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In this Appendix, we provide the details of theoretical analysis in Section 1, implementation details1

in Section 2 and additional experimental results and analysis in Section 3. Besides, we also a2

thorough discussion about related works in Section 4, which is not included in the paper due to space3

limitations.4

1 Details of Theoretical Analysis5

1.1 Overview6

The main theoretical results are briefly introduced in the paper. In this section, we provide detailed7

explanations and proofs for the theoretical results. Specifically, we will first provide proofs and de-8

tailed analysis on the upper bound of the number of different prototypes, as well as the corresponding9

memory consumption upper bound. Then we will provide proofs and analysis on the task distance10

preserving and continual learning capability.11

At below, Definition 1, Lemma 2, Lemma 3, Lemma 4, and Corollary 1 are from existing knowledge12

ranging from geometry to linear algebra. The other parts are of our own contributions.13

1.2 Memory consumption upper bound14

Due to the mechanism to create new prototypes for newly emerging knowledge extracted from the15

data, the memory consumption will gradually increase. However, because of the normalization16

applied to the prototypes, the prototype space is constrained, and there exists an upper bound for the17

memory consumption. This can be intuitively understood as the number of points with distance larger18

than a threshold is limited on a n-dimensional hypersphere. To formally formulate this, we will first19

give several definitions.20

Definition 1 (Spherical code). A spherical code S(n,N, t), with parameters (n,N, t) is defined as21

the set of N points on the unit hypersphere in an n-dimension space for which the dot product of unit22

vectors from the origin to any two points is larger than or equal to t.23

In our model, the prototypes of different levels can be viewed as spherical codes in their own hidden24

space, as they are normalized into unit vectors. Specifically, taking the atom prototypes as an example,25

given the dimension da and the threshold tA, the set of atom prototypes PA can be denoted as a26

spherical code PA = SA(da, NA, 1− tA), where NA is the cardinality of PA. Then the upper bound27

of the number of atom prototypes given da and tA is equal to the maximal cardinality of S(n,N, t)28

given n and t. As the area of the n-dimensional unit sphere surface is limited, it is obvious that29

there exists a maximal N given a certain n and t, denoted as maxN S(da, N, 1 − tA). However,30

finding maxN S(da, N, 1− tA) is a complex sphere packing problem, and there is not yet a general31

formulation of the maximal N for an arbitrary n. Therefore, given the number of two different AFEs32

as la and lr, we can formulate the upper bound for the numbers of different prototypes as:33
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Theorem 1 (Upper bounds for numbers of prototypes).

nA 6 (la + lr)max
N

S(da, N, 1− tA), (1)
34

nN 6 max
N

S(dn, N, 1− tN ) and nC 6 max
N

S(dc, N, 1− tC) (2)

Although the general formulation is not available for an arbitrary dimension, we can specially compute35

maxN S(da, N, 1− tA) for certain ns, and verify it with experiments. For example, when n = 2, the36

distribution becomes distributing points on a circle with unit radius. Then, maxN S(da, N, 1− tA)37

can be obtained by evenly distributing the points on the circle with an interval of tA. Finally, the38

explicit value of maxN S(da, N, 1− tA) can be formulated as:39

max
N

S(dn, N, 1− tN ) =
2π

arccos(1− tA)
, (3)

then we have:40

nA 6 (la + lr)
2π

arccos(1− tA)
. (4)

And the upper bound of the number of N- and C-prototypes can be formulated similarly. The above41

results are used in Section 3.7 in the paper.42

1.3 Task distance preserving43

In continual learning, the key challenge is to overcome the catastrophic forgetting, which refers to44

the performance degradation on previous tasks after training the model on new tasks. Based on our45

model design, we formulate this as: whether learning new tasks affect the representations the model46

generates for old task data. First, we give definitions on the tasks and task distances:47

Definition 2 (Task set). The p-th task in a sequence is denoted as T p and contains a subgraph48

Gp consisting of nodes belonging to some new categories. We denote the associated node set and49

adjacency matrix as Vp and Ap. Each vip ∈ Vp has a feature vector x(vip) and a label y(vip).50

Then, the reason for catastrophic forgetting is that different tasks in a sequence are drawn from51

heterogeneous distributions, making the model sequentially trained on different tasks unable to52

maintain satisfying performances on previous tasks. Therefore, given the definition of the tasks53

(Definition 2), we then give a formal definition to quantify the difference between two tasks.54

Definition 3 (Task distance). We define the distance between two tasks as the set distance between55

the node sets of these two tasks, i.e.56

dist(Vp,Vq) = inf‖x(vip)− x(vjq)‖,∀vip ∈ Vp, v
j
q ∈ Vq .57

Lemma 1. The distance between any two tasks is non-negative, i.e. ∀i, j ∈58

{1, ...,MT },dist(Vp,Vq) > 0, where MT is the number of tasks contained in the sequence.59

The real-world data could be complex and sometimes may even contain noises that are impossible for60

any model to learn, which needs extra considerations when justifying the effectiveness of the model.61

