AW N -

24
25
26
27
28
29
30
31
32
33

Appendix: Hierarchical Prototype Networks for
Continual Graph Representation Learning

Anonymous Author(s)
Affiliation
Address
email

In this Appendix, we provide the details of theoretical analysis in Section [T} implementation details
in Section |2 and additional experimental results and analysis in Section [3] Besides, we also a
thorough discussion about related works in Section[d] which is not included in the paper due to space
limitations.

1 Details of Theoretical Analysis

1.1 Overview

The main theoretical results are briefly introduced in the paper. In this section, we provide detailed
explanations and proofs for the theoretical results. Specifically, we will first provide proofs and de-
tailed analysis on the upper bound of the number of different prototypes, as well as the corresponding
memory consumption upper bound. Then we will provide proofs and analysis on the task distance
preserving and continual learning capability.

At below, Definition [T} Lemma[2] Lemma 3| Lemma[4} and Corollary [T]are from existing knowledge
ranging from geometry to linear algebra. The other parts are of our own contributions.

1.2 Memory consumption upper bound

Due to the mechanism to create new prototypes for newly emerging knowledge extracted from the
data, the memory consumption will gradually increase. However, because of the normalization
applied to the prototypes, the prototype space is constrained, and there exists an upper bound for the
memory consumption. This can be intuitively understood as the number of points with distance larger
than a threshold is limited on a n-dimensional hypersphere. To formally formulate this, we will first
give several definitions.

Definition 1 (Spherical code). A spherical code S(n, N,t), with parameters (n, N, t) is defined as
the set of N points on the unit hypersphere in an n-dimension space for which the dot product of unit
vectors from the origin to any two points is larger than or equal to t.

In our model, the prototypes of different levels can be viewed as spherical codes in their own hidden
space, as they are normalized into unit vectors. Specifically, taking the atom prototypes as an example,
given the dimension d, and the threshold ¢ 4, the set of atom prototypes P4 can be denoted as a
spherical code P4 = Sa(dy, Na,1 —ta), where N4 is the cardinality of 4. Then the upper bound
of the number of atom prototypes given d,, and ¢ 4 is equal to the maximal cardinality of S(n, N, t)
given n and t. As the area of the n-dimensional unit sphere surface is limited, it is obvious that
there exists a maximal N given a certain n and ¢, denoted as maxy S(d,, N,1 — t4). However,
finding maxy S(dg, N,1 — t4) is a complex sphere packing problem, and there is not yet a general
formulation of the maximal IV for an arbitrary n. Therefore, given the number of two different AFEs
as [, and [,., we can formulate the upper bound for the numbers of different prototypes as:

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

34

35
36
37
38
39

40

41
42

43

44
45
46
47

48
49
50

51
52
53
54

55
56

57

58
59

60
61
62

63
64

65
66
67

68
69
70
71
72

Theorem 1 (Upper bounds for numbers of prototypes).
nA<(la+lr)m]\afxs(da7N71_tA)7 (])

nNgmAe]LXS(dn,N,l—tN) and ncgmﬁxS(dc,N,l—tc) 2)

Although the general formulation is not available for an arbitrary dimension, we can specially compute
maxy S(dg, N,1—t4) for certain ns, and verify it with experiments. For example, when n = 2, the
distribution becomes distributing points on a circle with unit radius. Then, maxy S(da, N,1 —t4)
can be obtained by evenly distributing the points on the circle with an interval of ¢ 4. Finally, the
explicit value of maxy S(d,, N,1 — t4) can be formulated as:

2T

S(dn,N,1—tn) = ————,
T (N) arccos(l —t4)

3)

then we have:
21

<(g+1l)——.
na < (la+)arccos(l—tA)

“4)

And the upper bound of the number of N- and C-prototypes can be formulated similarly. The above
results are used in Section 3.7 in the paper.

1.3 Task distance preserving

In continual learning, the key challenge is to overcome the catastrophic forgetting, which refers to
the performance degradation on previous tasks after training the model on new tasks. Based on our
model design, we formulate this as: whether learning new tasks affect the representations the model
generates for old task data. First, we give definitions on the tasks and task distances:

Definition 2 (Task set). The p-th task in a sequence is denoted as TP and contains a subgraph
G, consisting of nodes belonging to some new categories. We denote the associated node set and
adjacency matrix as Vy, and A,,. Each v}, € V,, has a feature vector x(v},) and a label y(v},).

Then, the reason for catastrophic forgetting is that different tasks in a sequence are drawn from
heterogeneous distributions, making the model sequentially trained on different tasks unable to
maintain satisfying performances on previous tasks. Therefore, given the definition of the tasks
(Definition [Z), we then give a formal definition to quantify the difference between two tasks.

Definition 3 (Task distance). We define the distance between two tasks as the set distance between
the node sets of these two tasks, i.e.
vl € Vg

dist(V,, V,) = inf|[x(v)) — x(v)]||,Yvi, € V,,, 0]

Lemma 1. The distance between any two tasks is non-negative, I.e. Vi,j €
{1,...,MT},dist(V,, V,) > 0, where M” is the number of tasks contained in the sequence.

The real-world data could be complex and sometimes may even contain noises that are impossible for
any model to learn, which needs extra considerations when justifying the effectiveness of the model.
Formally, we give the definition of the contradictory data.

