1≤k1−ρ̄+
⌈
max{0,−ln(θ̄k1−ρ̄

)
/
ln(1+aη)}

⌉
. By recalling the definition of k1−ρ̄ (Definition 9) and

also its explicit expression from Lemma 40, while also recalling the assumptions on a, zc, ρ̄, θ0 and
θ̄0, it can be seen that k1−ρ̄+

⌈
max{0,−ln(θ̄k1−ρ̄

)
/
ln(1+aη)}

⌉
≤
⌈
ln(zc/θ0)

/
ln(1+aη)

⌉
, which

implies k1≤
⌈
ln(zc/θ0)

/
ln(1+aη)

⌉
. It follows that θk∈

[
0,zc

)
for all k∈{k1−ρ̄,k1−ρ̄+1,...,k1−1}.

Overall we proved that (θk,θ̄k)∈ [0,zc)×[1−ρ̄,1) for all k∈{k1−ρ̄,k1−ρ̄+1,...,k1−1}.

J.11.4 Isotropic Region

The current subsubappendix analyzes the second coordinate of the gradient flow and gradient descent
trajectories throughout the isotropic region, or more specifically, when the second coordinate is in
the range [1,z̄c). Beginning with gradient flow, we recall that (by Lemma 37) the second coordinate of
the trajectory is monotonically non-decreasing, and consider the time at which it exits the range [1,z̄c).

Definition 12. Define tz̄c :=inf{t≥0: θ̄(t)≥ z̄c}.37

Using t1 from Definition 10, Lemma 45 below provides an expression for tz̄c , and for the second
coordinate of the gradient flow trajectory between times t1 and tz̄c , i.e. between the time it enters the
range [1,z̄c) and that at which it exits.

Lemma 45. The following hold:

(i) tz̄c = t1+a−1ln(z̄c) ; and

(ii) θ̄(t)=ea(t−t1) for all t∈ [t1,tz̄c ] .

Proof. For any t∈ [0,∞) such that θ̄(t)∈ [1,z̄c), we obtain:

dθ̄
dt (t)=−dφ̄

dz

(
θ̄(t)

)
=aθ̄(t).

Lemma 42, the definition of t1 and continuity of θ̄(·) together imply that θ̄(t1)=1. The function t 7→
ea(t−t1) is a solution to this initial value problem (starting at t1), valid through t∈ [t1,t1+a−1ln(z̄c)),
and from uniqueness of the solution together with continuity of θ̄(·), we conclude that θ̄(t)=ea(t−t1)

for t∈ [t1,t1+a−1ln(z̄c)]. This, along with the definition of tz̄c , implies that tz̄c = t1+a−1ln(z̄c).

Moving on to gradient descent, we recall that here too the second coordinate of the trajectory is
monotonically non-decreasing (see Lemma 37), and consider the iteration at which this second
coordinate exits the range [1,z̄c).

Definition 13. Define kz̄c :=inf
{
k∈N∪{0} : θ̄k≥ z̄c

}
.37
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Using k1 from Definition 11, Lemma 46 below provides an expression for kz̄c , and for the second
coordinate of the gradient descent trajectory between iterations k1 and kz̄c , i.e. between the iteration
where it enters the range [1,z̄c) and that at which it exits.
Lemma 46. It holds that:

(i) kz̄c =k1+
⌈
ln(z̄c/θ̄k1

)
/
ln(1+aη)

⌉
; and

(ii) θ̄k= θ̄k1(1+aη)k−k1 for all k∈{k1,k1+1,...,kz̄c} .

Proof. Lemma 43 and the definition of k1 imply that θ̄k1
≥ 1. Recall that by Lemma 37 (θ̄k)

∞
k=0 is

monotonically non-decreasing. For any k∈N such that θ̄k−1∈ [1,z̄c), we obtain:

θ̄k= θ̄k−1−η dφ̄
dz (θ̄k−1)= θ̄k−1+aηθ̄k−1.

The solution of this recursive equation is θ̄k= θ̄k1(1+aη)k−k1 for all k≥k1 such that θ̄k−1∈ [1,z̄c)
i.e. for all k ∈ {k1,k1+1,...,k1+

⌈
ln(z̄c/θ̄k1)

/
ln(1+aη)

⌉
}. From the definition of kz̄c it must be

equal to k1+
⌈
ln(z̄c/θ̄k1

)
/
ln(1+aη)

⌉
, as if it is smaller we get θ̄kz̄c

< z̄c, and if it is larger we get
θ̄kz̄c−1

≥ z̄c, both contradicting the definition of kz̄c .

We conclude this subsubappendix by combining its results with Lemma 38, thereby showing that the
gradient flow trajectory between times t1 and tz̄c , and the gradient descent trajectory between iterations
k1 and kz̄c , both lie in the isotropic region.

Lemma 47. It holds that
(
θ(t),θ̄(t)

)
∈ [0,zc)×[1,z̄c) for all t∈ [t1,tz̄c), and (θk,θ̄k)∈ [0,zc)×[1,z̄c)

for all k∈{k1,k1+1,...,kz̄c−1}.

Proof. We start by proving the result for gradient flow. Lemma 42 implies t1 <∞, and similarly
Lemma 45 implies tz̄c <∞. From continuity of θ̄(·) and the definition of t1 we have that θ̄(t1)=1, and
similarly by definition of tz̄c we have θ̄(tz̄c)= z̄c. By monotonicity of θ̄(·) (Lemma 37) we conclude
θ(t)∈

[
1,z̄c) for all t∈ [t1,tz̄c). Recall that we assume θ(0)∈ (0.5,1). By Lemma 38 we have that

θ(t)∈
[
θ(0),zc

)
for all t∈

[
0,a−1ln

(
zc/θ(0)

))
. Recall the explicit expression for t1−ρ̄ from Lemma 39.

By Lemma 42 t1 ≤ t1−ρ̄+a−1 ln
(
1/(1− ρ̄)

)
, and by Lemma 45 we have that tz̄c = t1+a−1 ln(z̄c).

Overall, we obtain tz̄c ≤ 2
a ln
(
(4−3ρ̄)

/
(2θ̄(0)+2−ρ̄)

)
+a−1ln

(
1/(1−ρ̄)

)
+a−1ln(z̄c). By recalling

the assumptions on a, zc, ρ̄, θ(0) and θ̄(0), it can be shown that tz̄c ≤ a−1 ln
(
zc/θ(0)

)
. It follows

that θ(t)∈
[
θ(0),zc

)
for all t∈

[
t1,tz̄c). Overall we proved that

(
θ(t),θ̄(t)

)
∈ [0,zc)× [1,z̄c) for all

t∈ [t1,tz̄c), as required.

Moving on to gradient descent, Lemma 43 implies k1<∞, and similarly Lemma 46 implies kz̄c <∞.
By definition of k1 we have that θ̄k1 ≥1, and by definition of kz̄c we have θ̄kz̄c−1<z̄c. From monotonic-
ity of (θ̄k)∞k=0 (Lemma 37) we conclude θ̄k∈

[
1,z̄c) for all k∈{k1,k1+1,...,kz̄c−1}. Recall that we as-

sume θ0∈(0.5,1). By Lemma 38 θk∈
[
θ0,zc

)
for all k∈

{
0,1,...,

⌈
ln(zc/θ0)

/
ln(1+aη)

⌉
−1
}

. Recall
the definition of k1−ρ̄ and also its explicit expression from Lemma 40. By Lemma 43 we have that k1≤
k1−ρ̄+

⌈
max{0,−ln(θ̄k1−ρ̄)

/
ln(1+aη)}

⌉
. By Lemma 46 kz̄c =k1+

⌈
ln(z̄c/θ̄k1)

/
ln(1+aη)

⌉
. Over-

all, we obtain kz̄c ≤
⌈(
ln(2−3ρ̄/2)−ln(θ̄0+1−ρ̄/2)

)/
ln(1+aη/2)

⌉
+
⌈
max{0,−ln(θ̄k1−ρ̄

)
/
ln(1+

aη)}
⌉
+
⌈
ln(z̄c/θ̄k1)

/
ln(1+aη)

⌉
. By recalling the assumptions on a, zc, ρ̄, θ0 and θ̄0, it can be shown

that kz̄c ≤
⌈
ln(zc/θ0)

/
ln(1+aη)

⌉
. It follows that θk ∈

[
θ0,zc

)
for all k ∈ {k1,k1+1,...,kz̄c −1}.

Overall we proved that (θk,θ̄k)∈ [0,zc)×[1,z̄c) for all k∈{k1,k1+1,...,kz̄c−1}, as required.

J.11.5 Inapproximation

The current subsubappendix shows that the location of gradient flow at time t̃ is not ϵ-approximated by
different portions of the gradient descent trajectory. Key to the derived results is the following lemma,
which establishes that in the isotropic region, for both gradient flow and gradient descent trajectories,
the first two coordinates proceed in a straight line at an exponential pace.

Lemma 48. It holds that
(
θ(t), θ̄(t)

)
=
(
θ(t1), θ̄(t1)

)
· ea(t−t1) for all t ∈ [t1, tz̄c), and

(θk,θ̄k) = (θk1
,θ̄k1

) · (1+aη)k−k1 for all k ∈ {k1,k1+1,...,kz̄c −1}, where t1, tz̄c , k1 and kz̄c are
given by Definitions 10, 12, 11 and 13 respectively.
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Proof. We start by proving the result for gradient flow. Lemma 45 implies θ̄(t)= θ̄(t1)e
a(t−t1) for

all t∈ [t1,tz̄c ]. By Lemma 38 we have that θ(t)=θ(0)eat for all t∈
[
0,a−1ln

(
zc/θ(0)

))
. Recall the

explicit expression for t1−ρ̄ from Lemma 39. By Lemma 42 t1 ≤ t1−ρ̄+a−1 ln
(
1/(1− ρ̄)

)
, and by

Lemma 45 we have that tz̄c = t1+a−1 ln(z̄c). Overall, we obtain tz̄c ≤ 2
a ln
(
(4−3ρ̄)

/
(2θ̄(0)+2−

ρ̄)
)
+a−1ln

(
1/(1− ρ̄)

)
+a−1ln(z̄c). By recalling the assumptions on a, zc, ρ̄, θ(0) and θ̄(0), it can

be shown that tz̄c ≤a−1ln
(
zc/θ(0)

)
. It follows that θ(t)=θ(0)eat=θ(t1)e

a(t−t1) for all t∈
[
t1,tz̄c).

Moving on to gradient descent, Lemma 46 implies θ̄k = θ̄k1
(1 + aη)k−k1 for all

k ∈ {k1, k1 + 1, ... , kz̄c − 1}. By Lemma 38 we have that θk = θ0(1 + aη)k for all
k∈
{
0,1,...,

⌈
ln(zc/θ0)

/
ln(1+aη)

⌉}
. Recall the definition of k1−ρ̄ and its explicit expression from

Lemma 40. Lemma 43 ensures k1 ≤ k1−ρ̄ +
⌈
max{0,− ln(θ̄k1−ρ̄

)
/
ln(1+ aη)}

⌉
. By Lemma 46

kz̄c =k1+
⌈
ln(z̄c/θ̄k1

)
/
ln(1+aη)

⌉
. Putting it all together, we obtain kz̄c ≤

⌈(
ln(2−3ρ̄/2)−ln(θ̄0+

1− ρ̄/2)
)/

ln(1 + aη/2)
⌉
+
⌈
max{0,− ln(θ̄k1−ρ̄)

/
ln(1 + aη)}

⌉
+
⌈
ln(z̄c/θ̄k1)

/
ln(1 + aη)

⌉
. By

recalling the assumptions on a, zc, ρ̄, θ0 and θ̄0, it can be shown that kz̄c ≤
⌈
ln(zc/θ0)

/
ln(1+aη)

⌉
.