Formally, we give the definition of the contradictory data.62

Definition 4 (Contradictory data). ∀vip ∈ Vp, p = 1, ...,MT , if ∃vjq ∈ Vq, j = 1, ...,MT , st.∀l ∈63

N∗,∀u ∈ N l(vip) and ∀v ∈ N l(vjq), x(u) = x(v) but y(vip) 6= y(vjq), then we say (vip, y(v
i
p)) and64

(vjq , y(v
j
q)) are contradictory data, as it is contradictory for any model to give different predictions for65

one node based on the same node features and graph structures. (N∗ denotes the set of non-negative66

integers)67

Remark 1. Contradictory data is ignored or simply regarded as outliers in previous works, but in68

this work, we explicitly analyze its affect for the comprehensiveness of our theory. contradictory69

data has different situations. If vip and vjq are from different tasks, then y(vip) 6= y(vjq) is plausible.70

Because they may be describing a same thing from different aspects. For example, an article from the71

citation network may be both categorized as ’physics related’ and ’computer science related’. In this72
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situation, it would be easy to add an task indicator to the feature of the node, then the feature of vip73

and vjq are no longer equal and are not contradictory data anymore.74

But within one task, contradictory data are most likely to be wrongly labeled, e.g. it does not make75

sense if an article is both ’related to physics’ and ’not related to physics’.76

Besides the distance between tasks, the distance between the embeddings obtained by the AFEs will77

also be a crucial concept in the proof.78

Definition 5 (Embedding distance). Each input node vip is given a set of atomic embeddings79

EA(v
i
p) = Enode

A (vip)∪Estruct
A (vip), where Enode

A (vip) = {a
j
i |j ∈ {1, ..., la}}p containing the atomic80

node embeddings of vip and Estruct
A (vip) = {rji |k ∈ {1, ..., lr}}p containing the atomic structure81

embeddings. aji ∈ Rda and rji ∈ Rdr . To define the distance between representations of two nodes,82

we concatenate the atomic embeddings of each node into a single vector in a higher dimensional83

space, i.e. each node vip corresponds to a latent vector zip = [a1i ; ...;a
la
i ; r1i ; ...; r

lr
i ] ∈ Rla×da+lr×dr .84

Then we define the distance between representations of two nodes vip and vjq as the Euclidean distance85

between their corresponding latent vector zip and zjq, i.e. dist(zip, z
j
q) = ‖zip − zjq‖2 .86

Then we will give some explanations on the linear algebra related theories.87

Lemma 2 (Bounds for real quadratic forms). Given a real symmetric matrix A, and an arbitrary88

real vector variable x, we can give89

λmin 6 xTAx
xTx

6 λmax,90

where λmin and λmax are the minimum and maximum eigenvalues of matrix A.91

Lemma 3 (Real symmetric matrix). For a matrix A ∈ Rm×n, ATA ∈ Rn×n is a real symmetric92

matrix, rank(ATA) = rank(A), and the non-zero eigenvalues of ATA are squares of the non-zero93

singular values of A.94

Lemma 4 (Rank and number of non-zero singular values). For a matrix A ∈ Rm×n, the number of95

non-zero singular values equals the rank of A, i.e. rank(A)96

Corollary 1. For a matrix A ∈ Rm×n. Without loss of generality, we assume n 6 m. If A is column97

full rank, i.e. rank(A) = n, then A has n non-zero singular values. Besides, rank(ATA) = n,98

and ATA has n non-zero singular values.99

Given the explanations above, we then derive the bound for the change of the distance among data,100

which will be further used for analyzing the separation of data from different tasks.101

Lemma 5 (Embedding distance bound). Given two nodes vip ∈ Vp and vjq ∈ Vq with vertex102

feature x(vip),x(v
j
q) ∈ Rdv , their multi-hop neighboring node sets are denoted as

⋃
l∈N∗
N l(vip) and103 ⋃

l∈N∗
N l(vjq). The AFEs for generating atomic embeddings are AFEnode = {Ai ∈ Rda×dv |i ∈104

{1, ..., la} and AFEstruct = {Rj ∈ Rdr×dv |j ∈ {1, ..., lr}, corresponding to matrices for atomic105

node embeddings and atomic structure embeddings, respectively. Then, the square distance106

dist2(zip − zjq) = ‖zip − zjq‖22 > λmin(‖x(vip)− x(vjq)‖22 +
∑lr

k=1‖x(uk)− x(νk)‖22),107

if la× da+ lr× dr > dv , where uk are nodes sampled from
⋃

l∈N∗
N l(vip), νk are nodes sampled from108 ⋃

l∈N∗
N l(vjq), λi are the eigenvalues of WTW, and W ∈ R(lr+1)dv×(lada+lrdr) is constructed with109

the matrices in AFEnode and AFEstruct. Specifically, W is a block matrix constructed as follows:110