Definition 4 (Contradictory data). Vv}, € Vp,,p = 1,..,MT, if vl € Vg, j = 1,... . M7, st.Vl €
* 1(,i 107 _ i j i i

N*, Vu € N (wp) and Vv € N*(v]), x(u) = x(v) but y(v},) # y(v]), then we say (v, y(v})) and

(v),y(v})) are contradictory data, as it is contradictory for any model to give different predictions for

one node based on the same node features and graph structures. (N* denotes the set of non-negative
integers)

Remark 1. Contradictory data is ignored or simply regarded as outliers in previous works, but in
this work, we explicitly analyze its affect for the comprehensiveness of our theory. contradictory
data has different situations. If v, and vz‘are from fiiﬁerent tasks, then y(v,) # y(v}) is plausible.
Because they may be describing a same thing from different aspects. For example, an article from the
citation network may be both categorized as 'physics related’ and ’computer science related’. In this

73
74

75
76

7
78

79

80

81

82
83
84
85

86

87

88
89

90

91

92
93
94

95
96

97
98
99

100
101

102
103

104

105
106

107

109

110

111

112
113

114

situation, it would be easy to add an task indicator to the feature of the node, then the feature of v;
and vg are no longer equal and are not contradictory data anymore.

But within one task, contradictory data are most likely to be wrongly labeled, e.g. it does not make
sense if an article is both ’related to physics’ and ’not related to physics’.

Besides the distance between tasks, the distance between the embeddings obtained by the AFEs will
also be a crucial concept in the proof.

Definition 5 (Embedding distance). Each input node vi is given a set of atomic embeddings
Ea(vi) = E5de(vi) U EStr“Ct(i), where BP9 (vl) = {aJ |7 €{1,...,la}}p containing the atomic
node embeddings of v and E“r‘m(1) = {r/|k € {1,...,1,}}, containing the atomic structure

embeddings. a € Rda andr] € R?. To define the distance between representations of two nodes,
we concatenate the atomic embeddings of each node into a single vector in a higher dimensional
space, i.e. each node v,, corresponds to a latent vector z,, = [a%; i ali"'; r%; e rér] € RleXdatlrxdr
Then we define the distance between representations of two nodes v,, and v} as the Euclidean distance

. . i j . e 1/ _7 _ rL _ _7
between their corresponding latent vector z, and z),, i.e. dist(z,,, z}) = ||z;, — 2} ||2 .

Then we will give some explanations on the linear algebra related theories.

Lemma 2 (Bounds for real quadratic forms). Given a real symmetric matrix A, and an arbitrary
real vector variable X, we can give

T
x' Ax
)\min < xTx < AI‘ﬂa)o
where A\min and Apax are the minimum and maximum eigenvalues of matrix A.

Lemma 3 (Real symmetric matrix). For a matrix A € R™*", AT A € R"*" is a real symmetric
matrix, rank(AT A) = rank(A), and the non-zero eigenvalues of AT A are squares of the non-zero
singular values of A.

Lemma 4 (Rank and number of non-zero singular values). For a matrix A € R™*"™, the number of
non-zero singular values equals the rank of A, i.e. rank(A)

Corollary 1. For a matrix A € R™*™, Without loss of generality, we assume n. < m. If A is column
Sull rank, i.e. rank(A) = n, then A has n non-zero singular values. Besides, rank(ATA) =n,
and A" A has n non-zero singular values.

Given the explanations above, we then derive the bound for the change of the distance among data,
which will be further used for analyzing the separation of data from different tasks.

Lemma 5 (Embedding distance bound). Given two nodes v', € V, and v} € V, with vertex
feature x(v}),x(v}) € R%, their multi-hop neighboring node sets are denoted as U N'(v}) and
leN*

U N'(v)). The AFEs for generating atomic embeddings are AFE;,qe = {A; € R
leN*

{1,...,1.} and AFEgue, = {R; € R4 ¥4 |5 € {1,...,1,.}, corresponding to matrices for atomic
node embeddings and atomic structure embeddings, respectively. Then, the square distance

(S

. . . lT
dist®(z, — 25) = |1z}, — 2313 = Amin(Ix(v}) = x(v2) 13 + 2y Ix(ur) — x(w)[13),
iflg X do + 1 X dy > d,, where uy, are nodes sampled from | J Nl(v;), vy, are nodes sampled from
leN*

U NI(UZ), \; are the eigenvalues of WTW, and W € RUrtDdvx(adatlrdr) jg constructed with
leN*
the matrices in AFE,qqe and AFEgi uct. Specifically, W is a block matrix constructed as follows:

1. Wi 4, 1:4, are filled by the concatenation of {A;|i =1,...,1,}, i.e. [Aq;..; Ay] € Rladaxdy

2. For Wi q,+1:0ada+lrd,1:(14+1)dys the construction is first filling
Wi dot+ (k—1)dyilada +kdy kdy: (k+1)d, With R, k=1, ..., 1.

3. For other parts, fill with zeros.

115

116

117

118

119

120

121

122
123

124

125
126

127

128

129

130
131

132

134

135

136

137

138

139
140
141
142
143

144
145
146
147

148

149
150

151
152

153

Proof. Given vertex v;',, we concatenate its feature vector with the [, neighbors sampled from
ZGLIJ\T* N, ie. x), ;= [x(vh); x(u1);..;x(uy,)] € RUFDIXL 45 ¢ ZEL%* N'(vi). Then with the
constructed block matrix W, we could formulate the generation of z; as:

zi = Wx/

P D,
Similarly, we can formulate zg for another vertex vg.

And their distance can be formulated as:

dist(z}, 7)) = |12} — z}ll2 = \/(z}, — 2})" (2}, — 7))

(5)",)

= (Wx,, — WX;J)TT(WXLJ - Wx; /)
= (Wi = x09)) (Wix,; = x;5))
_ (X/ % ‘)TWTW(X/ —)

120 q,J 120 q,J

According to lemma WTW is a real symmetric matrix, with lemma we have

T T
(i =%g5) WIW(x), ;=% ;)
(x;,q‘,*x/)T(X;,q‘,*x/)

a,7 q,]

According to lemma with l,d, + {d, > (I, + 1)d, and the constraint of column full rank on W,
WTW e RU~+Dx(r+1) hag [, + 1 positive eigenvalues, thus X, > 0.