It follows that θk=θ0(1+aη)k=θk1(1+aη)k−k1 for all k∈{k1,k1+1,...,kz̄c−1}.

Lemma 49. It holds that ∥θk−θ(t̃)∥>ϵ for all k∈{0,1,...,k1−1}, where k1 is given by Definition 11.

Proof. Recall that t̃∈
[
2
a ln
( 2−3ρ̄/2

θ̄(0)−(ρ̄/2−1)

)
+ 1

a ln
(

2
1−ρ̄

)
, 2a ln

( 2−3ρ̄/2

θ̄(0)−(ρ̄/2−1)

)
+ 1

a ln
( 1+ρ̄/4
1−3ρ̄/4

)
+ 1

a ln(b)
]

and

ϵ<1. Lemmas 39 and 42 imply t̃∈ [t1+
1
a ln(2),t1+

1
a ln(b)]. Notice that t1≤ t1+

1
a ln(2)≤ t̃≤ t1+

1
a ln(b)≤ t1+

1
a ln(b+1)= tz̄c . Thus, by Lemma 47, gradient flow is in the isotropic region at time t̃. We

may use Lemma 45 together with monotonicity of θ̄(·) (Lemma 37) to obtain θ̄(t̃)≥ θ̄
(
t1+

1
a ln(2)

)
=

ealn(2)/a=2. From the definition of k1 (and from the fact that it is finite from Lemma 43) we know that
|θ̄k1−1|≤1. For all k∈{0,1,...,k1−1}, using monotonicity of (θ̄k)∞k=0 (Lemma 37), we may conclude:

∥θk−θ(t̃)∥2≥|θ̄k−θ̄(t̃)|≥|θ̄(t̃)|−|θ̄k|≥|θ̄(t̃)|−|θ̄k1−1|≥2−1=1>ϵ.

Lemma 50. It holds that ∥θk−θ(t̃)∥> ϵ for all k ∈ {k1,k1+1,...,kz̄c −1}, where k1 and kz̄c are
given by Definitions 11 and 13 respectively.

Proof. Recall that t̃∈
[
2
a ln
( 2−3ρ̄/2

θ̄(0)−(ρ̄/2−1)

)
+ 1

a ln
(

2
1−ρ̄

)
, 2a ln

( 2−3ρ̄/2

θ̄(0)−(ρ̄/2−1)

)
+ 1

a ln
( 1+ρ̄/4
1−3ρ̄/4

)
+ 1

a ln(b)
]

and ϵ < 1. Lemmas 39 and 42 imply t̃ ∈ [t1 + 1
a ln(2), t1 + 1

a ln(b)]. Notice that
t1 ≤ t1 +

1
a ln(2) ≤ t̃ ≤ t1 +

1
a ln(b) ≤ t1 +

1
a ln(b + 1) = tz̄c . Thus, by Lemma 47, gradient

flow is in the isotropic region at time t̃. By Lemma 43 we know that k1 < ∞, and by Lemma 47
it holds that θ̄k1

≥ 1. By monotonicity of (θk)∞k=0 (Lemma 37) and since θ0 > 0, we know that
θk > 0 for all k ∈N. For all k ∈ {k1,k1+1,...,kz̄c −1}, Lemma 48 ensures θk/θ̄k = θk1/θ̄k1 , thus
(θk,θ̄k)∈

{
(q,q̄) :q,q̄∈(0,∞) s.t. q/q̄=θk1

/θ̄k1

}
=
{
c(θk1

,θ̄k1
) : c>0

}
. This leads us to:∥∥θk−θ(t̃)

∥∥
2
≥
∥∥(θk,θ̄k)−(θ(t̃),θ̄(t̃))∥∥2≥ inf

c>0

∥∥c(θk1
,θ̄k1

)
−
(
θ(t̃),θ̄(t̃)

)∥∥
2
.

Minimizing over c>0 yields cmin=
〈(
θ(t̃),θ̄(t̃)

)
,
(
θk1

,θ̄k1

)〉/
∥(θk1

,θ̄k1
)∥22. Note that since gradient

flow is in the isotropic region at time t̃, then ∥(θ(t̃),θ̄(t̃))∥2 ̸=0. We obtain:

∥θk−θ(t̃)∥2≥
∥∥∥(θk1

,θ̄k1

)〈(
θ(t̃),θ̄(t̃)

)
,
(
θk1

,θ̄k1

)〉/
∥(θk1

,θ̄k1
)∥22−

(
θ(t̃),θ̄(t̃)

)∥∥∥
2

=

√∥∥(θ(t̃),θ̄(t̃))∥∥2
2
−
〈(

θ(t̃),θ̄(t̃)
)
,

(θk1
,θ̄k1

)

∥(θk1
,θ̄k1

)∥
2

〉2
=
∥∥(θ(t̃),θ̄(t̃))∥∥

2

√
1−
〈

(θ(t̃),θ̄(t̃))

∥(θ(t̃),θ̄(t̃))∥
2

,
(θk1

,θ̄k1
)

∥(θk1
,θ̄k1

)∥
2

〉2
≥
∣∣θ(t̃)∣∣√1−

〈
(θ(t̃),θ̄(t̃))

∥(θ(t̃),θ̄(t̃))∥
2

,
(θk1

,θ̄k1
)

∥(θk1
,θ̄k1

)∥
2

〉2
.
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By Lemma 38 we have that θ(t) = θ(0)eat for all t ∈
[
0, a−1 ln

(
zc/θ(0)

))
. Recall the ex-

plicit expression for t1−ρ̄ from Lemma 39. By Lemma 42 t1 ≤ t1−ρ̄ + a−1 ln
(
1/(1 − ρ̄)

)
,

and by Lemma 45 we have that tz̄c = t1 + a−1 ln(z̄c). Since t̃ ≤ tz̄c , overall we obtain
t̃≤ 2

a ln
(
(4−3ρ̄)

/
(2θ̄(0)+2− ρ̄)

)
+a−1 ln

(
1/(1− ρ̄)

)
+a−1 ln(z̄c). By recalling the assumptions

on a, zc, ρ̄, θ(0) and θ̄(0), it can be shown that t̃≤a−1ln
(
zc/θ(0)

)
. It follows that:

∥θk−θ(t̃)∥2≥θ(0)eat̃

√
1−
〈

(θ(t̃),θ̄(t̃))

∥(θ(t̃),θ̄(t̃))∥
2

,
(θk1

,θ̄k1
)

∥(θk1
,θ̄k1

)∥
2

〉2
.

Recall that t̃∈ [t1,tz̄c ]. Lemma 47 implies that both θ̄(t̃) and θ̄(t1) are greater or equal to one. Since
Lemma 48 implies θ(t̃)/θ̄(t̃)=θ(t1)/θ̄(t1), it follows that:

∥θk−θ(t̃)∥2≥θ(0)eat̃

√
1−
〈

(θ(t1),θ̄(t1))

∥(θ(t1),θ̄(t1))∥2

,
(θk1

,θ̄k1
)

∥(θk1
,θ̄k1

)∥
2

〉2
=θ(0)eat̃

√
1−
〈

(θ(t1)/θ̄(t1),1)

∥(θ(t1)/θ̄(t1),1)∥2

,
(θk1

/θ̄k1
,1)

∥(θk1
/θ̄k1

,1)∥
2

〉2
Note that the latter inner product is between positively correlated unit vectors, and that it is squared.
We use Lemmas 42 and 43, ensuring that θ̄(t1)/θ(t1) ≤

(
(θ̄(0) + 1− ρ̄/2)

/
(2− 3ρ̄/2)

)2/
θ(0),

and θ̄k1/θk1 ≥
(
(θ̄0 +1− ρ̄/2)

/
(2− 3ρ̄/2)

)2/(
θ0(1− aη/10)

)
respectively. For brevity, denote

α := θ(0)
(
(4−3ρ̄)/(2θ̄(0)+2− ρ̄)

)2
and β := (1−aη/10). Notice that β ∈ (0,1). Recall that by

definition θ(0) = θ0 and θ̄(0) = θ̄0. Thus, θt1/θ̄t1 ≤ αβ < α≤ θ(t1)/θ̄(t1). Replacing θ(t1)/θ̄(t1)
with α, and θk1/θ̄k1 with αβ, decreases the angle between the unit vectors, thereby increasing their
inner product. We thus have that:

∥θk−θ(t̃)∥2≥θ(0)eat̃
√

1−
〈

(α,1)
∥(α,1)∥2

, (αβ,1)
∥(αβ,1)∥2

〉2
=θ(0)eat̃

√
1−
(

α2β+1√
α2+1·

√
α2β2+1

)2
=θ(0)eat̃

√
α4β2+α2β2+α2+1
α4β2+α2β2+α2+1−

(
α4β2+2α2β+1

α4β2+α2β2+α2+1

)
=θ(0)eat̃

√
α2(1−β)2

α4β2+α2β2+α2+1

Since β∈ (0,1) and α≥1 (can be verified by recalling the assumptions on a,η,ρ̄,θ(0) and θ̄(0)), we
obtain:

∥θk−θ(t̃)∥2≥θ(0)eat̃
(
1−β
2α

)
.

Plugging in α and β, we obtain:

∥θk−θ(t̃)∥2≥θ(0)eat̃·aη10 ·
1

2θ(0)

( 2θ̄(0)+2−ρ̄
4−3ρ̄

)2
= 1

20

( 2θ̄(0)+2−ρ̄
4−3ρ̄

)2
aηeat̃.

The definition of ρ̄, and the assumptions on θ(0) and θ̄(0) lead us to:

∥θk−θ(t̃)∥2≥ 1
20

(
0.5e−12

4

)2
aηeat̃>10−14aηeat̃.

Since η≥ϵ1014e−at̃/a, we have ∥θk−θ(t̃)∥2>ϵ, and this holds for all k∈{k1,k1+1,...,kz̄c−1}.

Lemma 51. It holds that ∥θk−θ(t̃)∥>ϵ for all k∈{kz̄c ,kz̄c+1,kz̄c+2,...}, where kz̄c is given by
Definition 13.

Proof. Recall that t̃∈
[
2
a ln
( 2−3ρ̄/2

θ̄(0)−(ρ̄/2−1)

)
+ 1

a ln
(

2
1−ρ̄

)
, 2a ln

( 2−3ρ̄/2

θ̄(0)−(ρ̄/2−1)

)
+ 1

a ln
( 1+ρ̄/4
1−3ρ̄/4

)
+ 1

a ln(b)
]

and ϵ < 1. Lemmas 39 and 42 imply t̃ ∈ [t1 + 1
a ln(2), t1 + 1

a ln(b)]. Notice that
t1 ≤ t1 +

1
a ln(2) ≤ t̃ ≤ t1 +

1
a ln(b) ≤ t1 +

1
a ln(b + 1) = tz̄c . Thus, by Lemma 47, gradient

flow is in the isotropic region at time t̃. We may use Lemma 45 together with monotonicity of θ̄(·)
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(Lemma 37) to obtain θ̄(t̃)≤ θ̄
(
t1+

1
a ln(b)

)
=ealn(b)/a=b. Lemma 37 further ensures monotonicity

of (θ̄k)∞k=0. By the definition of θ̄kz̄c
(and from the fact that it is finite from Lemma 46) we know that

θ̄kz̄c
≥ z̄c=b+1. This implies, for all k∈{kz̄c ,kz̄c+1,kz̄c+2,...}:

∥θk−θ(t̃)∥2≥|θ̄k−θ̄(t̃)|≥|θ̄k|−|θ̄(t̃)|≥|θ̄kz̄c
|−|θ̄(t̃)|≥(b+1)−b=1>ϵ.