1. W1:lada,1:dv are filled by the concatenation of {Ai|i = 1, ..., la}, i.e. [A1; ...;Ala ] ∈ Rlada×dv .111

2. For Wlada+1:lada+lrdr,1:(lr+1)dv
, the construction is first filling112

Wlada+(k−1)dr:lada+kdr,kdv:(k+1)dv
with Rk, k = 1, ..., lr.113

3. For other parts, fill with zeros.114
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Proof. Given vertex vip, we concatenate its feature vector with the lr neighbors sampled from115 ⋃
l∈N∗
N l(vip), i.e. x′p,i = [x(vip);x(u1); ...;x(ulr )] ∈ R(lr+1)d×1, uj ∈

⋃
l∈N∗
N l(vip). Then with the116

constructed block matrix W, we could formulate the generation of zip as:117

zip = Wx′p,i.118

Similarly, we can formulate zjq for another vertex vjq .119

And their distance can be formulated as:120

dist(zip, z
j
q) = ‖zip − zjq‖2 =

√
(zip − zjq)T (zip − zjq)121

(zip − zjq)
T (zip − zjq)122

= (Wx′p,i −Wx′q,j)
T (Wx′p,i −Wx′q,j)123

=
(
W(x′p,i − x′q,j)

)T (
W(x′p,i − x′q,j)

)
124

= (x′p,i − x′q,j)
TWTW(x′p,i − x′q,j)125

126

According to lemma 3, WTW is a real symmetric matrix, with lemma 2, we have127

(x′p,i−x
′
q,j)

TWTW(x′p,i−x
′
q,j)

(x′p,i−x′q,j)T (x′p,i−x′q,j)
128

> λmin129

According to lemma 3, with lada + lrdr > (lr + 1)dv and the constraint of column full rank on W,130

WTW ∈ R(lr+1)×(lr+1) has lr + 1 positive eigenvalues, thus λmin > 0.131

Then we decompose (x′p,i − x′q,j)
T (x′p,i − x′q,j),132

(x′p,i − x′q,j)
T (x′p,i − x′q,j) =

∑(lr+1)d−1
k=0

(
(x′p,i)k − (x′q,j)

)2
133

=
∑(lr+1)dv

k=1

(
(x′p,i)k − (x′q,j)

)2
134

=
∑dv

k=1

(
(x′p,i)k − (x′q,j)k

)2
+
∑lr

k=1

∑(k+1)dv

m=kdv+1

(
(x′p,i)k − (x′q,j)k

)2
135

= ‖x(vip)− x(vjq)‖22 +
∑lr

m=1‖x(um)− x(νk)‖22136

∴ dist2(zip − zjq) = ‖zip − zjq‖22 > λmin(‖x(vip)− x(vjq)‖22 +
∑lr

k=1‖x(uk)− x(νk)‖22)137

138

The key point in these theories is that for any task sequence with certain distance among the tasks,139

there exists a configuration that ensures HPNs to be capable of preserving the task distance after140

projecting the data into the hidden space, so that only the prototypes associated with the current task141

are refined and the prototypes corresponding to the other tasks are preserved. Specifically, theorem142

on zero-forgetting can be formulated as follows:143

Theorem 2 (Task distance preserving). For HPNs trained on consecutive tasks T p and T p+1.144

If lada + lrdr > (lr + 1)dv and W is column full rank, then as long as tA < λmin(lr +145

1)dist(Vp,Vp+1), learning on T p+1 will not modify representations HPNs generate for data from146

T p, i.e. catastrophic forgetting is avoided.147

In Theorem 2, λi is eigenvalues of the WTW, where W is the matrix mentioned before constructed148

via AFEs. dv, da and dr are dimensions of data, atomic node embeddings, and atomic structure149

embeddings.150

Proof. Following the proofs above, suppose two nodes vip and vjq are embedded into zip and zjq with151

the embedding module. Then the distance between zip and zjq could be formulated as:152

dist(zip, z
j
q) = ||zip − zjq||2 =

√
(zip − zjq)T (zip − zjq)153
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Dataset Cornell Texas Wisconsin Cora Citeseer Actor OGB-Arxiv OGB-Products

# nodes 183 183 251 2,708 3,327 7,600 169,343 2,449,029

# edges 295 309 499 5,429 4,732 33,544 1,166,243 61,859,140

# features 1,703 1,703 1,703 1,433 3,703 931 128 100

# classes 5 5 5 7 6 4 40 47

# tasks 2 2 2 3 3 2 20 23

Table 1: The detailed statistics of 8 datasets used in our experiments.