Then we decompose (x), ; — %}, ;)7 (x],; — X/,),

(x5 — %)T (x5 = 5) = sV (k- () 5)

=S () k — (1))

= S ())k = (% k) Sy (e — (k)
= [|x(v3) = x ()13 + Xty 1% (um) — x(ve) 13

. 'L y Z y ’L 9 l,,,
< dist® (z), — 29) = |1z, = 2313 = Amin([x(v}) — x(u])[13 + 2y x(ur) — x(w)][3)

The key point in these theories is that for any task sequence with certain distance among the tasks,
there exists a configuration that ensures HPNs to be capable of preserving the task distance after
projecting the data into the hidden space, so that only the prototypes associated with the current task
are refined and the prototypes corresponding to the other tasks are preserved. Specifically, theorem
on zero-forgetting can be formulated as follows:

Theorem 2 (Task distance preserving). For HPNs trained on consecutive tasks TP and TP+
Iflodg + l.dr > (I + 1)d, and W is column full rank, then as long as tg < Amin(lr +
1)dist(V,, V,41), learning on TP will not modify representations HPNs generate for data from
TP, i.e. catastrophic forgetting is avoided.

In Theorem A; is eigenvalues of the WTW, where W is the matrix mentioned before constructed

via AFEs. d,, d, and d, are dimensions of data, atomic node embeddings, and atomic structure
embeddings.

Proof. Following the proofs above, suppose two nodes v}, and v/ are embedded into z, and zJ with
the embedding module. Then the distance between z; and zg could be formulated as:

dist(z), 2]) = |12 — s = /() —)" (2}, — 25)

154

155

156

157

158

159

160

161
162

163
164
165
166
167
168
169
170
171

172
173
174

175

176

177
178
179
180

181

182

183
184

185
186
187
188

Dataset Cornell Texas Wisconsin Cora Citeseer Actor OGB-Arxiv OGB-Products

nodes 183 183 251 2,708 3,327 7,600 169,343 2,449,029
edges 295 309 499 5,429 4,732 33,544 1,166,243 61,859,140
features 1,703 1,703 1,703 1,433 3,703 931 128 100
classes 5 5 5 7 6 4 40 47
tasks 2 2 2 3 3 2 20 23

Table 1: The detailed statistics of 8 datasets used in our experiments.

According to lemma [S| we have dist®(z},z)) = |z}, — 2|3 > Amin(/|x(v]) — x(v7)[13 +
S lx(ur) = x(i)13).

b eV, vl eV,

() = x(0)[[3 = dist® (Vy, V).

Similarly, ||x(uy) — x(vg)|[3 > dist*(V,, V,), for Vk.

125, 2213 = Amin (I + 1)dist? (Vp, V)

. dist(zh, 2]) = ||z}, — 2] |l2 > 1/ Amin(lr + Ddist?(V,,, V,)

Ity < \/ Amin (L + 1)dist2(Vp, V), the embeddings of two nodes from two different tasks will
not be assigned to same A-prototypes.

Above all, if the conditions in Theorem [2] are satisfied, learning on new tasks will not modify the
prototypes for previous tasks. Besides, the data from previous tasks will be exactly matched to the
correct prototypes after training the model on new tasks. In practice, the conditions may not be easy
to be satisfied all the time. However, as mentioned in the paper, the bound given in Theorem [2]is not
tight, thus fully satisfying the conditions may not be necessary. Therefore, in the experimental section
in the paper, we practically show how the important factors included in these conditions influence
the performance (Section 3.6 in the paper). The results demonstrates that the more we satisfy the
conditions, the better performance we will obtain, and certain factors (number of AFEs) influence
more than the others. O

Remark 2. When dist(V,,V,) = 0, i.e. there exists a non-empty set Vo = V, NV, st. dist(V,, \
VA, Vg \ V) >0, then Theorem holds. As for the Vi containing examples exactly same in 'V,
and V4, there are two situations:

1. Yv € Vn, y,(v) = y4(v), where y,(-) and y,(-) denote the associated labels in task p and q
2. Fv eV, yp(v) # yq(v)

For situation 1, Vi will not cause the model to forget about the previous task, as these shared data
are exactly same and will optimize the model to same direction. For situation 2, if no task indicator
is provided, then these data are contradictory data, if task indicator is provided, then the indicator
could be merged into the feature vector of the node, i.e. x(vy), then v, will not belong to V.

2 Details of Implementation

2.1 Datasets and task splitting

In this subsection, we introduce the datasets we used and the details of how each dataset is split into
different tasks.

We use 8 publicly datasets which include 2 citation networks (Cora[29], Citeseer [29], OGB-Arxiv
[36} 23])), 3 web page networks (Wisconsin, Cornell, Texas) [25], and 1 actor co-occurence network
(Actor) [25], and one product co-purchasing network (OGB-Products [3]]). The detailed statistics of
these 8 datasets are summarized in Table[T]

189

190
191
192
193
194
195
196
197
198
199
200
201

202
203
204
205

207
208
209
210
211
212
213

214

215
216
217
218
219
220
221
222

223

224
225
226
227
228
229

231

232

234
235
236
237
238

240
241

2.1.1 Citation networks

The original Cora [22]] and Citeseer [10] are pre-processed by Sen et al. [29] with stemming and
removing stop words as well as words with document frequency less than 10. Finally, Cora contains
2708 documents, 5429 links denoting the citations among the documents, and each document is
represented with 1433 distinct words. Cora contains 7 classes. For training, 140 documents are
selected with 20 examples for each class. The validation set contains 500 documents and the test
set contains 1000 examples. In our continual learning setting, the first 6 classes are selected and
grouped into 3 tasks (2 classes for each task) in the original order. Citeseer results in 3312 documents
with each document being represented with 3703 distinct words, and 4732 links. Citeseer contains 6
classes. 20 documents per class are selected, for training, 500 documents are selected, for validation,
and 1000 documents are selected as the test set. For continual learning setting, the documents from 6
classes are grouped into 3 tasks with 2 classes per task in the original order. The Cora and Citeseer
datasets can be downloaded via Cora&Citeseer.

