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1 DATASETS
In this section, we elaborate on the experimental datasets uti-
lized across three distinct tasks: multimodal sentiment analysis
(MSA), multimodal humor detection (MHD), and multimodal emo-
tion recognition (MER).

MSA involves predicting the intensity of emotions in spoken
utterances. We evaluated GLoMo on two datasets: CMUMultimodal
Opinion-level Sentiment Intensity Dataset (CMU-MOSI) [25] and
CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) [26].

For the MHD task, which identifies humor in utterances, we
utilize UR-FUNNY [5] and Multimodal Sarcasm Detection Dataset
(MUStARD) [1].

MER focuses on classifying the emotional content of utterances
into multiple categories. We evaluated GLoMo on CHinese Emotion
Recognition dataset with Modality-wise Annotations (CHERMA)
[17], which includes seven emotions, with both unimodal and mul-
timodal annotations.

The detailed introduction of the datasets are as follows:
CMU-MOSI consists of 93 English-language videos from 89

speakers, sourced from YouTube. These videos are segmented into
2,195 utterances, each rated on a scale from -3 to 3. We follow prior
work [6, 13] in our dataset split: 1,281 for training, 229 for validation,
and 685 for testing.

CMU-MOSEI expands on CMU-MOSI with 3,228 videos from
1,000 speakers. In line with previous studies [6, 13], we utilize 16,265
utterances for training, 1,869 utterances for validation, and 4,643
utterances for testing.

UR-FUNNY includes 1,866 videos from 1,741 speakers. Follow-
ing [4], we use an updated version of the dataset, which has been
cleaned of noisy and overlapping instances and more context sen-
tences. It includes 9,588 utterances, split into 7,614 for training, 980
for validation, and 994 for testing.

MUStARD consists of 690 videos sourced from TV shows. Fol-
lowing [4], we utilize 539 utterances for training, 68 utterances for
validation, and 68 utterances for testing.

CHERMA features 28,717 Chinese utterances from various me-
dia, classified according to Ekman’s six basic emotions plus neu-
trality [2]. Each utterance is labeled with three unimodal labels
and one multimodal label, distributed in a 6:2:2 ratio for training,
validation, and testing.

It is important to note that due to varying utterance lengths, the
feature lengths from different modalities may differ. To standardize
this, we truncated the features to a maximum sequence length
defined by the parameter𝑚𝑎𝑥 𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ. Features shorter than
this limit were zero-padded to reach the requisite length, as in
[6, 13, 17].

2 BASELINE MODELS
In our study, we have selected a variety of multimodal fusion meth-
ods as baselines to conduct a comprehensive comparison for the
given tasks. Due to the difference of the tasks, we choose different
baselines. For CMU-MOSI and CMU-MOSEI datasets, we have con-
sidered a variety of methods that incorporate models such as TFN
[24], LMF [9], MFM [20], GFN [13], and ICCN [18]. Thesemodels are
designed to fuse global representations across the three modalities.
In addition, we have taken into account approaches like MULT [19]
and BBFN [3], as well as M3SA [27]. These methods initially fuse
pairs of global representations and subsequently integrate them
together. We also delve into techniques such as MISA [6], which
segregate the global representations of modalities into components
that are either specific to a modality or common across modalities.
Moreover, we examine the significance of modality-specific tokens
within each modality using algorithms like PRISA [12], and con-
sider CubeMLP [16], which employs token-level fusion strategies.
The state-of-the-art C-MIB [14] is also compared, which utilizes
mutual information for denoising purposes.

For the UR-FUNNY and MUStARD datasets, following [4], we
opt for modified versions of MISA [6] and MAGBERT [15]. In these
adaptations, BERT [7] is replaced with ALBERT [8] and XLNet
[22] as text feature extractors. For CHERMA dataset, we select EFT
[17] and LFT [17], which adapt transformer models instead of the
models in [21] and [23]. Furthermore, we include models like PMR
[11] and LFMIM [17] in our comparison. These models leverage
unimodal labels of each modality for emotion prediction while our
GLoMo not.

The details of the baseline models mentioned are as follows:
TFN [24] disentangles unimodal, bimodal and trimodal dynamics

by modeling each of them explicitly using three-fold Cartesian
product.

LMF [9] feeds three modality-specific representations into three
unimodal networks, then performs the low-rank multimodal fusion
with modality-specific factors.

MFM [20] introduces a model that separates representations
into shared discriminative factors for prediction tasks and unique
generative factors for each modality.

GFN [13] utilizes adversarial training to learn a unified embed-
ding space for different modalities, bridging the gap between them
and enhancing multimodal fusion.