According to lemma 5, we have dist2(zip, z
j
q) = ||zip − zjq||22 > λmin(||x(vip) − x(vjq)||22 +154 ∑lr

k=1 ||x(uk)− x(νk)||22).155

∵ vip ∈ Vp, v
j
q ∈ Vq ,156

∴ ||x(vip)− x(vjq)||22 > dist2(Vp,Vq).157

Similarly, ||x(uk)− x(νk)||22 > dist2(Vp,Vq), for ∀k.158

∴ ||zip, zjq||22 > λmin(lr + 1)dist2(Vp,Vq)159

∴ dist(zip, z
j
q) = ||zip − zjq||2 >

√
λmin(lr + 1)dist2(Vp,Vq)160

∴ If tA <
√
λmin(lr + 1)dist2(Vp,Vq), the embeddings of two nodes from two different tasks will161

not be assigned to same A-prototypes.162

Above all, if the conditions in Theorem 2 are satisfied, learning on new tasks will not modify the163

prototypes for previous tasks. Besides, the data from previous tasks will be exactly matched to the164

correct prototypes after training the model on new tasks. In practice, the conditions may not be easy165

to be satisfied all the time. However, as mentioned in the paper, the bound given in Theorem 2 is not166

tight, thus fully satisfying the conditions may not be necessary. Therefore, in the experimental section167

in the paper, we practically show how the important factors included in these conditions influence168

the performance (Section 3.6 in the paper). The results demonstrates that the more we satisfy the169

conditions, the better performance we will obtain, and certain factors (number of AFEs) influence170

more than the others.171

Remark 2. When dist(Vp,Vq) = 0, i.e. there exists a non-empty set V∩ = Vp ∩ Vq, st. dist(Vp \172

V∩,Vq \ V∩) > 0, then Theorem 2 holds. As for the V∩ containing examples exactly same in Vp173

and Vq , there are two situations:174

1. ∀v ∈ V∩, yp(v) = yq(v), where yp(·) and yq(·) denote the associated labels in task p and q175

2. ∃v ∈ V∩, yp(v) 6= yq(v)176

For situation 1, V∩ will not cause the model to forget about the previous task, as these shared data177

are exactly same and will optimize the model to same direction. For situation 2, if no task indicator178

is provided, then these data are contradictory data, if task indicator is provided, then the indicator179

could be merged into the feature vector of the node, i.e. x(vp), then vp will not belong to V∩.180

2 Details of Implementation181

2.1 Datasets and task splitting182

In this subsection, we introduce the datasets we used and the details of how each dataset is split into183

different tasks.184

We use 8 publicly datasets which include 2 citation networks (Cora[29], Citeseer [29], OGB-Arxiv185

[36, 23]), 3 web page networks (Wisconsin, Cornell, Texas) [25], and 1 actor co-occurence network186

(Actor) [25], and one product co-purchasing network (OGB-Products [3]). The detailed statistics of187

these 8 datasets are summarized in Table 1.188
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2.1.1 Citation networks189

The original Cora [22] and Citeseer [10] are pre-processed by Sen et al. [29] with stemming and190

removing stop words as well as words with document frequency less than 10. Finally, Cora contains191

2708 documents, 5429 links denoting the citations among the documents, and each document is192

represented with 1433 distinct words. Cora contains 7 classes. For training, 140 documents are193

selected with 20 examples for each class. The validation set contains 500 documents and the test194

set contains 1000 examples. In our continual learning setting, the first 6 classes are selected and195

grouped into 3 tasks (2 classes for each task) in the original order. Citeseer results in 3312 documents196

with each document being represented with 3703 distinct words, and 4732 links. Citeseer contains 6197

classes. 20 documents per class are selected, for training, 500 documents are selected, for validation,198

and 1000 documents are selected as the test set. For continual learning setting, the documents from 6199

classes are grouped into 3 tasks with 2 classes per task in the original order. The Cora and Citeseer200

datasets can be downloaded via Cora&Citeseer.201

The OGB-Arxiv dataset is collected in the Open Graph Benchmark OGB. It is a directed citation202

network between all Computer Science (CS) arXiv papers indexed by MAG [36]. Totally it contains203

169,343 nodes and 1,166,243 edges. Each node is an paper and each directed edge indicates that204

one paper cites another one. Each paper comes with a 128-dimensional feature vector. The dataset205

contains 40 classes. As the dataset is not balanced and the numbers of examples in different classes206

differs significantly, directly grouping the classes into 2-class groups like the Cora and Citeseer will207

cause certain tasks to be imbalanced. Therefore, we reordered the classes in an descending order208

according to the number of examples contained in each class, and then group the classes according to209

the new order. In this way, the number of examples contained in different classes of each task are210

arranged to be as balanced as possible. Specifically, the class indices of each task are: [[35, 12],[15,211

21],[28, 30], [16, 24], [10, 34], [8, 4], [5, 2], [27, 26], [36, 19], [23, 31], [9, 37], [13, 3], [20, 39], [22,212

6], [38, 33], [25, 11], [18, 1], [14, 7], [0, 17], [29, 32]].213

2.1.2 Web page networks214

WebKB dataset is collected from different universities by Carnegie Mellon University. The nodes in215

the datasets are web pages with bag-of-words representation, and edges are hyperlinks between the216

pages. The web pages are manually classified into 5 classes including student, project, course, staff,217

and faculty. Following setting in [25], we use three subsets including Wisconsin with 251 web pages,218