The OGB-Arxiv dataset is collected in the Open Graph Benchmark OGB. It is a directed citation
network between all Computer Science (CS) arXiv papers indexed by MAG [36]]. Totally it contains
169,343 nodes and 1,166,243 edges. Each node is an paper and each directed edge indicates that
one paper cites another one. Each paper comes with a 128-dimensional feature vector. The dataset
contains 40 classes. As the dataset is not balanced and the numbers of examples in different classes
differs significantly, directly grouping the classes into 2-class groups like the Cora and Citeseer will
cause certain tasks to be imbalanced. Therefore, we reordered the classes in an descending order
according to the number of examples contained in each class, and then group the classes according to
the new order. In this way, the number of examples contained in different classes of each task are
arranged to be as balanced as possible. Specifically, the class indices of each task are: [[35, 12],[15,
211,128, 301, [16, 24], [10, 34], [8, 41, [5, 2], [27, 26], [36, 19], [23, 31], [9, 37], [13, 3], [20, 39], [22,
6], [38, 33], [25, 11], [18, 1], [14, 7], [O, 17], [29, 32]].

2.1.2 Web page networks

WebKB dataset is collected from different universities by Carnegie Mellon University. The nodes in
the datasets are web pages with bag-of-words representation, and edges are hyperlinks between the
pages. The web pages are manually classified into 5 classes including student, project, course, staff,
and faculty. Following setting in [25]], we use three subsets including Wisconsin with 251 web pages,
Cornell with 183 web pages, and Texas with 183 web pages. For all these datasets, 60% nodes are
used for training, 20% for validation, and 20% for testing. For each of the web page networks, we
constructed 2 tasks with 2 classes per task. The three web page network datasets can be accessed via
Web Pages. The balanced splitting of the classes for the three web page networks is [[2, 3], [0, 4]]

2.1.3 Actor co-occurrence network

The actor co-occurrence network is a subgraph of the film-director-actor-writer network [31]]. Each
node in this dataset corresponds to an author, and the edges between the nodes are co-occurrence
on the same Wikipedia pages. The whole dataset contains 7600 nodes and 33544 edges. Each node
is accompanied with a feature vector of 931 dimensions. The nodes are classified into 4 classes
according to the number of the average monthly traffic of the web page. For this dataset, we also
constructed 2 tasks with 2 classes per task. The link to this dataset is Actor. The balanced splitting of
the classes is [[0, 1], [2, 3]]

2.1.4 Product co-purchasing network

OGB-Products is also collected in the Open Graph Benchmark |(OGB, and is an undirected and
unweighted graph, representing an Amazon product co-purchasing network link. In total, it contains
2,449,029 nodes and 61,859,140 edges. Nodes represent products sold in Amazon, and edges
between two products indicate that the products are purchased together. Node features are generated
by extracting bag-of-words features from the product descriptions followed by a Principal Component
Analysis to reduce the dimension to 100. 47 top-level categories are used for target labels, in our
experiments, we select 46 classes and omit the final class containing only 1 example. Similar to
OGB-Arxiv, we reorder the classes in an descending order according to the number of examples
contained in each class, and then group the classes according to the new order. The class indices of
each tasks are: [[4, 7], [6, 3], [12, 2], [O, 8], [1, 13], [16, 21], [9, 10], [18, 24], [17, 5], [11, 42], [15,

https://github.com/tkipf/gcn/tree/master/gcn/data
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/new_data
https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/new_data/film
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
http://manikvarma.org/downloads/XC/XMLRepository.html

242
243

244

245
246
247
248
249
250

251
252
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

274
275

Input

+
| AFE, ,4: |, matrices of shape [dipput dal | AFEgi ot |, matrices of shape [diypue, dal |
¥
| A — Prototypes: Matrix of shape [Ny, d,] |
¥
[Felayer: [+11)d,,. dy] |
+

| N — Prototypes: Matrix of shape [Ny, d,,] |

| Fclayer: [dy, d] |
v
| C — Prototypes: Matrix of shape [N¢, d.] |

| Classifier: Fc layer [(1} + 11)d, + d,, + d., num_class] |

\ 4
Output

Figure 1: Details of modules in HPNs.

201, [19, 23], [14, 25], [28, 29], [43, 22], [36, 44], [26, 37], [32, 31], [30, 27], [34, 38], [41, 35], [39,
33], [45, 40]].

2.2 Experiment Setup

All models are implemented in PyTorch with SGD optimizer and repeated 5 times on a Nvidia Titan
Xp GPU. The average performance and standard deviations are reported for comparison. The network
architecture of HPNG is detailed in Figure[T] and the specific values of hyperparameters will be given
in the following. The hyperparameters we provide here correspond to the models used in comparisons
with the baselines, while in other experiments the hyperparameters are the research objects and will
not be kept unchanged.

As the sizes of the datasets we used are greatly different, we adopt different hyperparameters for small
datasets and large datasets. The small datasets include Cora, Citeseer, Actor, Wisconsin, Cornell, and
Texas. The large datasets include OGB-Arxiv and OGB-Products.