J.11.6 Conclusion

Taken together, Lemmas 49, 50 and 51 form a proof for Proposition 4 in the case where the step size η
is no greater than 1

6a . The complementary case η> 1
6a is accounted for by Lemma 36.

J.12 Proof of Lemma 4

This proof is very similar to that of Lemma 1 (see Subappendix J.4). We repeat all details for com-
pleteness. Recall that θ∈Rd is an arrangement of (W1,W2,...,Wn)∈Rd1,d0×Rd2,d1×···×Rdn,dn−1

as a vector. Let (∆W1,∆W2,...,∆Wn)∈Rd1,d0 ×Rd2,d1 ×···×Rdn,dn−1 , and denote by ∆θ ∈Rd

its arrangement as a vector in corresponding order. Denote the following for i∈{1,...,|S|}:

∆
(1)
i :=

∑n
j=1(D

′
i,∗W∗)n:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1, (74)

∆
(2)
i :=

∑
1≤j<j′≤n(D

′
i,∗W∗)n:j′+1D

′
i,j′(∆Wj′)(D

′
i,∗W∗)j′-1:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1,

(75)

∆
(3:n)
i :=D′

i,n(Wn+∆Wn)···D′
i,1(W1+∆W1)−(D′

i,∗W∗)n:1−∆
(1)
i −∆

(2)
i . (76)

We now develop a second-order Taylor expansion of f(θ). Since the matrix tuple corresponding to
(θ+∆θ) is

(
(W1+∆W1),...,(Wn+∆Wn)

)
, and the function f(·) coincides with the function given

in Equation (24) on an open region containing θ, for sufficiently small ∆θ we obtain:

f(θ+∆θ)

=
1

|S|

|S|∑
i=1

ℓ
(
D′

i,n(Wn+∆Wn)...D
′
i,1(W1+∆W1)xi,yi

)
=

1

|S|

|S|∑
i=1

ℓ
((

(D′
i,∗W∗)n:1+∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi,yi

)

=
1

|S|

|S|∑
i=1

ℓ
(
(D′

i,∗W∗)n:1xi+
(
∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi,yi

)
,

(77)

where the second transition follows from the definition of ∆(3:n)
i (Equation (76)). Let ∆v∈Rdn . For

every i∈ {1,...,|S|}, the second-order Taylor expansion of ℓ(·) with respect to its first argument at
the point

(
(D′

i,∗W∗)n:1xi,yi
)

is given by:

ℓ
(
(D′

i,∗W∗)n:1xi+∆v,yi
)
=ℓ
(
(D′

i,∗W∗)n:1xi,yi
)
+
〈
∇ℓi,∆v

〉
+ 1

2∇
2ℓi[∆v]+O

(
∥∆v∥22

)
, (78)

64



where the O(·) notation refers to some expression satisfying lima→0

(
O(a)/a

)
=0. We continue to

develop Equation (77) using Equation (78):

f(θ+∆θ)

=
1

|S|

|S|∑
i=1

(
ℓ
(
(D′

i,∗W∗)n:1xi,yi
)
+
〈
∇ℓi,

(
∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi

〉
+

1
2∇

2ℓi
[(
∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi

]
+O
(∥∥(∆(1)

i +∆
(2)
i +∆

(3:n)
i

)
xi

∥∥2
2

))
=

1

|S|

|S|∑
i=1

ℓ
(
(D′

i,∗W∗)n:1xi,yi
)
+

1

|S|

|S|∑
i=1

〈
∇ℓi,∆

(1)
i xi

〉
+
〈
∇ℓi,∆

(2)
i xi

〉
+
〈
∇ℓi,∆

(3:n)
i xi

〉
+

1

|S|

|S|∑
i=1

1
2∇

2ℓi
[
∆

(1)
i xi

]
+1

2∇
2ℓi
[(
∆

(2)
i +∆

(3:n)
i

)
xi

]
+2·12∇

2ℓi
[
∆

(1)
i xi,

(
∆

(2)
i +∆

(3:n)
i

)
xi

]
+

1

|S|

|S|∑
i=1

O
(∥∥(∆(1)

i +∆
(2)
i +∆

(3:n)
i

)
xi

∥∥2
2

)
,

where in the last transition we view ∇2ℓi as both a quadratic and a bilinear form (see Subappendix J.1).
Notice that

〈
∇ℓi,∆

(3:n)
i xi

〉
, 1

2∇
2ℓi
[(
∆

(2)
i + ∆

(3:n)
i

)
xi

]
, ∇2ℓi

[
∆

(1)
i xi,

(
∆

(2)
i + ∆

(3:n)
i

)
xi

]
and

O
(∥∥(∆(1)

i +∆
(2)
i +∆

(3:n)
i )xi

∥∥2
2

)
are all O

(
∥∆θ∥22

)
, thus:

f(θ+∆θ)

=
1

|S|

|S|∑
i=1

ℓ
(
(D′

i,∗W∗)n:1xi,yi
)
+
〈
∇ℓi,∆

(1)
i xi

〉
+
〈
∇ℓi,∆

(2)
i xi

〉
+1

2∇
2ℓi
[
∆

(1)
i xi

]
+O
(
∥∆θ∥22

)
.

This is a Taylor expansion of f(·) evaluated at θ with a constant term 1
|S|
∑|S|

i=1ℓ
(
(D′

i,∗W∗)n:1xi,yi
)
,

a linear term 1
|S|
∑|S|

i=1

〈
∇ℓi,∆

(1)
i xi

〉
, a quadtratic term of two summands 1

|S|
∑|S|

i=1

〈
∇ℓi,∆

(2)
i xi

〉
+

1
2∇

2ℓi
[
∆

(1)
i xi

]
, and a remainder term of O

(
∥∆θ∥22

)
. From uniqueness of the Taylor expansion, the

quadratic term must be equal to 1
2∇

2f(θ)[∆W1,...,∆Wn]. This implies:

∇2f(θ)[∆W1,...,∆Wn]

=
1

|S|

|S|∑
i=1

(
∇2ℓi

[
∆

(1)
i xi

]
+2
〈
∇ℓi,∆

(2)
i xi

〉)

=
1

|S|

|S|∑
i=1

(
∇2ℓi

[∑n
j=1(D

′
i,∗W∗)n:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi

]
+

2
〈
∇ℓi,

∑
1≤j<j′≤n(D

′
i,∗W∗)n:j′+1D

′
i,j′(∆Wj′)(D

′
i,∗W∗)j′-1:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi

〉)
,

where the last transition follows from plugging in the definitions of ∆(1) and ∆(2) (see Equations (74)
and (75)).

J.13 Proof of Proposition 5

From assumption (ii) there exists some θ ∈ Rd such that
∑|S|

i=1∇ℓ(0, yi)
⊤hθ(xi) ̸= 0. Define(

W1,W2,...,Wn

)
∈ Rd1,d0 ×Rd2,d1 ×···×Rdn,dn−1 to be the weight matrices constituting θ. We

may assume
∑|S|

i=1∇ℓ(0,yi)
⊤hθ(xi) < 0 without loss of generality, as we can negate the vectors

hθ(xi)∈Rdn for all i∈{1,2,...,|S|} by flipping the signs of the entries in θ corresponding to the last
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weight matrix Wn (see Equation (8)). From continuity, there exists a neighborhood N of θ such that
for all θ̃ ∈N it holds that

∑|S|
i=1∇ℓ(0,yi)

⊤hθ̃(xi)< 0. Moreover, as discussed in Appendix C, for
almost all θ′∈Rd there exists an open region Dθ′ ⊆Rd containing θ′, which is closed under positive
rescaling of weight matrices and across which f(·) coincides with a function as given in Equation
(24). There must exist some θ′ in the neighborhood N for which a region of the type Dθ′ exists. We
may assume, without loss of generality, that θ∈Dθ′ . Notice that none of the matrices W1,W2,...,Wn

are equal to zero (as that would lead to
∑|S|

i=1∇ℓ(0,yi)
⊤hθ(xi) = 0). Define the following weight

matrices parameterized by a>0 (while recalling that n≥3 by assumption (i)):

W1(a) :=W1 ·a−2∈Rd1,d0 ,

W2(a) :=W2 ·a−2∈Rd2,d1 ,

W3(a) :=W3 ·a∈Rd3,d2 ,

Wj(a) :=Wj ∈Rdj ,dj−1 for j∈{1,2,...,n}/{1,2,3} ,

and denote by θ(a) ∈ Rd their corresponding weight setting. Since Dθ′ is closed under positive
rescaling of weight matrices, it holds that {θ(a) : a>0}⊆Dθ′ . Define:

∆W1 :=W1∈Rd1,d0 ,

∆W2 :=W2∈Rd2,d1 ,

∆Wj :=0∈Rdj ,dj−1 for j∈ [n]/{1,2} .

For a > 0 , i ∈ {1, 2, ... , |S|} and j, j′ ∈ {1, 2, ... , n}, define (D′
i,∗W∗(a))j′:j to be the matrix

D′
i,j′Wj′(a)D

′
i,j′−1Wj′−1(a)···D′

i,jWj(a) (where by convention D′
i,n∈Rdn,dn stands for identity)

if j≤ j′, and an identity matrix (with size to be inferred by context) otherwise. For i∈{1,2,...,|S|}
and a> 0 let ∇ℓi(a)∈Rdn and ∇2ℓi(a)∈Rdn,dn be the gradient and Hessian (respectively) of the
loss ℓ(·) at the point

(
(D′

i,∗W∗(a))n:1xi,yi
)

with respect to its first argument. For every a>0, since
θ(a)∈Dθ′ we may apply Lemma 4, obtaining:

∇2f
(
θ(a)

)
[∆W1,...,∆Wn]=

1

|S|

|S|∑
i=1

∇2ℓi(a)
[∑n

j=1(D
′
i,∗W∗(a))n:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗(a))j-1:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓi(a)
⊤
∑

1≤j<j′≤n

(D′
i,∗W∗(a))n:j′+1D

′
i,j′(∆Wj′)(D

′
i,∗W∗(a))j′-1:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗(a))j-1:1xi,

(79)

where we regard Hessians as quadratic forms (see Subappendix J.1). Plugging in the definitions of
Wj(a) and ∆Wj for j∈ [n] we have:

∇2f
(
θ(a)

)
[∆W1,...,∆Wn]

=
1

|S|

|S|∑
i=1

∇2ℓi(a)
[
2a−1(D′

i,∗W∗)n:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓi(a)
⊤a(D′

i,∗W∗)n:1xi

=
4

a2
· 1

|S|

|S|∑
i=1

∇2ℓi(a)
[
(D′

i,∗W∗)n:1xi

]
+a· 2

|S|

|S|∑
i=1

∇ℓi(a)
⊤hθ(xi) ,

(80)

where the second transition follows from pulling 2/a out of the quadratic operator and the fact that
hθ(xi)= (D′

i,∗W∗)n:1xi. Note that lima→∞(D′
i,∗W∗)n:1=0. Since ℓ(·) is twice continuously dif-

ferentiable in its first argument, it holds that lima→∞∇2ℓi(a)=lima→∞∇2ℓ
(
(D′

i,∗W∗(a))n:1xi,yi
)
=

∇2ℓ(0,yi), and similarly lima→∞∇ℓi(a)=lima→∞∇ℓ
(
(D′

i,∗W∗(a))n:1xi,yi
)
=∇ℓ(0,yi). Therefore,
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in the limit a→∞, Equation (80) becomes:

lim
a→∞

(
∇2f

(
θ(a)

)
[∆W1,...,∆Wn]

)

= lim
a→∞

(
4

a2
· 4

|S|

|S|∑
i=1

∇2ℓi(a)
[
(D′

i,∗W∗)n:1xi

])
+ lim

a→∞

(
a· 2

|S|

|S|∑
i=1

∇ℓi(a)
⊤hθ(xi)

)

= lim
a→∞

(
4

a2

)
· lim
a→∞

(
4

|S|

|S|∑
i=1

∇2ℓi(a)
[
(D′

i,∗W∗)n:1xi

])
+ lim
a→∞

(
a· lim

a→∞

(
2

|S|

|S|∑
i=1

∇ℓi(a)
⊤hθ(xi)

))

=0·
(

4

|S|

|S|∑
i=1

∇2ℓ(0,yi)
[
(D′

i,∗W∗)n:1xi

])
+ lim

a→∞

(
a· 2

|S|

|S|∑
i=1

∇ℓi(0,yi)
⊤hθ(xi)

)
=−∞ ,

where the second transition is valid since the multiplied limits are finite and the limit inside a limit
is non-zero, and the last transition follows from

∑|S|
i=1∇ℓ(0,yi)

⊤hθ(xi)<0. Notice that the matrices
∆W1,∆W2,...,∆Wn are independent of a, thus it must hold that lima→∞λmin

(
∇2f

(
θ(a)

))
=−∞.