Cornell with 183 web pages, and Texas with 183 web pages. For all these datasets, 60% nodes are219

used for training, 20% for validation, and 20% for testing. For each of the web page networks, we220

constructed 2 tasks with 2 classes per task. The three web page network datasets can be accessed via221

Web Pages. The balanced splitting of the classes for the three web page networks is [[2, 3], [0, 4]]222

2.1.3 Actor co-occurrence network223

The actor co-occurrence network is a subgraph of the film-director-actor-writer network [31]. Each224

node in this dataset corresponds to an author, and the edges between the nodes are co-occurrence225

on the same Wikipedia pages. The whole dataset contains 7600 nodes and 33544 edges. Each node226

is accompanied with a feature vector of 931 dimensions. The nodes are classified into 4 classes227

according to the number of the average monthly traffic of the web page. For this dataset, we also228

constructed 2 tasks with 2 classes per task. The link to this dataset is Actor. The balanced splitting of229

the classes is [[0, 1], [2, 3]]230

2.1.4 Product co-purchasing network231

OGB-Products is also collected in the Open Graph Benchmark OGB, and is an undirected and232

unweighted graph, representing an Amazon product co-purchasing network link. In total, it contains233

2,449,029 nodes and 61,859,140 edges. Nodes represent products sold in Amazon, and edges234

between two products indicate that the products are purchased together. Node features are generated235

by extracting bag-of-words features from the product descriptions followed by a Principal Component236

Analysis to reduce the dimension to 100. 47 top-level categories are used for target labels, in our237

experiments, we select 46 classes and omit the final class containing only 1 example. Similar to238

OGB-Arxiv, we reorder the classes in an descending order according to the number of examples239

contained in each class, and then group the classes according to the new order. The class indices of240

each tasks are: [[4, 7], [6, 3], [12, 2], [0, 8], [1, 13], [16, 21], [9, 10], [18, 24], [17, 5], [11, 42], [15,241
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Figure 1: Details of modules in HPNs.

20], [19, 23], [14, 25], [28, 29], [43, 22], [36, 44], [26, 37], [32, 31], [30, 27], [34, 38], [41, 35], [39,242

33], [45, 40]].243

2.2 Experiment Setup244

All models are implemented in PyTorch with SGD optimizer and repeated 5 times on a Nvidia Titan245

Xp GPU. The average performance and standard deviations are reported for comparison. The network246

architecture of HPNs is detailed in Figure 1, and the specific values of hyperparameters will be given247

in the following. The hyperparameters we provide here correspond to the models used in comparisons248

with the baselines, while in other experiments the hyperparameters are the research objects and will249

not be kept unchanged.250

As the sizes of the datasets we used are greatly different, we adopt different hyperparameters for small251

datasets and large datasets. The small datasets include Cora, Citeseer, Actor, Wisconsin, Cornell, and252

Texas. The large datasets include OGB-Arxiv and OGB-Products.253

For the small datasets, we set l′a = 1, l′r = 1, and h = 2. We randomly sample 5 one-hop neighbors254

and 7 two-hop neighbors. The learning rates are managed separately for different modules of the255

model. For the AFEs, the learning rate is set as 0.1 at the beginning and decays to 0.001 at epoch 35.256

The learning rate for the prototypes are initialized as 0.1 at epoch 35 and decays to 0.01 at epoch257

85. And the learning rates for the other trainable parameters are the same as the AFEs. During258

training, the AFEs would change rapidly at first and slow down after several epochs. Therefore,259

at the starting period of training, the same node would not be stably matched to the same set of260

prototypes due to the rapidly changing AFEs. To avoid this from creating too many redundant261

prototypes, we start to establish prototypes after training the AFEs at the 35th epochs. The input262

data has a dimension of 1433, and we set the dimensions of A-, N-, and C-prototypes to be 16. The263

number of training epochs is 90. Although the training procedure is designed in a delicate way,264

the model is actually rather robust and can perform well without these delicate procedures. For265

example, on the largest dataset OGB-Products, we only train the model for 10 epochs, and do not266

decay the learning rate, the prototypes are established at the beginning, and the model still obtained267

good results, as shown in in the paper (e.g. results in Section 3.3). For the large datasets, for higher268

efficiency, we set h = 1, and only uniformly sample one neighbor from the neighbors. On the269

OGB-Products, we shrink the dimensions of A-, N-, and C-prototypes to be 2, in order to control the270

number of prototypes. For both HPNs, the threshold tA, tN , and tC are selected by cross validation271

on {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. According to the experimental results, there is a272

wide range for choosing the thresholds. Finally we choose tA = tN = tC = 0.3.273

The baselines have different settings. For the baselines with GCN backbone, 16 is approximately the274

best for the number of hidden unit. For the GAT based baselines, we set the number of heads and275
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Table 2: Performance comparisons between HPNs and baseline models on four other datasets.