For the small datasets, we set I, = 1,1, = 1, and h = 2. We randomly sample 5 one-hop neighbors
and 7 two-hop neighbors. The learning rates are managed separately for different modules of the
model. For the AFEs, the learning rate is set as 0.1 at the beginning and decays to 0.001 at epoch 35.
The learning rate for the prototypes are initialized as 0.1 at epoch 35 and decays to 0.01 at epoch
85. And the learning rates for the other trainable parameters are the same as the AFEs. During
training, the AFEs would change rapidly at first and slow down after several epochs. Therefore,
at the starting period of training, the same node would not be stably matched to the same set of
prototypes due to the rapidly changing AFEs. To avoid this from creating too many redundant
prototypes, we start to establish prototypes after training the AFEs at the 35th epochs. The input
data has a dimension of 1433, and we set the dimensions of A-, N-, and C-prototypes to be 16. The
number of training epochs is 90. Although the training procedure is designed in a delicate way,
the model is actually rather robust and can perform well without these delicate procedures. For
example, on the largest dataset OGB-Products, we only train the model for 10 epochs, and do not
decay the learning rate, the prototypes are established at the beginning, and the model still obtained
good results, as shown in in the paper (e.g. results in Section 3.3). For the large datasets, for higher
efficiency, we set h = 1, and only uniformly sample one neighbor from the neighbors. On the
OGB-Products, we shrink the dimensions of A-, N-, and C-prototypes to be 2, in order to control the
number of prototypes. For both HPNGs, the threshold £ 4, ¢, and t¢ are selected by cross validation
on {0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4}. According to the experimental results, there is a
wide range for choosing the thresholds. Finally we choose t4 =ty = tc = 0.3.

The baselines have different settings. For the baselines with GCN backbone, 16 is approximately the
best for the number of hidden unit. For the GAT based baselines, we set the number of heads and

276
277
278

279

280
281
282

286
287
288
289
290
291
292

293
294
295

297
298

Table 2: Performance comparisons between HPNs and baseline models on four other datasets.

‘ Actor | Wisc. | Corn. | Texas
AM M | AM M | AM ™M | AM M

C.L.T.‘ Base ‘

GCN 43.63% -9.11% 74.711% -9.52% 34.92% -68.00% 80.15% -12.00%
None GAT 53.10% -4.33% 78.82% -4.76% 46.77% -56.00% 74.62% -16.00%
GIN 45.51% -8.88% 76.44% -4.76% 34.92% -64.00% 78.31% -12.00%

GCN 44.29% -7.06% 74.71% -9.52% 38.92% -60.00% 82.15% -8.00%
EWC GAT 54.23% -2.51% 78.82% -4.76% 48.92% -44.00% 78.62% -8.00%
GIN 47.61% -7.29% 77.09% 0.00% 33.23% -52.00% 78.31% -12.00%

GCN 49.77% -3.65% 84.65% -9.52% 62.77% -20.00% 56.31% -52.00%
LwF GAT 52.82% -6.15% 81.20% 0.00% 46.77% -52.00% 78.46% -20.00%
GIN 49.70% -4.10% 74.71% 0.00% 34.92% -64.00% 34.92% -52.00%

GCN 52.66% +3.91% 88.71% 6.25% 65.08% +0.00% 80.46% +4.00%
GEM GAT 54.31% -2.05% 77.09% -9.52% 65.08% -4.00% 76.77% -4.00%
GIN 45.23% -11.16% 72.78% -6.25% 76.62% +4.00% 72.77% +8.00%

GCN 50.73% -1.59% 717.75% -9.52% 61.23% +0.00% 78.46% +0.00%
MAS GAT 53.67% -1.60% 76.01% -6.25% 62.62% -32.00% 84.46% +0.00%
GIN 51.69% -0.69% 717.75% -4.76% 63.08% +0.00% 82.86% +0.00%

GCN 52.44% +0.69% 74.71% -9.52% 34.92% -68.00% 80.15% -12.00%
ERGN. | GAT 51.40% -7.29% 78.16% -9.52% 48.77% -52.00% 80.46% -12.00%
GIN 42.72% -12.98% 76.44% -4.76% 34.92% -64.00% 78.31% -12.00%

GCN 50.59% -4.79% 66.09% -14.28% 56.77% -32.00% 82.31% -4.00%
TWP GAT 54.01% -2.05% 80.54% -9.52% 46.92% -48.00% 78.62% -8.00%
GIN 49.91% -3.64% 71.17% -6.25% 51.08% -24.00% 74.62% -4.00%

GCN 57.01% +0.00% 96.72% +0.00% 88.09% +0.00% 86.43% +0.00%
Join. GAT 57.15% +0.00% 95.94% +0.00% 89.46% +0.00% 86.30% +0.00%
GIN 56.97% +0.00% 96.88% +0.00% 88.82% +0.00% 86.95% +0.00%

HPNs || 56.80% 0.92% | 96.55% +0.00% | 88.23% +0.00% | 86.31% +2.77%

number of hidden units as 8. For GIN, the number of hidden units is 32. For all these baselines, the
above mentioned settings are applied on most datasets. For some datasets on which the baselines
cannot perform well, we will further tune the models carefully to get better results.

3 Additional Experimental Results and Detailed Analysis

To further validate our proposed model, in this section, we report additional experimental results by
extending the experiments reported in the paper to more datasets. We will also give more detailed
analysis on the results, which is omitted in the paper due to space limitations.