This in particular implies the desired result:

infθ∈Rd s.t.∇2f(θ) exists λmin(∇2f(θ))=−∞ .

J.14 Proof of Lemma 5

This proof is very similar to that of Lemma 2 (see Subappendix J.6). We repeat all details for com-
pleteness. Recall that θ∈Rd is an arrangement of (W1,W2,...,Wn)∈Rd1,d0×Rd2,d1×···×Rdn,dn−1

as a vector. Let (∆W1,∆W2,...,∆Wn)∈Rd1,d0 ×Rd2,d1 ×···×Rdn,dn−1 , and denote by ∆θ ∈Rd

its arrangement as a vector in corresponding order. As shown in Lemma 4:

∇2f(θ)[∆W1,...,∆Wn]=

1

|S|

|S|∑
i=1

∇2ℓi

[∑n
j=1(D

′
i,∗W∗)n:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓ⊤i
∑

1≤j<j′≤n

(D′
i,∗W∗)n:j′+1D

′
i,j′(∆Wj′)(D

′
i,∗W∗)j′-1:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi ,

where we regard Hessians as quadratic forms (see Subappendix J.1). Convexity of ℓ(·) in its first
argument implies that for i∈{1,2,...,|S|}, ∇2ℓi is positive semi-definite, thus:

∇2f(θ)[∆W1,...,∆Wn]≥

2

|S|

|S|∑
i=1

∇ℓ⊤i
∑

1≤j<j′≤n

(D′
i,∗W∗)n:j′+1D

′
i,j′(∆Wj′)(D

′
i,∗W∗)j′-1:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi .

Applying Cauchy-Schwarz and triangle inequalities, we get:

∇2f(θ)[∆W1,...,∆Wn]

≥− 2

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2
·
∑

1≤j<j′≤n

∥∥(D′
i,∗W∗)n:j′+1D

′
i,j′(∆Wj′)(D

′
i,∗W∗)j′-1:j+1D

′
i,j(∆Wj)(D

′
i,∗W∗)j-1:1xi

∥∥
2

≥− 2

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2
·
∑

1≤j<j′≤n

∥∥∆Wj

∥∥
s

∥∥∆Wj′
∥∥
s

∏
k∈[n]/{j,j′}

∥∥Wk

∥∥
s

n∏
k=1

∥∥D′
i,k

∥∥
s
·
∥∥xi

∥∥
2

≥− 2

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2
·
(

max
J⊆[n]

|J |=n−2

∏
j∈J

∥∥Wj

∥∥
s

)
max{|α|,|ᾱ|}n−1

∥∥xi

∥∥
2

∑
1≤j<j′≤n

∥∥∆Wj

∥∥
s

∥∥∆Wj′
∥∥
s

,
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where the second transition follows from the definition and sub-multiplicativity of spectral norm,
and the last transition follows from maximizing

∏
k∈[n]/{j,j′}

∥∥Wk

∥∥
s

over j, j′, upper bounding
∥D′

i,j∥s ≤ max{|α|, |ᾱ|} for j ∈ [n − 1] and recalling that D′
i,n is an identity matrix, meaning

∥D′
i,n∥s=1. It holds that: ∑

1≤j<j′≤n∥∆Wj′∥s∥∆Wj∥s

≤
∑

1≤j<j′≤n∥∆Wj′∥F ∥∆Wj∥F

= 1
2

(∑n
j=1∥∆Wj∥F

)2
− 1

2

∑n
j=1∥∆Wj∥2F

≤ n
2

∑n
j=1∥∆Wj∥2F − 1

2

∑n
j=1∥∆Wj∥2F

= n−1
2

∑n
j=1∥∆Wj∥2F ,

where the last inequality follows from the fact that the one-norm of a vector in Rn is never greater
than

√
n times its euclidean-norm. This leads us to the following bound:

∇2f(θ)[∆W1,...,∆Wn]

≥−max{|α|,|ᾱ|}n−1

(
max
J⊆[n]

|J |=n−2

∏
j∈J

∥∥Wj

∥∥
s

)
n−1

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2

∥∥xi

∥∥
2
·
n∑

j=1

∥∥∆Wj

∥∥2
F

.

The desired result readily follows:

λmin

(
∇2f(θ)

)
≥−max{|α|,|ᾱ|}n−1·

(
max
J⊆[n]

|J |=n−2

∏
j∈J

∥∥Wj

∥∥
F

)
n−1

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2

∥∥xi

∥∥
2

.

J.15 Proof of Proposition 6

Recall that (W1,W2,...,Wn)∈Rd1,d0 ×Rd2,d1 ×···×Rdn,dn−1 are the weight matrices constituting
θ∈Rd, and denote by

(
W1,s,W2,s,...,Wn,s

)
∈Rd1,d0×Rd2,d1×···×Rdn,dn−1 those that constitute

θs. For j,j′∈ [n]:∣∣∥Wj,s∥2F −∥Wj′,s∥2F
∣∣≤max

{
∥Wj,s∥2F ,∥Wj′,s∥2F

}
≤max

j∈[n]
∥Wj,s∥2F ≤∥θs∥22≤ϵ2 .

Corollary 2.1 from [18] implies that throughout a gradient flow trajectory differences between squared
Frobenius norms of weight matrices are constant. Therefore, for j,j′∈ [n]:∣∣∥Wj∥2F −∥Wj′∥2F

∣∣= ∣∣∥Wj,s∥2F −∥Wj′,s∥2F
∣∣≤ϵ2 . (81)

If the network is shallow (i.e. n=2), then Equation (27) coincides with Equation (26), thus the desired
result follows trivially from Lemma 5. Hereafter we assume that the network is deep (i.e. n≥3). It
holds that:

max
J⊆[n],|J |=n−2

∏
j∈J

∥Wj∥F ≤max
j∈[n]

∥Wj∥n−2
F

=
(
min
j∈[n]

∥Wj∥2F +max
j∈[n]

∥Wj∥2F −min
j∈[n]

∥Wj∥2F
)n−2

2

≤
(
min
j∈[n]

∥Wj∥2F +ϵ2
)n−2

2

=

(√
minj∈[n]∥Wj∥2F +ϵ2

)n−2

≤
(
min
j∈[n]

∥Wj∥F +ϵ
)n−2

,
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where the third transition follows from Equation (81) and the last transition follows from subadditivity
of square root. Combining the latter inequality together with the result of Lemma 5 (Equation (26)),
we obtain the desired result:

λmin

(
∇2f(θ)

)
≥−max{|α|,|ᾱ|}n−1n−1

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2

∥∥xi

∥∥
2

(
min
j∈[n]

∥Wj∥F +ϵ
)n−2

.

J.16 Proof of Lemma 6

This proof is very similar to that of Lemmas 1 and 4 (see Subappendixes J.4 and J.12 respectively).
We repeat all details for completeness. Recall that θ ∈Rd is a concatenation of (w1,w2,...,wn)∈
Rd′

1 ×Rd′
2 ×···×Rd′

n as a vector. Let (∆w1,∆w2,...,∆wn)∈Rd′
1 ×Rd′

2 ×···×Rd′
n , and denote by

∆θ∈Rd its concatenation as a vector in corresponding order. Denote the following for i∈{1,...,|S|}:

∆
(1)
i :=

∑n
j=1(D

′
i,∗W∗(w∗))n:j+1D

′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1,

∆
(2)
i :=

∑
1≤j<j′≤n(D

′
i,∗W∗(w∗))n:j′+1D

′
i,j′(Wj′(∆wj′))(D

′
i,∗W∗(w∗))j′-1:j+1

D′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1,

∆
(3:n)
i :=D′

i,n(Wn(wn)+Wn(∆wn))···D′
i,1(W1(w1)+W1(∆w1))

−(D′
i,∗W∗(w∗))n:1−∆

(1)
i −∆

(2)
i .

(82)

We now develop a second-order Taylor expansion of f(θ). Since the vector tuple corresponding to
(θ+∆θ) is

(
(w1+∆w1),...,(wn+∆wn)

)
, and the function f(·) coincides with the function given

in Equation (29) on an open region containing θ, for sufficiently small ∆θ we obtain:

f(θ+∆θ)

=
1

|S|

|S|∑
i=1

ℓ
(
D′

i,n

(
Wn(wn+∆wn)

)
···D′

i,1

(
W1(w1+∆w1)

)
xi,yi

)

=
1

|S|

|S|∑
i=1

ℓ
(
D′

i,n

(
Wn(wn)+Wn(∆wn)

)
···D′

i,1

(
W1(w1)+W1(∆w1)

)
xi,yi

)

=
1

|S|

|S|∑
i=1

ℓ
((

(D′
i,∗W∗(w∗))n:1+∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi,yi

)

=
1

|S|

|S|∑
i=1

ℓ
(
(D′

i,∗W∗(w∗))n:1xi+
(
∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi,yi

)
,

(83)

where the second transition follows from linearity of Wj(·) for j∈{1,...,n} and the third transition fol-
lows from the definition of ∆(3:n)

i (Equation (82)). Let ∆v∈Rdn . For every i∈{1,...,|S|}, the second-
order Taylor expansion of ℓ(·)with respect to its first argument at

(
(D′

i,∗W∗(w∗))n:1xi,yi
)

is given by:

ℓ
(
(D′

i,∗W∗(w∗))n:1xi+∆v,yi
)
=

ℓ
(
(D′

i,∗W∗(w∗))n:1xi,yi
)
+
〈
∇ℓi,∆v

〉
+ 1

2∇
2ℓi[∆v]+O

(
∥∆v∥22

)
,

(84)
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where the O(·) notation refers to some expression satisfying lima→0

(
O(a)/a

)
=0. We continue to

develop Equation (83) using Equation (84):

f(θ+∆θ)

=
1

|S|

|S|∑
i=1

(
ℓ
(
(D′

i,∗W∗(w∗))n:1xi,yi
)
+
〈
∇ℓi,

(
∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi

〉
+

1
2∇

2ℓi
[(
∆

(1)
i +∆

(2)
i +∆

(3:n)
i

)
xi

]
+O
(∥∥(∆(1)

i +∆
(2)
i +∆

(3:n)
i

)
xi

∥∥2
2

))
=

1

|S|

|S|∑
i=1

ℓ
(
(D′

i,∗W∗(w∗))n:1xi,yi
)
+

1

|S|

|S|∑
i=1

〈
∇ℓi,∆

(1)
i xi

〉
+
〈
∇ℓi,∆

(2)
i xi

〉
+
〈
∇ℓi,∆

(3:n)
i xi

〉
+

1

|S|

|S|∑
i=1

1
2∇

2ℓi
[
∆

(1)
i xi

]
+1

2∇
2ℓi
[(
∆

(2)
i +∆

(3:n)
i

)
xi

]
+2·12∇

2ℓi
[
∆

(1)
i xi,

(
∆

(2)
i +∆

(3:n)
i

)
xi

]
+

1

|S|

|S|∑
i=1

O
(∥∥(∆(1)

i +∆
(2)
i +∆

(3:n)
i

)
xi

∥∥2
2

)
,

where in the last transition we view ∇2ℓi as both a quadratic and a bilinear form (see Subappendix J.1).
Notice that

〈
∇ℓi,∆

(3:n)
i xi

〉
, 1

2∇
2ℓi
[(
∆

(2)
i + ∆

(3:n)
i

)
xi

]
, ∇2ℓi

[
∆

(1)
i xi,

(
∆

(2)
i + ∆

(3:n)
i

)
xi

]
and

O
(∥∥(∆(1)

i +∆
(2)
i +∆

(3:n)
i )xi

∥∥2
2

)
are all O

(
∥∆θ∥22

)
, thus:

f(θ+∆θ)=

1

|S|

|S|∑
i=1

ℓ
(
(D′

i,∗W∗(w∗))n:1xi,yi
)
+
〈
∇ℓi,∆

(1)
i xi

〉
+
〈
∇ℓi,∆

(2)
i xi

〉
+1

2∇
2ℓi
[
∆

(1)
i xi

]
+O
(
∥∆θ∥22

)
.

