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Multi-scale Change-Aware Transformer for Remote Sensing
Image Change Detection

Anonymous Authors

ABSTRACT
Change detection identifies differences between images captured
at different times. Real-world change detection faces challenges
from the diverse and intricate nature of change areas, while cur-
rent datasets and algorithms are often limited to simpler, uniform
changes, reducing their effectiveness in practical application. Ex-
isting dual-branch methods process images independently, risking
the loss of change information due to insufficient early interac-
tion. In contrast, single-stream approaches, though improving early
integration, lack efficacy in capturing complex changes. To ad-
dress these issues, we introduce a novel single-stream architec-
ture, the Multi-scale Change-Aware Transformer (MACT), which
features the Dynamic Change-Aware Attention module and the
Multi-scale Change-Enhanced Aggregator. The Dynamic Change-
Aware Attention module, integrating local self-attention and cross-
temporal attention, conducts dynamic iteration on images differ-
ences, thereby targeting feature extraction of change areas. The
Multi-scale Change-Enhanced Aggregator enables the model to
adapt to various scales and complex shapes through local change
enhancement and multiscale aggregation strategies. To overcome
the limitations of existing datasets regarding the scale diversity
and morphological complexity of change areas, we construct the
Mining Area Change Detection dataset. The dataset offers a diverse
array of change areas that span multiple scales and exhibit complex
shapes, providing a robust benchmark for change detection. Ex-
tensive experiments demonstrate that the our model outperforms
existing methods, especially for irregular and multi-scale changes.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Change detection, benchmark dataset, single-stream framework

1 INTRODUCTION
Change Detection (CD) identifies changes in surface or phenomena
over time by analyzing images captured at different time points.
These changes range from local alterations, such as the construction
or demolition of buildings [18, 24], to broader regional transfor-
mations like deforestation [23] and urban expansion [8, 25]. Ad-
ditionally, change areas present irregular boundaries and diverse
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(a) Pipeline of the prevailing method  (b) Pipeline of our method
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Figure 1: Our method targets feature extraction in change
areas within the encoder, aimed at precisely capturing multi-
scale and complex change regions.

shapes, influenced by factors such as natural terrain, human activi-
ties and varying image resolutions. Consequently, change detection
algorithms and datasets are required to capture the complex and
multi-scale changes for practical monitoring. Despite providing
valuable data on urban growth and agricultural changes (see Tab. 1),
datasets are limited by their focus on uniform, small-scale changes.
This restricts the capacity of current algorithms to accurately detect
complex, multi-scale changes, reducing their practical effectiveness.

Current change detections [1, 2, 4, 5] often use dual-branch
pipelines that extract and later integrate features from dual-temporal
images, as shown in Fig. 1(a). These methods extract features from
image pairs individually but fail to integrate early cross-temporal
changes effectively, impacting accurate detection and increasing
model complexity. Alternatively, a few algorithms use a single-
stream approach by merging image pairs for simultaneous process-
ing, which enhances the complementarity of information between
images. However, single-stream methods, though effective for reg-
ular changes, often struggle with capturing details and adapting to
multi-scale changes, particularly in complex change scenarios.

In response to the limitations faced by current change detection
methods in capturing complex variations, we expect to facilitate
interaction between image pairs at the early stage of image process-
ing to refine feature extraction within change areas, as illustrated in
Fig. 1(b). Additionally, we are committed to enhancing the model’s
ability to recognize multi-scale and complex change areas, thereby
improving its effectiveness in practical applications.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Therefore, we introduce an single-stream architecture termed
the Multi-scale Change-Aware Transformer (MACT). The frame-
work adopts an encoder-decoder structure, with the Change-Aware
Encoder composed of a stack of Dynamic Change-Aware Attention
(DCAA) modules. The Dynamic Change-Aware Attention (DCAA)
mechanism is designed to facilitate dynamic image comparison
across disparate time points by harnessing the power of local self-
attention and cross-temporal attention. The local self-attention
mechanism extracts features from individual images and the cross-
temporal attention compares the changes between two images.
Furthermore, the Dynamic Change-Aware Attention adjust the size
of local windows at different stages, facilitating a comprehensive
and precise capture of variations across various scales. This early-
stage deep feature interaction enables the encoder to optimize the
recognition of features within change regions, thereby enhancing
overall change detection performance.