3.1 Comparisons with Baseline Methods on Additional Datasets

In this subsection, we include the comparison results with baseline methods on the other four datasets
including Wisconsin, Cornell, Texas, and Actor, the results are shown in Table@

Among all the models in Table 1 of the paper, we could observe several kinds of forgetting behavior
among the baselines. First, some of them are with low AM and severe forgetting (negative FM with
large |FM|) like the pure GNNs in the first 3 rows of Table 1 in the paper. These models may perform
well on individual tasks, but the AM is brought down by catastrophic forgetting. To explain this in
details, we expand the results of GAT without any continual learning techniques in Table 3] in which
Tr. denotes on which tasks has the model been trained and Te. denotes on which task the model is
tested.

The first row of Table E| shows the model performance on task 1 after it has been trained on the task 1,
on the first two tasks, and on the first three tasks. We see that GAT performs well on each individual
task it has just learnt. But after being trained on more tasks, the performance on previous tasks
drops dramatically, making the AM to be relatively low. On the contrast, the performance change on
previous tasks of HPNs is also shown in Table[3] and we could see that HPNs can well maintain the
performance on previous tasks throughout the training on all tasks.

299
300
301
302
303
304
305

306

307
308

309
310
311
312
313
314

315

316
317

319
320

\ GAT I HPNs

Tr.

Te. - T1 Ti,2 Ti,2,3 H T1 Ti,2 Ti,2,3
Ti | 94.12% 47.96% 71.49% || 95.02% 9593% 94.57%
T | 93.30% 49.68% || 92.66% 92.22%
T 94.44% || 96.83%
Table 3: Accuracy (%) changes of GAT and HPNG.

\ GCN+GEM I GAT+MAS
Tr.

Te. T T1,2 T1,2,3 H T T1,2 T1,2,3
Ti | 93.67% 87.33% 7692% || 94.12% 90.50% 90.05%
T 65.66% 69.33% || 71.97% 70.84%
T 80.95% || 93.25%

Table 4: Accuracy (%) changes of GCN+GEM and GAT+MAS.

Second, there are also some models without severe forgetting but the still low AM. Typically these are
the models which preserve the performance on previous tasks with certain constraints on the models.
These constraints can indeed alleviates forgetting, but it also limits the model’s flexibility in learning
new tasks, and thus the performance on new tasks will degrade. For example, comparing Table 3| with
Table 4] GAT achieves accuracy higher than 93% on individual tasks, but for GAT+MAS, although
the forgetting on task 1 is alleviated, the performance on task 2 drops significantly. GCN+GEM also
suffers from the similar problem.

3.2 Additional Results on Ablation Study

In this subsection, we provide the ablation study results on another large dataset OGB-Arxiv, and the
results are shown in Table[3land

From Table [5} we can observe that on the large dataset, the improvements brought by high level
prototypes are more significant than on the small dataset (reported in Table 2 in the paper). Similarly,
in Table [6] the influence of different loss terms is also more prominent compared to the results
reported in Table 3 in the paper. The above results imply that our proposed hierarchical prototypes
and different loss terms are effective, and the effectiveness becomes increasingly significant on larger
datasets with richer information.

3.3 Additional Results on Learning Dynamics
Besides the learning dynamics on OGB-Arxiv provided in Section 3.5 in the paper, we further provide
the results on OGB-Products, as shown in Figure |Z| (Left).

The learning dynamics shown in Figure 2] (Left) is similar to the one on OGB-Products shown in the
paper. The only difference is that OGB-Products contains more tasks and the ARS of the baselines
decrease more than on OGB-Arxiv.

Table 5: Ablation study on prototypes of different = Table 6: Ablation study on different loss terms over

levels of prototypes over OGB-Arxiv. OGB-Arxiv.
Conf. | A-p. | N-p. | Cp. | AM% | FM% Conf. | Leis | Laiv | Lais | AM% | FM%
L]V \ | 82.1+09 | +0.0£1.1 1| v \ | 79.6£15 | -03£13
2 | v | v | 83.6+12 | +0.2409 2 | v | v | 823410 | +0.4+£0.9
3| v | v | v | 858407 | +0.6+09 3 v | v | 807+12 | +0.0£1.4
4 | v | v | v | 858+07 | +0.6+09

321

322
323

324

325

327
328
329
330
331

332

333

335

336

337

338
339
340
341

1.0 A0 T e e
\ n
0.8 9
2 £
£ 06 HPNs & 4700 e eccusectsiilg
© == # Para.: Up. B.
0.4 GAT o —— # Para.: OGB-P.
—— TWP+GAT * —— # Para.: OGB-A
0:2 5 10 15 20 3000 0 5 10 15 20
Tasks Tasks

Figure 2: Left: dynamics of ARS for continual learning tasks on OGB-Products dataset. Right:
dynamics of memory consumption of HPNs on both OGB-Arxiv and OGB-Products.

85 3 6000
M 2 0 —— N-Proto.

75 o —— A-Proto
—_ — 1 24000 ’
§'65 § 0 %* —=— C-Proto.
= s bS]
< T o1 e T | £2000

55 _2 ® _ﬁ.\‘\

43901 010 020 030 040 0.0l 0.10 0.20 030 0.40 0.01 0.10 0-t20 0.30 0.40

ta ta A

Figure 3: Left and Middle: AM and FM change when ¢ 4 varies on Citeseer. Right: impact of ¢ 4 on
the number of prototypes over Citeseer.

3.4 Additional Results on Parameter Sensitivity

In Figure 3| we further provide the parameter sensitivity results on citeseer dataset. The results have
similar patterns with the results provided in the paper.

3.5 Additional Results on Memory Consumption

In Figure 2] (Right), we simultaneously show the memory consumption change via the number of
tasks on both OGB-Arxiv and OGB-Products. We use same model configurations for both datasets,
thus the upper bounds of the memory consumption are same. From Figure 2] (Right), we could see
that the memory consumption of HPNs on both datasets increases slowly and far less than the upper
bound. Although OGB-Products is more than ten times larger than OGB-Arxiv, the memory used on
OGB-Products is only slightly more than on OGB-Arxiv. demonstrating the memory efficiency of
HPNs.