This is in fact a Taylor expansion of the function f(·) evaluated at the point θ with a constant
term 1

|S|
∑|S|

i=1ℓ
(
(D′

i,∗W∗(w∗))n:1xi, yi
)
, a linear term 1

|S|
∑|S|

i=1

〈
∇ℓi,∆

(1)
i xi

〉
, a quadtratic term

1
|S|
∑|S|

i=1

〈
∇ℓi,∆

(2)
i xi

〉
+ 1

2∇
2ℓi
[
∆

(1)
i xi

]
, and a remainder term of O

(
∥∆θ∥22

)
. From uniqueness of

the Taylor expansion, the quadratic term must be equal to 1
2∇

2f(θ)[∆w1,...,∆wn]. This implies:

∇2f(θ)[∆w1,...,∆wn]

=
1

|S|

|S|∑
i=1

(
∇2ℓi

[
∆

(1)
i xi

]
+2
〈
∇ℓi,∆

(2)
i xi

〉)

=
1

|S|

|S|∑
i=1

∇2ℓi

[∑n
j=1(D

′
i,∗W∗(w∗))n:j+1D

′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓ⊤i
∑

1≤j<j′≤n

(D′
i,∗W∗(w∗))n:j′+1D

′
i,j′(Wj′(∆wj′))(D

′
i,∗W∗(w∗))j′-1:j+1·

D′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1xi ,

where the last transition follows from plugging in the definitions of ∆(1) and ∆(2) (see Equation (82).

J.17 Proof of Proposition 7

This proof is very similar to that of Proposition 5 (see Subappendix J.13). We repeat all details for
completeness. From assumption (ii) there exists some θ∈Rd such that

∑|S|
i=1∇ℓ(0,yi)

⊤hθ(xi) ̸=0.
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Define (w1,w2, ...,wn) ∈ Rd′
1 × Rd′

2 × ··· × Rd′
n to be the weight vectors constituting θ. We

may assume
∑|S|

i=1∇ℓ(0,yi)
⊤hθ(xi) < 0 without loss of generality, as we can negate the vectors

hθ(xi) ∈Rdn for all i ∈ {1,2,...,|S|} by flipping the signs of the entries in θ corresponding to the
last vector wn (see Equation (28)). From continuity, there exists a neighborhood N of θ such that
for all θ̃ ∈N it holds that

∑|S|
i=1∇ℓ(0,yi)

⊤hθ̃(xi)< 0. Moreover, as discussed in Appendix D, for
almost all θ′∈Rd there exists an open region Dθ′ ⊆Rd containing θ′, which is closed under positive
rescaling of weight matrices and across which f(·) coincides with a function as given in Equation (29).
There must exist some θ′ in the neighborhood N for which a region of the type Dθ′ exists. We may
assume, without loss of generality, that θ∈Dθ′ . Notice that none of the weight vectors w1,w2,...,wn

are equal to zero (as that would lead to
∑|S|

i=1∇ℓ(0,yi)
⊤hθ(xi) = 0). Define the following weight

vectors parameterized by a>0 (while recalling that n≥3 by assumption (i)):

w1(a) :=w1 ·a−2∈Rd′
1 ,

w2(a) :=w2 ·a−2∈Rd′
2 ,

w3(a) :=w3 ·a∈Rd′
3 ,

wj(a) :=wj ∈Rd′
j for j∈{1,2,...,n}/{1,2,3} ,

and denote by θ(a) ∈ Rd their corresponding weight setting. Since Dθ′ is closed under positive
rescaling of weight vectors, it holds that {θ(a) : a>0}⊆Dθ′ . Define:

∆w1 :=w1∈Rd′
1 ,

∆w2 :=w2∈Rd′
2 ,

∆wj :=0∈Rd′
j for j∈ [n]/{1,2} .

For a > 0 , i ∈ {1,2, ... , |S|} and j,j′ ∈ {1,2, ... ,n}, define (D′
i,∗W∗(w∗(a)))j′:j to be the matrix

D′
i,j′Wj′(wj′(a))D

′
i,j′−1Wj′−1(wj′−1(a))···D′

i,jWj(wj(a)) (where by convention D′
i,n∈Rdn,dn

stands for identity) if j ≤ j′, and an identity matrix (with size to be inferred by context) otherwise.
For i∈{1,2,...,|S|} and a> 0 let ∇ℓi(a)∈Rdn and ∇2ℓi(a)∈Rdn,dn be the gradient and Hessian
(respectively) of the loss ℓ(·) at the point

(
(D′

i,∗W∗(w∗(a)))n:1xi,yi
)

with respect to its first argument.
For every a>0, since θ(a)∈Dθ′ , we may apply Lemma 6, obtaining:

∇2f
(
θ(a)

)
[∆w1,...,∆wn]=

1

|S|

|S|∑
i=1

∇2ℓi(a)
[∑n

j=1(D
′
i,∗W∗(w∗(a)))n:j+1D

′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗(a)))j-1:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓi(a)
⊤
∑

1≤j<j′≤n

(D′
i,∗W∗(w∗(a)))n:j′+1D

′
i,j′(Wj′(∆wj′))(D

′
i,∗W∗(w∗(a)))j′-1:j+1

D′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗(a)))j-1:1xi,

(85)

where we regard Hessians as quadratic forms (see Subappendix J.1). Plugging in the definitions of
wj(a) and ∆wj for j∈ [n] and relying on linearity of Wj(·) for j∈ [n], we have:

∇2f
(
θ(a)

)
[∆w1,...,∆wn]

=
1

|S|

|S|∑
i=1

∇2ℓi(a)
[
2a−1(D′

i,∗W∗(w∗))n:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓi(a)
⊤a(D′

i,∗W∗(w∗))n:1xi

=
4

a2
· 1

|S|

|S|∑
i=1

∇2ℓi(a)
[
(D′

i,∗W∗(w∗))n:1xi

]
+a· 2

|S|

|S|∑
i=1

∇ℓi(a)
⊤hθ(xi) ,

(86)

where the second transition follows from pulling 2/a out of the quadratic operator and the
fact that hθ(xi) = (D′

i,∗W∗(w∗))n:1xi. Note that lima→∞
(
D′

i,∗W∗(w∗(a))
)
n:1

= 0. Since
the function ℓ(·) is twice continuously differentiable in its first argument, it holds that
lima→∞∇2ℓi(a) = lima→∞∇2ℓ

(
(D′

i,∗W∗(w∗(a)))n:1xi, yi
)
= ∇2ℓ(0, yi), and similarly we
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have that lima→∞∇ℓi(a)=lima→∞∇ℓ
(
(D′

i,∗W∗(w∗(a)))n:1xi,yi
)
=∇ℓ(0,yi). Therefore, in the limit

a→∞, Equation (86) becomes:

lim
a→∞

(
∇2f

(
θ(a)

)
[∆w1,...,∆wn]

)

= lim
a→∞

(
4

a2
· 4

|S|

|S|∑
i=1

∇2ℓi(a)
[
(D′

i,∗W∗(w∗))n:1xi

])
+lim
a→∞

(
a· 2

|S|

|S|∑
i=1

∇ℓi(a)
⊤hθ(xi)

)

= lim
a→∞

(
4

a2

)
lim
a→∞

(
4

|S|

|S|∑
i=1

∇2ℓi(a)
[
(D′

i,∗W∗(w∗))n:1xi

])
+lim
a→∞

(
a·lim
a→∞

(
2

|S|

|S|∑
i=1

∇ℓi(a)
⊤hθ(xi)

))

=0·
(

4

|S|

|S|∑
i=1

∇2ℓ(0,yi)
[
(D′

i,∗W∗(w∗))n:1xi

])
+lim
a→∞

(
a· 2

|S|

|S|∑
i=1

∇ℓi(0,yi)
⊤hθ(xi)

)
=−∞ ,

where the second transition is valid since the multiplied limits are finite and the limit inside a limit
is non-zero, and the last transition follows from

∑|S|
i=1∇ℓ(0,yi)

⊤hθ(xi)<0. Notice that the vectors
∆w1,∆w2,...,∆wn are independent of a, thus it must hold that lima→∞λmin

(
∇2f

(
θ(a)

))
=−∞.

This in particular implies the desired result:

infθ∈Rd s.t.∇2f(θ) exists λmin(∇2f(θ))=−∞ .

J.18 Proof of Lemma 7

This proof is very similar to that of Lemmas 2 and 5 (see Subappendixes J.6 and J.14 respec-
tively). We repeat all details for completeness. Recall that θ ∈ Rd is a concatenation of
(w1,w2,...,wn)∈Rd′

1×Rd′
2×···×Rd′

n as a vector. Let (∆w1,∆w2,...,∆wn)∈Rd′
1×Rd′

2×···×Rd′
n ,

and denote by ∆θ∈Rd its concatenation as a vector in corresponding order. As shown in Lemma 6:

∇2f(θ)[∆w1,...,∆wn]=

1

|S|

|S|∑
i=1

∇2ℓi

[∑n
j=1(D

′
i,∗W∗(w∗))n:j+1D

′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1xi

]
+

2

|S|

|S|∑
i=1

∇ℓ⊤i
∑

1≤j<j′≤n

(D′
i,∗W∗(w∗))n:j′+1D

′
i,j′(Wj′(∆wj′))(D

′
i,∗W∗(w∗))j′-1:j+1·

D′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1xi ,

where we regard Hessians as quadratic forms (see Subappendix J.1). Convexity of ℓ(·) in its first
argument implies that for i∈{1,2,...,|S|}, ∇2ℓi is positive semi-definite, thus:

∇2f(θ)[∆w1,...,∆wn]≥

2

|S|

|S|∑
i=1

∇ℓ⊤i
∑

1≤j<j′≤n

(D′
i,∗W∗(w∗))n:j′+1D

′
i,j′(Wj′(∆wj′))(D

′
i,∗W∗(w∗))j′-1:j+1·

D′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1xi .
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Applying Cauchy-Schwarz and triangle inequalities, we get:

∇2f(θ)[∆w1,...,∆wn]