To enhance the Multi-scale Change-Aware Transformer’s ca-
pacity to detect changes across various scales, we integrate the
Multis-cale Change-Enhanced Aggregator (MCEA). MCEA con-
sists of two complementary sub-modules: the Change-Enhanced
Module (CEM) and the Multi-scale Change Aggregator (MCA). The
Change-Enhanced Module employs a local attention to empha-
size emphasize regions within the image that exhibit significant
changes. Through Depthwise Convolution, it refines the local de-
tails of features. Subsequently, the Multi-scale Change Aggregator
integrates the multi-scale features output by the Change-Enhanced
Module across different levels. Through a hierarchical processing
strategy, Multi-scale Change Aggregator preserves local details
and promotes the integration of high-level semantic information,
enhancing the model’s overall understanding of complex change.

To overcome the limitation of existing change detection datasets,
which focus on changes with regular shapes and limited scales,
we introduce the Mining Area Change Detection (MACD) dataset.
MACD covers a broader range of multi-scale change areas, includ-
ing irregular shapes and intricate boundary conditions, aligning
closely with the complexities encountered in real-world monitor-
ing scenarios. The Mining Area Change Detection dataset not only
enriches the benchmark data for change detection but also provides
a more challenging test platform, particularly in improving the
detection accuracy of irregular changes.

Extensive experiments demonstrate that the Multi-scale Change-
Aware Transformer has achieved state-of-the-art performance, par-
ticularly in handling complex and multi-scale change scenarios.
Our contributions can be summarized as follows:

• We introduceMulti-scale Change-Aware Transformer, a novel
framework leveraging Dynamic Change-Aware Attention
for efficient and parallel feature extraction, with a focus on
capturing features within change regions.

• We develop Multi-scale Change-Enhanced Aggregator, a
component augmenting themodel’s ability to perceive chang-
es at multiple scales by aggregating and refining features.

• We construct the Mining Area Change Detection dataset,
which introduces complex and varied change area morpholo-
gies, providing a rich and challenging benchmark for the
field of change detection.

2 RELATEDWORK
Change Detection. Currently, the majority of change detection
algorithms [10, 20, 27, 29] adopt a dual-branch architecture. This
architecture involves independent feature extraction from dual-
temporal images, fusion of these features, and prediction of change
maps. Early methods [6, 16] utilized fully convolutional neural net-
works for feature extraction, followed by simple operations like
addition or subtraction for feature fusion. In modern change detec-
tion frameworks, mechanisms such as spatial and channel attention
are incorporated to enhance performance. For example, DASNet [5]
combines these attention mechanisms, while DTCDSCN [17] lever-
ages dual attention modules to exploit feature interdependencies.
However, dual-branch approaches have limitations in fully inte-
grating complementary information between dual-temporal images
and often involve complex models with numerous parameters. Al-
though single-stream structures simplifymodel design and facilitate
interaction between image pairs, they still fall short in capturing
local details and adapting to multi-scale changes, especially in com-
plex change scenarios. This study builds upon the single-stream
structure by enabling interaction between image pairs, thereby en-
hancing the model’s flexibility and adaptability in complex scenes.
Transformer-Based Methods for Change Detection. Trans-
formers, renowned for their robustness and high performance,
are increasingly utilized in various change detection methods. For
instance, MSTDSNet-CD [22] and SwinSUNet [26] employ dual-
stream networks for feature extraction and multi-scale aggregation,
albeit with high computational demands. Conversely, BIT [3] pro-
poses a lightweight model featuring a single-stream transformer
and two decoders for efficient spatiotemporal context modeling.
ChangeFormer [1] combines hierarchical transformer encoders and
multi-layer perceptron decoders in a Siamese network structure.
Despite their commendable performance, these methods predomi-
nantly rely on dual-stream architectures. In this paper, we introduce
a novel perspective by embracing a single-stream transformer.
Datasets for Change Detection. The mainstream change de-
tection datasets are summarized in Tab. 1. These datasets can be
roughly categorized into three types: the first category includes
datasets focusing on building changes, such as LEVIR [4],WHU [12],
and ABCD [11], as well as those involving land cover changes like
ZY3 [28] and OSCD [7]. The second category comprises datasets
containing multiple types of change targets, such as CCD [14] and
SYSU [21]. However, these datasets often only contain small-scale
and regularly shaped change areas, posing significant obstacles
when dealing with complex change regions in practical applications.
To overcome these limitations, we propose a new dataset-Mining
Area Change Detection. This dataset encompasses diverse and mor-
phologically complex change regions, presenting new challenges
and higher difficulty levels for change detection tasks.