3.6 Additional Results on Visualization

In Figure[d] we visualize the hierarchical prototype representations of the test nodes on Citeseer by
t-SNE [32]. Similar to the visualization results shown in the paper, Figure 4 sequentially show the
classes of task 1 (Left), task 1,2 (Middle), and task 1,2,3 (Right). The examples belonging to different
classes are denoted with different shapes and colors, as shown in the legend on the right.

4 Related Works

The proposed Hierarchical Prototype Networks (HPN5s) are closely related to continual learning and
graph representation learning. In this section, we provide more detailed discussions by comparing
HPNs with the related works, especially on those directly applying existing continual learning
methods on graph data.

10

342

343
344
345
346

347
348

350
351
352
353

354
355
356

357
358
359
360

362
363

364
365
366
367
368
369

370
371
372

374
375
376

377
378
379
380
381

383
384

20 40 oy 40 e
) % oy ‘“i}; o E:ass (;
™ KK by ass
10 20 ol 2 2 : Tk el O §§ Class 2
0 R "y 0 * 5 * Class 3
0 Ay % ;% . Class 4
= i 4 Class 5
_10] &7 B . -20 i K ,Sﬁ;;,é ¥
4 e A
—20f ¥ % —40 —40 e
-15 -10 -5 ©0 5 10 15 -30 -20 -10 10 20 —-40 -20 0 20 40

Figure 4: Visualization of hierarchical prototype representations of test data of different tasks from
Citeseer via t-SNE.

4.1 Continual learning

Continual learning aims to overcome the well-known catastrophic forgetting problem that a model’s
performance on previous tasks decreases significantly after being trained on new tasks. Existing
works for continual learning can be categorized as regularization-based methods , memory-replay
based methods , and parametric isolation based methods.

Regularization-based methods penalize the model objectives to maintain satisfactory performance
on previous tasks [[12, 17, [14} 8l 28]. For instance, Li and Hoiem [17] introduced Learning without
Forgetting (LwF) which uses knowledge distillation to constrain the shift of parameters for old tasks;
Kirkpartick et al. [14] proposed elastic weight consolidation (EWC) that adds quadratic penalty
to prevent the model weights from shifting too much. Recent works [8] [28]] seek to constrain the
gradients for new tasks in a subspace orthogonal to the updating directions that are important for
previous tasks.

The regularization based methods are effective at preventing the forgetting on previous tasks. But the
constraints on the model weights also limit a model’s capability to learn new tasks, and the overall
performance will be affected.

Memory-replay based methods constantly feed a model with representative data of previous tasks
to prevent forgetting 20,30\ [1} 14, [7]. One example is Gradient Episodic Memory (GEM) [20] that
stores representative data in an episodic memory and add a constraint to prevent the loss on the
episodic memory from increasing and only allows it to decrease. Instead of storing data, Shin et
al. [30] added a generative model to generate pseudo-data of previous tasks to be interleaved with
new task data for rehearsal. Recent works also look for better designs of memory replay so as to
facilitate continual learning agents [4. [7].

Memory-replay based methods are currently one of the most effective approaches for alleviating
catastrophic forgetting. But these methods are not suitable to be applied on graph data directly, as
they are not designed to be capable of storing the topological information, which is a crucial part of
graph data. In contrast, our proposed HPNs have explicitly designed modules for storing topological
information. Moreover, memory-replayed methods require rehearsal of old data each time a new
tasks is learnt, which induces extra computation burden.

Parametric isolation based methods adaptively introduce new parameters for new tasks to avoid the
parameters of previous tasks being drastically changed [27, 141} 40,37, 138]). For instance, progressive
network [27]] allocates a new sub-network for each new task and block any modification on the
previously learnt networks. Yoon et al. [41]] proposed a more flexible model (DEN) that dynamically
adds new neurons for accommodating new tasks. Recently, various innovative approaches to allocate
separated parameters for different tasks are proposed [38, 140, [37]]. Besides the concrete models, a
recent theoretical paper [15] analyzed the required capability of optimal continual learning agent.

Parametric isolation based methods are also effective at alleviating catastrophic forgetting, but the
consistently increasing memory consumption could be a problem. Recently proposed methods have
explicit mechanisms for controlling the memory consumption like merging parameters for similar
tasks [40]. However, as the task specific parameters are fitted to each individual task, the parameter
reuse level is limited. In our proposed HPN's, we consider the properties of graph data and decompose
each node into a combinations of several prototypes. As the prototypes are shared by all tasks, the
parameter reuse level is greatly increased, resulting in small memory consumption. Besides, we also
have theoretical upper bound for the memory consumption.

11

385
386
387

388

389
390
391
392
393
394

395
396
397
398
399
400
401
402
403
404

406
407

409
410

411

412
413
414

415
416

417
418

419
420
421

422
423

424
425
426

427
428

429
430
431

432
433

Overall, although the existing continual learning methods can perform well on Euclidean data, they all
have limitations when being applied onto graph data, while our proposed HPNSs is specially designed
for graph data without any of these limitations.

4.2 Graph representation learning

Graph representation learning aims to encode both the feature information from nodes and the
topological structure of the incoming graph. Traditional methods relied on graph statistics or hand-
crafted features [2} [18]. Recently, a great amount of attention has been paid to graph neural networks
(GNNSs), such as graph convolutional network (GCNs) [[13], GraphSAGE [[11]], Graph Attention
Networks (GATs) [33]], and their extensions [39, 5| |46]]. Instead of focusing on shallow networks,
there are also works on building deep GCNss to further increase the capacity of GNNs [16) 6, [26] 43].