≥− 2

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2
·
∑

1≤j<j′≤n

∥∥(D′
i,∗W∗(w∗))n:j′+1D

′
i,j′(Wj′(∆wj′))(D

′
i,∗W∗(w∗))j′-1:j+1·

D′
i,j(Wj(∆wj))(D

′
i,∗W∗(w∗))j-1:1xi

∥∥
2

≥− 2

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2
·
∑

1≤j<j′≤n

∥∥Wj(∆wj)
∥∥
s

∥∥Wj′(∆wj′)
∥∥
s

∏
k∈[n]/{j,j′}

∥∥Wk(wk)
∥∥
s

∏
k∈[n]

∥∥D′
i,k

∥∥
s
·
∥∥xi

∥∥
2

≥− 2

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2
·

n∏
j=1

∥Wj(·)∥op
∑

1≤j<j′≤n

∥∥∆wj

∥∥
2

∥∥∆wj′
∥∥
2

∏
k∈[n]/{j,j′}

∥∥wk

∥∥
2

n∏
k=1

∥∥D′
i,k

∥∥
s
·
∥∥xi

∥∥
2

≥− 2

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2

n∏
j=1

∥Wj(·)∥opmax
J⊆[n]

|J |=n−2

∏
j∈J

∥∥wj

∥∥
2
max{|α|,|ᾱ|}n−1

∥∥xi

∥∥
2

∑
1≤j<j′≤n

∥∥∆wj

∥∥
2

∥∥∆wj′
∥∥
2
,

where the second transition follows from the definition and sub-multiplicativity of spectral norm,
the third transition follows from bounding spectral norms with Frobenius norms and the definition
of ∥Wj(·)∥op, and the last transition follows from maximizing

∏
k∈[n]/{j,j′}∥wk∥2 over j,j′, upper

bounding ∥D′
i,j∥s≤max{|α|,|ᾱ|} for j∈ [n−1] and recalling that D′

i,n is an identity matrix, meaning
∥D′

i,n∥s=1. It holds that: ∑
1≤j<j′≤n∥∆wj′∥2∥∆wj∥2

= 1
2

(∑n
j=1∥∆wj∥2

)2
− 1

2

∑n
j=1∥∆wj∥22

≤ n
2

∑n
j=1∥∆wj∥22− 1

2

∑n
j=1∥∆wj∥22

= n−1
2

∑n
j=1∥∆wj∥22,

where the last inequality follows from the fact that the one-norm of a vector in Rn is never greater
than

√
n times its euclidean-norm. This leads us to the following bound:

∇2f(θ)[∆w1,...,∆wn]≥

−max{|α|,|ᾱ|}n−1
n∏

j=1

∥Wj(·)∥op max
J⊆[n]

|J |=n−2

∏
j∈J

∥∥wj

∥∥
2

n−1

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2

∥∥xi

∥∥
2

n∑
j=1

∥∆wj∥22 .

The desired result readily follows:

λmin

(
∇2f(θ)

)
≥−max{|α|,|ᾱ|}n−1n−1

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2

∥∥xi

∥∥
2

n∏
j=1

∥Wj(·)∥op max
J⊆[n]

|J |=n−2

∏
j∈J

∥∥wj

∥∥
2

.

J.19 Proof of Proposition 8

This proof is very similar to that of Proposition 6 (see Subappendix J.15). Recall that
(w1,w2, ...,wn) ∈ Rd′

1 × Rd′
2 × ··· × Rd′

n are the weight vectors constituting θ ∈ Rd, and
denote by (w1,s,w2,s,...,wn,s)∈Rd′

1×Rd′
2×···×Rd′

n those that constitute θs. For j,j′∈ [n]:∣∣∥wj,s∥22−∥wj′,s∥22
∣∣≤max

{
∥wj,s∥22,∥wj′,s∥22

}
≤max

j∈[n]
∥wj,s∥22≤∥θs∥22≤ϵ2 .

Theorem 2.3 from [18] implies that throughout a gradient flow trajectory differences between squared
Euclidean norms of weight vectors are constant. Therefore, for j,j′∈ [n]:∣∣∥wj∥22−∥wj′∥22

∣∣= ∣∣∥wj,s∥22−∥wj′,s∥22
∣∣≤ϵ2 . (87)
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If the network is shallow (i.e. n=2), then Equation (32) coincides with Equation (31), thus the desired
result follows trivially from Lemma 7. Hereafter we assume that the network is deep (i.e. n≥3). It
holds that:

max
J⊆[n],|J |=n−2

∏
j∈J

∥wj∥2≤max
j∈[n]

∥wj∥n−2
2

=
(
min
j∈[n]

∥wj∥22+max
j∈[n]

∥wj∥22−min
j∈[n]

∥wj∥22
)n−2

2

≤
(
min
j∈[n]

∥wj∥22+ϵ2
)n−2

2

=

(√
minj∈[n]∥wj∥22+ϵ2

)n−2

≤
(
min
j∈[n]

∥wj∥2+ϵ
)n−2

,

where the third transition follows from Equation (87) and the last transition follows from subadditivity
of square root. Combining the latter inequality together with the result of Lemma 7 (Equation (31)),
we obtain the desired result:

λmin

(
∇2f(θ)

)
≥−max{|α|,|ᾱ|}n−1n−1

|S|

|S|∑
i=1

∥∥∇ℓi
∥∥
2

∥∥xi

∥∥
2

∏
j∈[n]

∥Wj(·)∥op
(
min
j∈[n]

∥wj∥2+ϵ
)n−2

.

J.20 Proof of Lemma 8

In this proof we overload the definition of unbalancedness magnitude (Definition 1) to account for
arbitrary matrix dimensions, namely, for any matrices A1,...,An such that the product An ···A1 is
defined, we refer to maxj∈[n−1]∥A⊤

j+1Aj+1−AjA
⊤
j ∥n as their unbalancedness magnitude. Recall

that θ∈Rd is the arrangement of W1,W2,...,Wn−1∈Rd0,d0 and Wn∈Rdn,d0 as a vector. Define the
matricesB1,B2,...,Bn∈Rd0,d0 as follows: Bj :=Wj for j∈ [n−1] andBn :=

√
W⊤

n Wn. Notice that:

B⊤
n Bn=

√
W⊤

n Wn

√
W⊤

n Wn=W⊤
n Wn ,

thus the unbalancedness magnitude of B1, ...,Bn is equal to that of W1, ...,Wn, i.e. to ϵ̂. Define
the matrices C1,C2,...,Cn ∈Rd0,d0 by transposing and reversing the order of B1,...,Bn, formally:
Cj :=B⊤

n−j+1 for j∈ [n]. Notice that transposition and order reversal do not change the unbalanced-
ness magnitude. Namely, since for j∈ [n−1] we have that ∥C⊤

j+1Cj+1−CjC
⊤
j ∥n=∥Bn−jB

⊤
n−j−

B⊤
n−j+1Bn−j+1∥n, the unbalancedness magnitude of C1,...,Cn is equal to that of B1,...,Bn, i.e. to ϵ̂.

Applying Lemma 1 from [46] to C1,...,Cn, we conclude that there exists Ĉ1,...,Ĉn∈Rd0,d0 which are
balanced (i.e. have unbalancedness magnitude zero), such that ∥Cj−Ĉj∥F ≤(j−1)

√
ϵ̂ for j∈ [n]. Pay

special notice to the fact that Ĉ1=C1 (as the Frobenius norm of the discrepancy is zero). Define the
matrices B̂1,B̂2,...,B̂n∈Rd0,d0 by transposing and reversing the order of Ĉ1,...,Ĉn, formally: B̂j :=

Ĉ⊤
n−j+1 for j∈ [n]. Relying again on the fact that transposition and order reversal do not change unbal-

ancedness magnitude, we have that B̂1,...,B̂n, similarly to Ĉ1,...,Ĉn, are balanced. Define the matrices
Ŵ1,Ŵ2,...,Ŵn−1∈Rd0,d0 and Ŵn∈Rdn,d0 as follows: Ŵj := B̂j for j∈ [n−1] and Ŵn :=Wn. No-
tice that the dimensions of Ŵ1,Ŵ2,...,Ŵn correspond to those of W1,W2,...,Wn, and in particular that
these are valid weight matrices. We denote their corresponding weight setting by θ̂∈Rd. Notice that:

Ŵ⊤
n Ŵn=W⊤

n Wn=
√
W⊤

n Wn

√
W⊤

n Wn=BnBn=C1C1= Ĉ1Ĉ1=B̂nB̂n ,
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which means that Ŵ1,Ŵ2,...,Ŵn are balanced, as they have the same unbalancedness magnitude of
B̂1,...,B̂n, i.e. zero. Furthermore we have that:

∥θ̂−θ∥2=∥(Ŵn,Ŵn−1...,Ŵ1)−(Wn,Wn−1,...,W1)∥F
=∥(Wn,B̂n−1...,B̂1)−(Wn,Bn−1,...,B1)∥F

=

√
∥Wn−Wn∥2F +∥B̂n−1−Bn−1∥2F +...+∥B̂1−B1∥2F

=

√
0+∥Ĉ⊤

2 −C⊤
2 ∥2F +...+∥Ĉ⊤

n −C⊤
n ∥2F

≤
√

(n−1)·(n−1)2ϵ̂

≤n1.5
√
ϵ̂ ,

where the second transition follows from the definitions of Ŵ1,...,Ŵn−1 and B1,...,Bn−1, the third
from the definition of Frobenius norm, the forth from the definitions of B̂1,...,B̂n−1 and C1,...,Cn−1

and the fifth transition follows from the conclusion of Lemma 1 from [46] applied to C1,...,Cn.

J.21 Proof of Theorem 5

Without loss of generality, we may assume ϵ̃≤ 1 (a proof that is valid for ϵ̃= 1 automatically
accounts for ϵ̃>1 as well). Given that the unbalancedness magnitude (Definition 1) of θ0 is no
greater than ϵ̂ (defined in Equation (34)), by Lemma 8, there exists a weight setting θ̂0 ∈Rd which
is balanced (has unbalancedness magnitude zero) and meets ∥θ0 − θ̂0∥2 ≤ n1.5

√
ϵ̂. Denote by

(Ŵ1,0,Ŵ2,0,...,Ŵn,0) ∈ Rd1,d0 ×Rd2,d1 ×···×Rdn,dn−1 the weight matrices corresponding to θ̂0,
and by Ŵn:1,0 ∈ Rdn,d0 its end-to-end matrix (i.e. Ŵn:1,0 := Ŵn,0Ŵn−1,0 ···Ŵ1,0). Define ν̂ as
Tr(Λ⊤

yxŴn:1,0)
/(

∥Λyx∥F ∥Ŵn:1,0∥F
)

if ∥Ŵn:1∥F ̸= 0, and as 0 otherwise. The following lemma
establishes several bounds relating Ŵn:1,0 and ν̂ to Wn:1,0 and ν respectively.

Lemma 52. The following hold:

∥Wn:1,0−Ŵn:1,0∥F ≤ 1
3∥Wn:1,0∥F ; (88)

ν̂≥min
{
−1

2 , sign(ν) |ν|+1
2

}
; (89)

∥Ŵn:1,0∥−1
F ≤ 3

2∥Wn:1,0∥−1
F ; and (90)

max{1, 1−ν̂
1+ν̂ }≤max{3, 3−ν

1+ν } . (91)

Proof for Lemma 52 is provided in Subsubappendix J.21.1.

Given η>0 adhering to Equation (35), define:

k :=

⌊
2n
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
∥Ŵn:1,0∥F η

ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1,0∥F ϵ̃

)
+1

⌋
. (92)

Taken together, Equations (90) and (91) imply that k adheres to the upper bound in Equa-
tion (36). It thus suffices to show that with step size η, iterate k of gradient descent is ϵ̃-optimal,
i.e. f(θk)−minq∈Rdf(q)≤ ϵ̃.