C.L.T. Base Actor Wisc. Corn. Texas
AM FM AM FM AM FM AM FM

None
GCN 43.63% -9.11% 74.71% -9.52% 34.92% -68.00% 80.15% -12.00%
GAT 53.10% -4.33% 78.82% -4.76% 46.77% -56.00% 74.62% -16.00%
GIN 45.51% -8.88% 76.44% -4.76% 34.92% -64.00% 78.31% -12.00%

EWC
GCN 44.29% -7.06% 74.71% -9.52% 38.92% -60.00% 82.15% -8.00%
GAT 54.23% -2.51% 78.82% -4.76% 48.92% -44.00% 78.62% -8.00%
GIN 47.61% -7.29% 77.09% 0.00% 33.23% -52.00% 78.31% -12.00%

LwF
GCN 49.77% -3.65% 84.65% -9.52% 62.77% -20.00% 56.31% -52.00%
GAT 52.82% -6.15% 81.20% 0.00% 46.77% -52.00% 78.46% -20.00%
GIN 49.70% -4.10% 74.71% 0.00% 34.92% -64.00% 34.92% -52.00%

GEM
GCN 52.66% +3.91% 88.71% 6.25% 65.08% +0.00% 80.46% +4.00%
GAT 54.31% -2.05% 77.09% -9.52% 65.08% -4.00% 76.77% -4.00%
GIN 45.23% -11.16% 72.78% -6.25% 76.62% +4.00% 72.77% +8.00%

MAS
GCN 50.73% -1.59% 77.75% -9.52% 61.23% +0.00% 78.46% +0.00%
GAT 53.67% -1.60% 76.01% -6.25% 62.62% -32.00% 84.46% +0.00%
GIN 51.69% -0.69% 77.75% -4.76% 63.08% +0.00% 82.86% +0.00%

ERGN.
GCN 52.44% +0.69% 74.71% -9.52% 34.92% -68.00% 80.15% -12.00%
GAT 51.40% -7.29% 78.16% -9.52% 48.77% -52.00% 80.46% -12.00%
GIN 42.72% -12.98% 76.44% -4.76% 34.92% -64.00% 78.31% -12.00%

TWP
GCN 50.59% -4.79% 66.09% -14.28% 56.77% -32.00% 82.31% -4.00%
GAT 54.01% -2.05% 80.54% -9.52% 46.92% -48.00% 78.62% -8.00%
GIN 49.91% -3.64% 71.17% -6.25% 51.08% -24.00% 74.62% -4.00%

Join.
GCN 57.01% +0.00% 96.72% +0.00% 88.09% +0.00% 86.43% +0.00%
GAT 57.15% +0.00% 95.94% +0.00% 89.46% +0.00% 86.30% +0.00%
GIN 56.97% +0.00% 96.88% +0.00% 88.82% +0.00% 86.95% +0.00%

HPNs 56.80% -0.92% 96.55% +0.00% 88.23% +0.00% 86.31% +2.77%

number of hidden units as 8. For GIN, the number of hidden units is 32. For all these baselines, the276

above mentioned settings are applied on most datasets. For some datasets on which the baselines277

cannot perform well, we will further tune the models carefully to get better results.278

3 Additional Experimental Results and Detailed Analysis279

To further validate our proposed model, in this section, we report additional experimental results by280

extending the experiments reported in the paper to more datasets. We will also give more detailed281

analysis on the results, which is omitted in the paper due to space limitations.282

3.1 Comparisons with Baseline Methods on Additional Datasets283

In this subsection, we include the comparison results with baseline methods on the other four datasets284

including Wisconsin, Cornell, Texas, and Actor, the results are shown in Table 2.285

Among all the models in Table 1 of the paper, we could observe several kinds of forgetting behavior286

among the baselines. First, some of them are with low AM and severe forgetting (negative FM with287

large |FM|) like the pure GNNs in the first 3 rows of Table 1 in the paper. These models may perform288

well on individual tasks, but the AM is brought down by catastrophic forgetting. To explain this in289

details, we expand the results of GAT without any continual learning techniques in Table 3, in which290

Tr. denotes on which tasks has the model been trained and Te. denotes on which task the model is291

tested.292

The first row of Table 3 shows the model performance on task 1 after it has been trained on the task 1,293

on the first two tasks, and on the first three tasks. We see that GAT performs well on each individual294

task it has just learnt. But after being trained on more tasks, the performance on previous tasks295

drops dramatically, making the AM to be relatively low. On the contrast, the performance change on296

previous tasks of HPNs is also shown in Table 3, and we could see that HPNs can well maintain the297

performance on previous tasks throughout the training on all tasks.298
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GAT HPNs

Te.
Tr. T1 T1,2 T1,2,3 T1 T1,2 T1,2,3

T1 94.12% 47.96% 71.49% 95.02% 95.93% 94.57%

T2 93.30% 49.68% 92.66% 92.22%

T3 94.44% 96.83%

Table 3: Accuracy (%) changes of GAT and HPNs.