3 METHOD
Given a pair of input dual-temporal images 𝑰1 and 𝑰2, each with a
shape of H ×W × 3,our goal is to learn a mapping function 𝚽(·).
The 𝚽(·) takes 𝑰1 and 𝑰2 as inputs and predicts the change map
𝑷 ∈ RH×W. Mathematically, this process can be represented as:

𝑷 = 𝚽(𝑰1, 𝑰2) . (1)
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Change-aware Encoder

Image 1

Image 2

PredictionMCEA

Decoder

FFN

Head Group 1

Attention Head

Attention Head

Head Group 2

Attention Head

Attention Head

Head Group 3

Attention Head

Attention Head

CEM

CEM

Change-Aware Encoder

Decoder

(c) Multi-scale Change-Enhanced Aggregator

FC

DWConvDWConv

DWConv

Tanh

DWConvDWConv

DWConv

(i) Multi-scale Change Aggregator (MCA)

Conv Conv Conv Conv

CEM

(ii)  Change-Enhanced Module (CEM)

(b) Dynamic Change-Aware Attention 

(a) Multi-scale Change-Aware Transformer 

Key/Value  Point 

Receptive Field

Query Point 

Intermediate Multiscale Feature

Feature of  Encoder

Aggregated Feature

DWConv Depth-wise Convolution

Figure 2: (a) The core components of the Multi-scale Change-Aware Transformer are Dynamic Change-Aware Attention and
Multi-scale Change-Enhanced Aggregator. (b) Details of Dynamic Change-Aware Attention. Local self-attention and cross-
temporal attention are allocated to different head groups, enabling parallel feature extraction and relationship modeling. (c)
Multi-scale Change-Enhanced Aggregator integrates features across scales for improved change recognition.

To realize the mapping function𝚽(·), we propose the Multi-scale
Change-Aware Transformer (MACT). Firstly, the Change-Aware En-
coder of the MACT employs the Dynamic Change-Aware Attention
to extract key features from the dual-temporal images and dynam-
ically compare changes between image pairs. Subsequently, the
extracted features are passed to the Change-Enhanced Multiscale
Aggregator, which enhances sensitivity to change areas through ag-
gregation strategies. Finally, a simple decoder transforms features
into the final change map 𝑷 , providing a detailed representation of
the changes between input image pair.

3.1 Change-Aware Encoder
The Change-Aware Encoder is designed for feature extraction and
relationship modeling of image pairs, ensuring the preservation of
information about the change areas from early stages of processing.

The encoder is stacked with Dynamic Change-Aware Attention
(DCAA) blocks and combines patch embedding or patch merging
layers, as shown in Fig. 2(a). It consists of four stages, with each
stage containing N𝑖 attention blocks, where 𝑖 ranges from {1, 2, 3, 4}.
The images 𝑰1 and 𝑰2 first undergo a patch embedding layer to
reduce spatial resolution and expand channel depth. Subsequently,
they are processed by Dynamic Change-Aware Attention blocks
across the four stages, yielding a series of multi-scale features 𝒀𝑖 .