Equations (88) and (89) respectively imply that ∥Ŵn:1,0∥F ≤0.2 and ν̂ ̸=−1. Therefore, as an initial
point for gradient flow, the (balanced) weight setting θ̂0 satisfies the conditions of Proposition 3. Define:

ϵ̄ := ϵ̃/2 , ϵ :=
∥Ŵn:1,0∥F ϵ̃

15n3
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
kη

, (93)

and invoke Proposition 3 with initial point θs = θ̂0, time t = kη and ϵ̄, ϵ as above (note that
ϵ∈(0,1/(2n)]). From the proposition we obtain that the gradient flow trajectory emanating from θ̂0

75



is defined over infinite time, and with θ̂ : [0,∞)→Rd representing this trajectory, the following time t̄
satisfies f(θ̂(t̄))−minq∈Rdf(q)≤ ϵ̄:

t̄=
2n
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
∥Ŵn:1,0∥F

ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1,0∥Fmin{1,2ϵ̄}

)
. (94)

Moreover, we obtain that under the notations of Theorem 3, in correspondence with Dkη,ϵ

(ϵ-neighborhood of gradient flow trajectory up to time kη) are the smoothness and Lipschitz constants
βkη,ϵ=16n and γkη,ϵ=6

√
n respectively, and the following (upper) bound on the integral of (minus)

the minimal eigenvalue of the Hessian:

∫ kη

0

m(t′)dt′≤
15n3

(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
kηϵ

∥Ŵn:1,0∥F
+ln

(
n2
(
e2max

{
1,

1−ν̂
1+ν̂

})5(n−1)/2

∥Ŵn:1,0∥2
F

)
, (95)

where the function m : [0,kη]→R is non-negative.

Notice that k= ⌊t̄/η+1⌋ and therefore kη≥ t̄. Combining this with the fact that the gradient flow
trajectory θ̂(·) is ϵ̄-optimal at time t̄, and that in general gradient flow monotonically non-increases
the objective it optimizes, we infer ϵ̄-optimality of the gradient flow trajectory at time kη, i.e. θ̂(kη)−
minq∈Rdf(q)≤ ϵ̄. We will invoke Theorem 3 for showing that, in addition to being ϵ̄-optimal, the
gradient flow trajectory at time kη is also ϵ-approximated by iterate k of gradient descent, i.e. ∥θk−
θ̂(kη)∥2 ≤ ϵ. This, along with f(·) being 6

√
n-Lipschitz across Dkη,ϵ (ϵ-neighborhood of gradient

flow trajectory up to time kη), yields the desired result — ϵ̃-optimality for iterate k of gradient descent:

f
(
θk

)
−minq∈Rdf(q)

=
(
f
(
θk

)
−f
(
θ̂(kη)

))
+
(
f
(
θ̂(kη)

)
−minq∈Rdf(q)

)
≤
(
6
√
n
∥∥θk−θ̂(kη)

∥∥
2

)
+
(
f
(
θ̂(kη)

)
−minq∈Rdf(q)

)
≤6

√
n·ϵ+ϵ̄

≤ ϵ̃ ,

where the last transition follows from the definitions of ϵ and ϵ̄ (Equation (93)).

We conclude the proof by showing that indeed ∥θk−θ̂(kη)∥2≤ ϵ. Equation (95), the definition of ϵ
(Equation (93)) and the condition ϵ̃≤1 together imply:∫ kη

0

m(t′)dt′ ≤
15n3

(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
kηϵ

∥Ŵn:1,0∥F
+ln

(
n2
(
e2max

{
1,

1−ν̂
1+ν̂

})5(n−1)/2

∥Ŵn:1,0∥2
F

)
(96)

= ϵ̃+ln

(
n2
(
e2max

{
1,

1−ν̂
1+ν̂

})5(n−1)/2

∥Ŵn:1,0∥2
F

)
≤ 1+ln

(
n2
(
e2max

{
1,

1−ν̂
1+ν̂

})5(n−1)/2

∥Ŵn:1,0∥2
F

)
< ln

(
3n2
(
e2max

{
1,

1−ν̂
1+ν̂

})5(n−1)/2

∥Ŵn:1,0∥2
F

)
.

Recalling the expressions for k and t̄ (Equations (92) and (94) respectively), and the definition of ϵ̄
(Equation (93)), we have:

kη=⌊t̄/η+1⌋η≤ t̄+η=
2n
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
∥Ŵn:1,0∥F

ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1,0∥F ϵ̃

)
+η (97)

<
3n
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
∥Ŵn:1,0∥F

ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1,0∥F ϵ̃

)
,
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where the last transition makes use of the upper bound on η given in Equation (35). It holds that:

4n3ϵ−2e2
∫ kη
0

m(t′)dt′

< 4n3 225n6
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})2n
(kη)2

∥Ŵn:1(0)∥2
F ϵ̃2

·
9n4
(
e2max

{
1,

1−ν̂
1+ν̂

})5(n−1)

∥Ŵn:1(0)∥4
F

<
8100n13e11n−10

(
max
{
1,

1−ν̂
1+ν̂

})7n−5

∥Ŵn:1(0)∥6
F ϵ̃2

(kη)2

<
8100n13e11n−10

(
max
{
1,

1−ν̂
1+ν̂

})7n−5

∥Ŵn:1(0)∥6
F ϵ̃2

·
9n2
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})2n
∥Ŵn:1(0)∥2

F

(
ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1(0)∥F ϵ̃

))2

<
n15e12n+2

(
max
{
1,

1−ν̂
1+ν̂

})9n−5

∥Ŵn:1(0)∥8
F ϵ̃2

(
ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1(0)∥F ϵ̃

))2

≤
n15e12n+2

(
max
{
3,

3−ν
1+ν

})9n−5

( 2
3 )

8∥Wn:1(0)∥8
F ϵ̃2

(
ln

(
15nmax

{
3,

3−ν
1+ν

}
2
3∥Wn:1(0)∥F ϵ̃

))2

≤
n15e12n+6

(
max
{
3,

3−ν
1+ν

})9n−5

∥Wn:1(0)∥8
F ϵ̃2

(
ln

(
23nmax

{
3,

3−ν
1+ν

}
∥Wn:1(0)∥F ϵ̃

))2

= 1
/
ϵ̂ ,

where the first transition follows from Equation (96) and the definition of ϵ (Equation (93)); the third
makes use of Equation (97); the fifth relies on Equations (90) and (91); and the last is based on the
definition of ϵ̂ (Equation (34)) and the condition ϵ̃ ≤ 1. Rearranging the derived inequality gives√
ϵ̂< 1

2n
−1.5ϵe−

∫ kη
0

m(t′)dt′ . Combining this with the fact that ∥θ0−θ̂(0)∥2≤n1.5
√
ϵ̂, we obtain:

ϵ−e
∫ kη
0

m(t′)dt′∥θ0−θ̂(0)∥2≥ϵ−e
∫ kη
0

m(t′)dt′n1.5
√
ϵ̂>ϵ− 1

2ϵ=
1
2ϵ. (98)

We now have:

βkη,ϵγkη,ϵkηe
∫ kη
0

m(t′)dt′
/(

ϵ−e
∫ kη
0

m(t′)d′
∥θ0−θ̂(0)∥2

)
< βkη,ϵγkη,ϵkηe

∫ kη
0

m(t′)dt′2ϵ−1

< (16n)(6
√
n)kη ·

3n2
(
e2max

{
1,

1−ν̂
1+ν̂

})5(n−1)/2

∥Ŵn:1,0∥2
F

·2
15n3

(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})n
kη

∥Ŵn:1,0∥F ϵ̃

<
9000n13/2e6n−5

(
max
{
1,

1−ν̂
1+ν̂

})(7n−5)/2

∥Ŵn:1,0∥3
F ϵ̃

(kη)2

<
9000n13/2e6n−5

(
max
{
1,

1−ν̂
1+ν̂

})(7n−5)/2

∥Ŵn:1,0∥3
F ϵ̃

·
9n2
(
max
{
1,

3
2 ·

1−ν̂
1+ν̂

})2n
∥Ŵn:1,0∥2

F

(
ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1,0∥F ϵ̃

))2

<
n17/2e7n+7

(
max
{
1,

1−ν̂
1+ν̂

})(11n−5)/2

∥Ŵn:1,0∥5
F ϵ̃

(
ln

(
15nmax

{
1,

1−ν̂
1+ν̂

}
∥Ŵn:1,0∥F ϵ̃

))2

≤
n17/2e7n+7

(
max
{
3,

3−ν
1+ν

})(11n−5)/2

( 2
3 )

5∥Wn:1,0∥5
F ϵ̃

(
ln

(
15nmax

{
3,

3−ν
1+ν

}
2
3∥Wn:1,0∥F ϵ̃

))2

≤
n17/2e7n+10

(
max
{
3,

3−ν
1+ν

})(11n−5)/2

∥Wn:1,0∥5
F ϵ̃

(
ln

(
23nmax

{
3,

3−ν
1+ν

}
∥Wn:1,0∥F ϵ̃

))2

≤ 1/η,

where the first transition is due to Equation (98); the second makes use of βkη,ϵ=16n, γkη,ϵ=6
√
n,

Equation (96) and the definition of ϵ (Equation (93)); the fourth relies on Equation (97); the sixth
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is an outcome of Equations (90) and (91); and the last follows from the upper bound on η given in
Equation (35), as well as the condition ϵ̃≤1. Rearrange the inequality above:

η<
ϵ−e

∫ kη
0

m(t′)dt′∥θ0−θ̂(0)∥2
βkη,ϵγkη,ϵkηe

∫ kη
0

m(t′)dt′
.

Since m(·) is non-negative, it holds that:
ϵ−e

∫ kη
0

m(t′)dt′∥θ0−θ̂(0)∥2
βkη,ϵγkη,ϵkηe

∫ kη
0

m(t′)dt′
≤ inf

t∈(0,kη]

ϵ−e
∫ t
0
m(t′)dt′∥θ0−θ̂(0)∥2

βkη,ϵγkη,ϵ
∫ t

0
e
∫ t
t′m(t′′)dt′′dt′

,

and therefore:

η< inf
t∈(0,kη]

ϵ−e
∫ kη
0

m(t′)dt′∥θ0−θ̂(0)∥2
βkη,ϵγkη,ϵ

∫ t

0
e
∫ t
t′m(t′′)dt′′dt′

. (99)

We now invoke Theorem 3 with ϵ as we have defined (Equation (93)), time t̃ = kη, and βkη,ϵ,
γkη,ϵ and m(·) as produced by Proposition 3. The theorem implies that, by Equation (99), the first
⌊kη/η⌋=k iterates of gradient descent ϵ-approximate the gradient flow trajectory up to time kη,
i.e. ∥θk′−θ̂(k′η)∥2≤ϵ for all k′∈{1,2,...,k}. In particular ∥θk−θ̂(kη)∥2≤ϵ, as required.

J.21.1 Proof of Lemma 52

For conciseness, in the current proof we omit a second subscript “0” from our notation. Namely, we
use Wn:1 and Ŵn:1 as shorthand for Wn:1,0 and Ŵn:1,0 respectively, and for any j∈ [n], Wj and Ŵj

serve as shorthand for Wj,0 and Ŵj,0 respectively.

We start by proving Equation (88). The following matrix Ŵj′:j , for any j,j′ ∈ [n], is defined as
Ŵj′Ŵj′−1 ···Ŵj if j ≤ j′, and as an identity matrix (with size to be inferred by context) otherwise.
Recall that θ̂0 meets the balancedness condition, i.e. Ŵ⊤

j+1Ŵj+1=ŴjŴ
⊤
j for all j∈ [n−1]. Using

this relation repeatedly (while recalling that dn=1), we have:

∥Ŵn:1∥2F =Ŵn:1Ŵ
⊤
n:1

=Ŵn:2Ŵ1Ŵ
⊤
1 Ŵ⊤

n:2

=Ŵn:2Ŵ
⊤
2 Ŵ2Ŵ

⊤
n:2

=Ŵn:3Ŵ2Ŵ
⊤
2 Ŵ2Ŵ

⊤
2 Ŵ⊤

n:3

=Ŵn:3Ŵ
⊤
3 Ŵ3Ŵ

⊤
3 Ŵ3Ŵ

⊤
n:3

...