GCN+GEM GAT+MAS

Te.
Tr. T1 T1,2 T1,2,3 T1 T1,2 T1,2,3

T1 93.67% 87.33% 76.92% 94.12% 90.50% 90.05%

T2 65.66% 69.33% 77.97% 70.84%

T3 80.95% 93.25%

Table 4: Accuracy (%) changes of GCN+GEM and GAT+MAS.

Second, there are also some models without severe forgetting but the still low AM. Typically these are299

the models which preserve the performance on previous tasks with certain constraints on the models.300

These constraints can indeed alleviates forgetting, but it also limits the model’s flexibility in learning301

new tasks, and thus the performance on new tasks will degrade. For example, comparing Table 3 with302

Table 4, GAT achieves accuracy higher than 93% on individual tasks, but for GAT+MAS, although303

the forgetting on task 1 is alleviated, the performance on task 2 drops significantly. GCN+GEM also304

suffers from the similar problem.305

3.2 Additional Results on Ablation Study306

In this subsection, we provide the ablation study results on another large dataset OGB-Arxiv, and the307

results are shown in Table 5 and 6.308

From Table 5, we can observe that on the large dataset, the improvements brought by high level309

prototypes are more significant than on the small dataset (reported in Table 2 in the paper). Similarly,310

in Table 6, the influence of different loss terms is also more prominent compared to the results311

reported in Table 3 in the paper. The above results imply that our proposed hierarchical prototypes312

and different loss terms are effective, and the effectiveness becomes increasingly significant on larger313

datasets with richer information.314

3.3 Additional Results on Learning Dynamics315

Besides the learning dynamics on OGB-Arxiv provided in Section 3.5 in the paper, we further provide316

the results on OGB-Products, as shown in Figure 2 (Left).317

The learning dynamics shown in Figure 2 (Left) is similar to the one on OGB-Products shown in the318

paper. The only difference is that OGB-Products contains more tasks and the ARS of the baselines319

decrease more than on OGB-Arxiv.320

Table 5: Ablation study on prototypes of different
levels of prototypes over OGB-Arxiv.

Conf. A-p. N-p. C-p. AM% FM%

1 X 82.1±0.9 +0.0±1.1

2 X X 83.6±1.2 +0.2±0.9

3 X X X 85.8±0.7 +0.6±0.9

Table 6: Ablation study on different loss terms over
OGB-Arxiv.

Conf. Lcls Ldiv Ldis AM% FM%

1 X 79.6±1.5 -0.3±1.3

2 X X 82.3±1.0 +0.4±0.9

3 X X 80.7±1.2 +0.0±1.4

4 X X X 85.8±0.7 +0.6±0.9
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Figure 2: Left: dynamics of ARS for continual learning tasks on OGB-Products dataset. Right:
dynamics of memory consumption of HPNs on both OGB-Arxiv and OGB-Products.

Figure 3: Left and Middle: AM and FM change when tA varies on Citeseer. Right: impact of tA on
the number of prototypes over Citeseer.

3.4 Additional Results on Parameter Sensitivity321

In Figure 3, we further provide the parameter sensitivity results on citeseer dataset. The results have322

similar patterns with the results provided in the paper.323

3.5 Additional Results on Memory Consumption324

In Figure 2 (Right), we simultaneously show the memory consumption change via the number of325

tasks on both OGB-Arxiv and OGB-Products. We use same model configurations for both datasets,326

thus the upper bounds of the memory consumption are same. From Figure 2 (Right), we could see327

that the memory consumption of HPNs on both datasets increases slowly and far less than the upper328

bound. Although OGB-Products is more than ten times larger than OGB-Arxiv, the memory used on329

OGB-Products is only slightly more than on OGB-Arxiv. demonstrating the memory efficiency of330

HPNs.331

3.6 Additional Results on Visualization332

In Figure 4, we visualize the hierarchical prototype representations of the test nodes on Citeseer by333

t-SNE [32]. Similar to the visualization results shown in the paper, Figure 4 sequentially show the334

classes of task 1 (Left), task 1,2 (Middle), and task 1,2,3 (Right). The examples belonging to different335

classes are denoted with different shapes and colors, as shown in the legend on the right.336

4 Related Works337

The proposed Hierarchical Prototype Networks (HPNs) are closely related to continual learning and338

graph representation learning. In this section, we provide more detailed discussions by comparing339

HPNs with the related works, especially on those directly applying existing continual learning340

methods on graph data.341
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Figure 4: Visualization of hierarchical prototype representations of test data of different tasks from
Citeseer via t-SNE.