Currently, only limited efforts have been made to pursuit continual graph representation. Zhou
et al. [44] integrated memory-replay to GNNs by storing experience nodes from previous tasks.
However, the topological structure of graphs is ignored. Liu et al. [19] developed topology-aware
weight preserving (TWP) that can preserve the topological information of previous graphs. However,
preserving topology of previous graphs will hamper its capability of learning topology on new graphs.
Galke et al.[9] considers a scenario where new classes of nodes may appear, which is similar to our
consideration. But they focus on adapting the model to new patterns and does not consider preserving
the performance on previous tasks. [35] and [34] are also works related to both GNNs and continual
learning. However, the setting of [35]] is time step incremental, while our setting is class incremental.
And in [34], the focus is on how to generalize the GNNs to networks with varying number of nodes,
while the continual learning part is only applying existing memory replay method on the nodes.

Note that continual graph representation learning is essentially different from dynamic graphs which
also deal with sequences of graphs [42] 241145/ [21]. A key difference is that a dynamic graph sequence
are status of a single graph at different time, while in continual learning setting a sequence contains
different graphs for various tasks. Therefore, the methods developed for dynamic graphs cannot be
directly applied to our tasks.

References

[1] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pages
11816-11825, 2019.

[2] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks.
In Social network data analytics, pages 115-148. Springer, 2011.

[3] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme
classification repository: Multi-label datasets and code, 2016.

[4] Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and Joelle Pineau. Online learned continual
compression with adaptive quantization modules. In International Conference on Machine
Learning, pages 1240-1250. PMLR, 2020.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcen: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247, 2018.

[6] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pages 1725-1735.
PMLR, 2020.

[7] Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced
data. In International Conference on Machine Learning, pages 1952-1961. PMLR, 2020.

[8] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning. In International Conference on Artificial Intelligence and Statistics, pages
3762-3773. PMLR, 2020.

[9] Lukas Galke, Iacopo Vagliano, and Ansgar Scherp. Incremental training of graph neural
networks on temporal graphs under distribution shift. arXiv preprint arXiv:2006.14422, 2020.

12

434
435

436
437

439

440
441

442
443
444
445

446
447
448

449
450
451

452
453

454
455
456

457

459
460

461
462

464
465
466

467

469

470
471
472

473
474

475
476
477

478
479
480

[10] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pages 89-98, 1998.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, pages 1024—1034, 2017.

[12] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep
neural networks. arXiv preprint arXiv:1607.00122, 2016.

[13] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[14] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521-3526, 2017.

[15] Jeremias Knoblauch, Hisham Husain, and Tom Diethe. Optimal continual learning has perfect
memory and is np-hard. In International Conference on Machine Learning, pages 5327-5337.
PMLR, 2020.

[16] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as
deep as cnns? In Proceedings of the IEEE International Conference on Computer Vision, pages
9267-9276, 2019.

[17] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935-2947, 2017.

[18] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019-1031,
2007.

[19] Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph
neural networks. arXiv preprint arXiv:2012.06002, 2020.

[20] David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning.
In Advances in neural information processing systems, pages 6467-6476, 2017.

[21] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural
networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 719-728, 2020.

[22] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):127-163,
2000.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546,
2013.

[24] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings of
the The Web Conference 2018, pages 969-976, 2018.

[25] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

[26] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2019.

[27] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

13

481
482

483
484

485
486
487

488
489

491
492

494

495
496

497
498
499

500
501

503
504
505

506
507
508

509
510

511
512
513

514
515

517
518
519

520
521

522
523

524
525

527
528
529

[28] Gobinda Saha and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representation, 2021.

[29] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. Al magazine, 29(3):93-93, 2008.

[30] Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Advances in neural information processing systems, pages 2990-2999,
2017.

[31] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 807-816, 2009.

[32] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[33] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[34] Chen Wang, Yuheng Qiu, and Sebastian Scherer. Lifelong graph learning. arXiv preprint
arXiv:2009.00647, 2020.

[35] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via
continual learning. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pages 1515-1524, 2020.

[36] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science
Studies, 1(1):396-413, 2020.

[37] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad
Rastegari, Jason Yosinski, and Ali Farhadi. Supermasks in superposition. arXiv preprint
arXiv:2006.14769, 2020.

[38] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 374-382, 2019.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[40] Jaehong Yoon, Saechoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust
continual learning with additive parameter decomposition. In International Conference on
Learning Representation, 2020.

[41] Jaechong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[42] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang.
Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2672-2681, 2018.

[43] Xikun Zhang, Chang Xu, and Dacheng Tao. On dropping clusters to regularize graph convolu-
tional neural networks. 2020.

[44] Fan Zhou, Chengtai Cao, Ting Zhong, Kunpeng Zhang, Goce Trajcevski, and Ji Geng. Continual
graph learning. arXiv preprint arXiv:2003.09908, 2020.

[45] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[46] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks. In
Advances in Neural Information Processing Systems, pages 11247-11256, 2019.

14

	Details of Theoretical Analysis
	Overview
	Memory consumption upper bound
	Task distance preserving

	Details of Implementation
	Datasets and task splitting
	Citation networks
	Web page networks
	Actor co-occurrence network
	Product co-purchasing network

	Experiment Setup

	Additional Experimental Results and Detailed Analysis
	Comparisons with Baseline Methods on Additional Datasets
	Additional Results on Ablation Study
	Additional Results on Learning Dynamics
	Additional Results on Parameter Sensitivity
	Additional Results on Memory Consumption
	Additional Results on Visualization

	Related Works
	Continual learning
	Graph representation learning