=
(
ŴnŴ

⊤
n

)n
=∥Ŵn∥2nF .

Since the balancedness condition implies that ∥Ŵj∥F = ∥Ŵj+1∥F for any j ∈ [n− 1], we may
conclude ∥Ŵj∥F =∥Ŵn:1∥1/nF for any j∈ [n]. It holds that:∥∥Wn:1−Ŵn:1

∥∥
F

=
∥∥(Ŵn+Wn−Ŵn)···(Ŵ1+W1−Ŵ1)−Ŵn:1

∥∥
F

=
∥∥∥∑(b1,..,bn)∈{0,1}n

(
bnŴn+(1−bn)(Wn−Ŵn)

)
···
(
b1Ŵ1+(1−b1)(W1−Ŵ1)

)
−Ŵn:1

∥∥∥
F

=
∥∥∥∑(b1,..,bn)∈{0,1}n\{1}n

(
bnŴn+(1−bn)(Wn−Ŵn)

)
···
(
b1Ŵ1+(1−b1)(W1−Ŵ1)

)∥∥∥
F

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

∥∥(bnŴn+(1−bn)(Wn−Ŵn)
)
···
(
b1Ŵ1+(1−b1)(W1−Ŵ1)

)∥∥
F

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

∥∥bnŴn+(1−bn)(Wn−Ŵn)
∥∥
F
···
∥∥b1Ŵ1+(1−b1)(W1−Ŵ1)

)∥∥
F

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

(
bn∥Ŵn∥F+(1−bn)∥Wn−Ŵn∥F

)
···
(
b1∥Ŵ1∥F+(1−b1)∥W1−Ŵ1∥F

)
,
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where the inequalities follow from sub-multiplicativity and sub-additivity of Frobenius norm. Since
∥θ0−θ̂0∥2≤

√
n3ϵ̂ and ∥Ŵj∥F =∥Ŵn:1∥1/nF for any j∈ [n], we obtain:∥∥Wn:1−Ŵn:1

∥∥
F

≤
∑

(b1,..,bn)∈{0,1}n\{1}n

(
bn∥Ŵn:1∥1/nF +(1−bn)

√
n3ϵ̂
)
···
(
b1∥Ŵn:1∥1/nF +(1−b1)

√
n3ϵ̂
)

=
(
∥Ŵn:1∥1/nF +

√
n3ϵ̂
)n−∥Ŵn:1∥F

=
∑n

j=0

(
n
j

)
∥Ŵn:1∥(n−j)/n

F

(
n3ϵ̂
)j/2−∥Ŵn:1∥F

=
∑n

j=1

(
n
j

)
∥Ŵn:1∥(n−j)/n

F

(
n3ϵ̂
)j/2

≤
∑n

j=1n
jmax

{
1,∥Ŵn:1∥F

}(
n3ϵ̂
)j/2

=max
{
1,∥Ŵn:1∥F

}∑n
j=1

(
n5ϵ̂
)j/2

≤max
{
1,∥Ŵn:1∥F

}∑∞
j=1

(
n5ϵ̂
)j/2

.

Since
√
n5ϵ̂<1 (relying on the definition of ϵ̂ in Equation (34)), we obtain:∥∥Wn:1−Ŵn:1

∥∥
F
≤max

{
1,∥Ŵn:1∥F

} √
n5ϵ̂

1−
√
n5ϵ̂

. (100)

By the definition of ϵ̂ (Equation (34)), it follows that
√
n5ϵ̂
/(

1−
√
n5ϵ̂
)
≤ 1

3∥Wn:1∥F , thus:

∥Wn:1−Ŵn:1∥F ≤ 1
3max

{
1,∥Ŵn:1∥F

}
∥Wn:1∥F .

We conclude the proof of Equation (88) by showing that ∥Ŵn:1∥F ≤ 1. Indeed, assuming that this
is not the case, i.e. ∥Ŵn:1∥F >1, while recalling that ∥Wn:1∥F ≤0.1, leads us to a contradiction:∥∥Ŵn:1

∥∥
F
≤
∥∥Wn:1

∥∥
F
+
∥∥Ŵn:1−Wn:1

∥∥
F
≤0.1

∥∥Ŵn:1

∥∥
F
+ 1

3

∥∥Wn:1

∥∥
F

∥∥Ŵn:1

∥∥
F
<
∥∥Ŵn:1

∥∥
F

.

Note that in addition to Equation (88), from Equation (100) and the fact that ∥Ŵn:1∥F ≤ 1, we may
also establish the following:

∥Wn:1−Ŵn:1∥F ≤∥Ŵn:1∥F
√
n5 ϵ̂

1−
√
n5 ϵ̂

. (101)

Moving on to the proof of Equation (89), we split the analysis into the following two cases: (i) ν∈ [0,1];
and (ii) ν∈(−1,0). We start by analyzing case (i). Note that Equation (88) together with the fact that
∥Wn:1∥F ̸=0 imply ∥Ŵn:1∥F ̸=0. It holds that:

ν̂=
⟨Λyx,Ŵn:1⟩

∥Λyx∥F ∥Ŵn:1∥F

=
⟨Λyx,Wn:1+Ŵn:1−Wn:1⟩

∥Λyx∥F ∥Ŵn:1∥F

=
⟨Λyx,Wn:1⟩

∥Λyx∥F ∥Ŵn:1∥F
+

⟨Λyx,Ŵn:1−Wn:1⟩
∥Λyx∥F ∥Ŵn:1∥F

=ν · ∥Wn:1∥F

∥Ŵn:1∥F
+

⟨Λyx,Ŵn:1−Wn:1⟩
∥Λyx∥F ∥Ŵn:1∥F

≥0+
⟨Λyx,Ŵn:1−Wn:1⟩
∥Λyx∥F ∥Ŵn:1∥F

.

Recall that ∥Λyx∥F =1. We may finish the proof for case (i) by using Cauchy-Schwartz and triangle
inequalities together with Equation (88):

ν̂≥− 1·∥Ŵn:1−Wn:1∥F

1·∥Ŵn:1∥F

=− ∥Ŵn:1−Wn:1∥F

∥Wn:1+Ŵn:1−Wn:1∥F

≥− ∥Ŵn:1−Wn:1∥F

∥Wn:1∥F−∥Ŵn:1−Wn:1∥F

≥− ∥Wn:1∥F /3
2∥Wn:1∥F /3

=− 1
2 .
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Regarding case (ii) (i.e. ν∈(−1,0)), we have that:

|ν̂|= |⟨Λyx,Ŵn:1⟩|
∥Λyx∥F ∥Ŵn:1∥F

=
|⟨Λyx,Wn:1+Ŵn:1−Wn:1⟩|
1·∥Wn:1+Ŵn:1−Wn:1∥F

=
|⟨Λyx,Wn:1⟩+⟨Λyx,Ŵn:1−Wn:1⟩|

∥Wn:1+Ŵn:1−Wn:1∥F

≤ |⟨Λyx,Wn:1⟩|+|⟨Λyx,Ŵn:1−Wn:1⟩|
(∥Wn:1∥F−∥Ŵn:1−Wn:1∥F )

≤ |⟨Λyx,Wn:1⟩|+1·∥Ŵn:1−Wn:1∥F

∥Wn:1∥F−∥Ŵn:1−Wn:1∥F

= |ν|−|ν|+ |⟨Λyx,Wn:1⟩|+∥Ŵn:1−Wn:1∥F

∥Wn:1∥F−∥Ŵn:1−Wn:1∥F

= |ν|− |⟨Λyx,Wn:1⟩|
∥Λyx∥F ∥Wn:1∥F

+
|⟨Λyx,Wn:1⟩|+∥Ŵn:1−Wn:1∥F

∥Wn:1∥F−∥Ŵn:1−Wn:1∥F

= |ν|− |⟨Λyx,Wn:1⟩|
1·∥Wn:1∥F

+
|⟨Λyx,Wn:1⟩|+∥Ŵn:1−Wn:1∥F

∥Wn:1∥F−∥Ŵn:1−Wn:1∥F

= |ν|+∥Ŵn:1−Wn:1∥F · ∥Wn:1∥−1
F |⟨Λyx,Wn:1⟩|+1

∥Wn:1∥F−∥Ŵn:1−Wn:1∥F

= |ν|+∥Ŵn:1−Wn:1∥F · |ν|+1

∥Wn:1∥F−∥Ŵn:1−Wn:1∥F
,

where the first transition relies on ∥Ŵn:1∥F ̸=0; the second uses ∥Λyx∥F =1; the fourth uses triangle
inequality, and relies on Equation (88) ensuring positive denominator; the fifth uses Cauchy-Schwartz
and ∥Λyx∥F =1; and both the eighth and the last follow from ∥Λyx∥F =1. It holds that:

|ν̂|≤|ν|+∥Ŵn:1−Wn:1∥F · 32
|ν|+1

∥Wn:1∥F

≤|ν|+∥Ŵn:1−Wn:1∥F · 3
∥Wn:1∥F

≤|ν|+3
√
n5ϵ̂

1−
√
n5ϵ̂

· ∥Ŵn:1∥F

∥Wn:1∥F

≤|ν|+3
√
n5ϵ̂

1−
√
n5ϵ̂

· ∥Wn:1∥F+∥Ŵn:1−Wn:1∥F

∥Wn:1∥F

≤|ν|+4
√
n5ϵ̂

1−
√
n5ϵ̂

≤|ν|+4 (1+ν)/16
1−1/2

= |ν|+ 1−|ν|
2

= |ν|+1
2 ,

where the first transition uses Equation (88); the second relies on |ν|≤1; the third uses Equation (101);
the fourth follows from triange inequality; the fifth uses Equation (88); the sixth follows from the defini-
tion of ϵ̂ (Equation (34)), namely that

√
n5ϵ̂≤(1+ν)/16 and

√
n5ϵ̂≤1/2; and the seventh relies on the

assumption of case (ii) (i.e. ν<0). After proving both cases (i) and (ii), we may conclude Equation (89).

Equation (90) follows from triangle inequality and Equation (88):

∥Ŵn:1∥F ≥∥Wn:1∥F −∥Ŵn:1−Wn:1∥F ≥∥Wn:1∥F − 1
3∥Wn:1∥F = 2

3∥Wn:1∥F .

To prove Equation (91), it suffices to show that 1−ν̂
1+ν̂ ≤3 or 1−ν̂

1+ν̂ ≤
3−ν
1+ν . We prove this separately for the

following two cases: − 1
2 ≤ sign(ν) |ν|+1

2 and − 1
2 > sign(ν) |ν|+1

2 . In the case of − 1
2 ≤ sign(ν) |ν|+1

2 ,
Equation (89) implies ν̂ ≥ − 1

2 . Thus, we have that 1−ν̂
1+ν̂ ≤ 1−(−0.5)

1−0.5 = 3, thereby proving that
Equation (91) holds for this case. For the other case (i.e. −0.5> sign(ν)(|ν|+1)/2), we have that
ν<0, and Equation (89) implies ν̂≥− 1−ν

2 . Thus, we have that 1−ν̂
1+ν̂ ≤

1−(−(1−ν)/2)
1−(1−ν)/2 = 1.5−ν/2

0.5+ν/2 =
3−ν
1+ν ,

thereby proving that Equation (91) holds for the second (and last) case.
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