MULT [19] repeats reinforcing one modality’s features from the
another modality using pair-wise cross-modal attention to handle
the problem caused by non-alignment and long-range dependen-
cies.

MAGBERT [15] integrates the text, visual and acoustic modali-
ties into a multimodal transformer for finetuning through generat-
ing a shift to internal representation.
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M3SA [27] employs a modulation loss to fine-tune the learning
process based on the confidence of each modality and a modal-
ity filter module to sift out irrelevant noise, leading to enhanced
unimodal and cross-modal learning.

ICCN [18] utilizes deep canonical analysis to discover hidden
correlations across text, audio and video.

CubeMLP [16] introduces a novel MLP-based framework that in-
tegrates information from various modalities using feature-mixing
techniques.

MISA[6] projects each modality to their modality-specific sub-
space and modality-invariant subspace, thus obtaining holistic view
of the multimodality.

BBFN [3] enhances representation by simultaneously fusing and
separating pairwise modality representations, with a gated control
mechanism in the transformers to refine the output.

PriSA [12] mitigates false correlations in text by employing pref-
erential fusion and distance-aware contrastive learning. Initially, it
calculates inter-modal correlations guided by text, followed by pro-
cessing these features through distance-aware contrastive learning
to determine mixed-modal correlations. Ultimately, sentiment infor-
mation is identified by combining these mixed-modal correlations
with discriminative intra-modal features extracted from visual and
audio modalities using a self-attention module.

C-MIB[14] uses the Information Bottleneck (IB) constraint to
get free-of-noisy unimodal representation.

EFT [17] and LFT [17] replace the deep neural networks (DNN)
with transformer in Early Fusion DNN [21] and Later Fusion DNN
[23], respectively.

PMR[11] introduces a message hub sending common messages
to each modality and reinforces their features via cross-modal at-
tention. Besides, the reinforced features from each modality are
collected to generate a reinforced commonmessage to progressively
complement each other.

LFMIM[17] uses the modality-specific transformer encoder to
learn the unimodal information and use a multimodal transformer
encoder to learn the multimodal representation.

3 IMPLEMENTATION DETAILS
In this section, we provide additional details of the experiment
setups. All experiments were conducted on a GTX3090 GPU with
CUDA version 11.5 and PyTorch version 1.12.1. The AdamW [10]
optimizer was employed for all runs, with a fixed random seed
of 5576. Due to inherent differences across datasets, specific im-
plementation procedures also varied accordingly. Specifically, for
the CMU-MOSI and SMU-MOSEI datasets, we adhered strictly to
the methodologies described. For the UR-FUNNY and MUStARD
datasets, which incorporate contextual information alongside the
original text, we followed the precedent works [4]. This involved
concatenating the contextual data with the original utterances prior
to their introduction into unimodal encoder networks for repre-
sentation learning. For CHERMA, which does not provide raw
text but only textual modality features, the encoders for all three
modalities—text, audio, and video—were identical, aligning with
the processing methods used in audio encoder as described.

To determine the suitable hyperparameters, we employed a grid-
search methodology across the hyperparameter space to identify

the model that yields the lowest validation loss for classification
or regression tasks as in [6]. Specifically, we explored finite sets
of hyperparameter values, including learning rate from {1e-5, 2e-
5, 3e-5, 4e-5}, hidden dimensions from {48, 96, 112, 160, 192, 256},
max seq. length from {50, 60, 70, 80}, and transformer encoder
layers in modality-specific encoder from {3, 4, 5, 6, 7}. The final
hyperparameters GLoMo used throughout datasets are listed in
Table 1.

4 MORE RESULTS
In this section, we present additional experimental results that
illustrate the performance of GLoMo on the CHERMA dataset as
the number of modality-specific experts increases. Specifically, we
conducted experiments with varying numbers of experts for text,
visual, and audio modalities, set at 1, 2, 3, and 4, resulting in a
total of 64 different configurations, as depicted in the Fig. 2. When
the number of experts is set to one, the MoEs simplifies to a two-
layer MLP network. The mean F1 scores for each modality and
number of experts on the CHERMA are depicted in Fig. 1. As the
number of experts for each modality grows, we observe a consistent
improvement in performance. This trend could be attributed to the
fact that each expert focuses on different local representations, and
a greater number of experts allows for the integration of more
detailed information pertaining to specific types of sentiments.

Figure 1: Ablation studies on the number of local representa-
tions and experts on CHERMA.
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Figure 2: F1 score when increasing the number of the experts of text, audio and video.
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