4.1 Continual learning342

Continual learning aims to overcome the well-known catastrophic forgetting problem that a model’s343

performance on previous tasks decreases significantly after being trained on new tasks. Existing344

works for continual learning can be categorized as regularization-based methods , memory-replay345

based methods , and parametric isolation based methods.346

Regularization-based methods penalize the model objectives to maintain satisfactory performance347

on previous tasks [12, 17, 14, 8, 28]. For instance, Li and Hoiem [17] introduced Learning without348

Forgetting (LwF) which uses knowledge distillation to constrain the shift of parameters for old tasks;349

Kirkpartick et al. [14] proposed elastic weight consolidation (EWC) that adds quadratic penalty350

to prevent the model weights from shifting too much. Recent works [8, 28] seek to constrain the351

gradients for new tasks in a subspace orthogonal to the updating directions that are important for352

previous tasks.353

The regularization based methods are effective at preventing the forgetting on previous tasks. But the354

constraints on the model weights also limit a model’s capability to learn new tasks, and the overall355

performance will be affected.356

Memory-replay based methods constantly feed a model with representative data of previous tasks357

to prevent forgetting [20, 30, 1, 4, 7]. One example is Gradient Episodic Memory (GEM) [20] that358

stores representative data in an episodic memory and add a constraint to prevent the loss on the359

episodic memory from increasing and only allows it to decrease. Instead of storing data, Shin et360

al. [30] added a generative model to generate pseudo-data of previous tasks to be interleaved with361

new task data for rehearsal. Recent works also look for better designs of memory replay so as to362

facilitate continual learning agents [4, 7].363

Memory-replay based methods are currently one of the most effective approaches for alleviating364

catastrophic forgetting. But these methods are not suitable to be applied on graph data directly, as365

they are not designed to be capable of storing the topological information, which is a crucial part of366

graph data. In contrast, our proposed HPNs have explicitly designed modules for storing topological367

information. Moreover, memory-replayed methods require rehearsal of old data each time a new368

tasks is learnt, which induces extra computation burden.369

Parametric isolation based methods adaptively introduce new parameters for new tasks to avoid the370

parameters of previous tasks being drastically changed [27, 41, 40, 37, 38]. For instance, progressive371

network [27] allocates a new sub-network for each new task and block any modification on the372

previously learnt networks. Yoon et al. [41] proposed a more flexible model (DEN) that dynamically373

adds new neurons for accommodating new tasks. Recently, various innovative approaches to allocate374

separated parameters for different tasks are proposed [38, 40, 37]. Besides the concrete models, a375

recent theoretical paper [15] analyzed the required capability of optimal continual learning agent.376

Parametric isolation based methods are also effective at alleviating catastrophic forgetting, but the377

consistently increasing memory consumption could be a problem. Recently proposed methods have378

explicit mechanisms for controlling the memory consumption like merging parameters for similar379

tasks [40]. However, as the task specific parameters are fitted to each individual task, the parameter380

reuse level is limited. In our proposed HPNs, we consider the properties of graph data and decompose381

each node into a combinations of several prototypes. As the prototypes are shared by all tasks, the382

parameter reuse level is greatly increased, resulting in small memory consumption. Besides, we also383

have theoretical upper bound for the memory consumption.384
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Overall, although the existing continual learning methods can perform well on Euclidean data, they all385

have limitations when being applied onto graph data, while our proposed HPNs is specially designed386

for graph data without any of these limitations.387

4.2 Graph representation learning388

Graph representation learning aims to encode both the feature information from nodes and the389

topological structure of the incoming graph. Traditional methods relied on graph statistics or hand-390

crafted features [2, 18]. Recently, a great amount of attention has been paid to graph neural networks391

(GNNs), such as graph convolutional network (GCNs) [13], GraphSAGE [11], Graph Attention392

Networks (GATs) [33], and their extensions [39, 5, 46]. Instead of focusing on shallow networks,393

there are also works on building deep GCNs to further increase the capacity of GNNs [16, 6, 26, 43].394

Currently, only limited efforts have been made to pursuit continual graph representation. Zhou395

et al. [44] integrated memory-replay to GNNs by storing experience nodes from previous tasks.396

However, the topological structure of graphs is ignored. Liu et al. [19] developed topology-aware397

weight preserving (TWP) that can preserve the topological information of previous graphs. However,398

preserving topology of previous graphs will hamper its capability of learning topology on new graphs.399

Galke et al.[9] considers a scenario where new classes of nodes may appear, which is similar to our400

consideration. But they focus on adapting the model to new patterns and does not consider preserving401

the performance on previous tasks. [35] and [34] are also works related to both GNNs and continual402

learning. However, the setting of [35] is time step incremental, while our setting is class incremental.403

And in [34], the focus is on how to generalize the GNNs to networks with varying number of nodes,404

while the continual learning part is only applying existing memory replay method on the nodes.405

Note that continual graph representation learning is essentially different from dynamic graphs which406

also deal with sequences of graphs [42, 24, 45, 21]. A key difference is that a dynamic graph sequence407

are status of a single graph at different time, while in continual learning setting a sequence contains408

different graphs for various tasks. Therefore, the methods developed for dynamic graphs cannot be409

directly applied to our tasks.410
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