TheDynamic Change-AwareAttention block, depicted in Fig. 2(b),
serves as the cornerstone of the Change-Aware Encoder, which
utilizes local self-attention to extract features and employs cross-
temporal attention to contrast differences between images, thereby

facilitating change perception. The Dynamic Change-Aware Atten-
tion initiates by extracting attention elements from input images
through local expansion operations. It then employs a multi-head
attention to process these elements. Furthermore, Dynamic Change-
Aware Attention strategically applies windows of varying sizes
across different stages, facilitating a nuanced capture of changes at
multiple scales.
Gathering Attention Elements. Formally, given dual-temporal
image features 𝑿𝑖 and 𝒁𝑖 with dimensions H𝑖 ×W𝑖 ×C𝑖 . H𝑖 andW𝑖

represent the feature height and width at the 𝑖-th stage, calculated
as H𝑖 =

H
2𝑖+1 andW𝑖 =

W
2𝑖+1 . C𝑖 is number of channels for features.

Next, the Depth-wise Separable Convolution (DWConv) is used to
project features, generating queries (𝑸), keys (𝑲 ) and values (𝑽 ):

𝑸x,𝑲x, 𝑽x = 𝑿𝑖𝑾
Q𝑥

𝑖
,𝑿𝑖𝑾

K𝑥

𝑖
,𝑿𝑖𝑾

V𝑥

𝑖
, (2)

𝑸z,𝑲z, 𝑽z = 𝒁𝑖𝑾
Q𝑧

𝑖
,𝒁𝑖𝑾

K𝑧

𝑖
,𝒁𝑖𝑾

V𝑧

𝑖
, (3)

here,𝑾Q𝑥

𝑖
,𝑾K𝑥

𝑖
,𝑾V𝑥

𝑖
,𝑾Q𝑧

𝑖
,𝑾K𝑧

𝑖
, and𝑾V𝑧

𝑖
are the weight param-

eters of the convolution layer. To simplify the expression, we omit
the subscript 𝑖 for the related representations of 𝑸 , 𝑲 and 𝑽 .
Local Expansion Operation. To integrate local information and
enhance sensitivity to detail changes, we perform local expansion
operations on the keys 𝑲x and 𝑲z. This operation effectively ex-
pands the local receptive field by considering neighborhood infor-
mation around each point. Specifically, we use the Unfold function
to extract L𝑖 × L𝑖 regions around the keys on the feature maps,
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resulting in expanded keys 𝑲
′
x and 𝑲

′
z . This process can be mathe-

matically described as:

𝑲
′
x = Unfold(𝑲x, L𝑖 ), (4)

𝑲
′
z = Unfold(𝑲z, L𝑖 ). (5)

The local window size L𝑖 is adjusted according to the resolution of
the feature maps at the current stage. In the early stages, a smaller
window is employed to capture finer local changes, while in later
stages, the window size is increased to cover a broader context,
thereby detecting larger-scale changes. This dynamic window ad-
justment strategy enables the model to effectively capture changes
at multiple scales, while optimizing the balance between computa-
tional efficiency and detection accuracy.
Dynamic Difference Values. In the cross-temporal attention, we
devise a difference iteration process tailored to bolster the model’s
capability to recognize change regions. This process computes the
difference between 𝑽x and 𝑽z. The feature difference is computed
through an absolute value operation, as depicted by the equation:

𝑽c = |𝑽x − 𝑽z | . (6)

Subsequently, the 𝑽c is utilized as the value component in the cross-
temporal attention mechanism, enabling the model to focus on
change regions. Thus far, we obtain the representations for queries
and keys as 𝑸x,𝑲

′
x,𝑲

′
z , and for values as 𝑽x, 𝑽z, 𝑽c, with the follow-

ing dimensions: 𝑸x,𝑸z ∈ RH𝑖×W𝑖×C𝑖×1, 𝑲
′
x,𝑲

′
z ∈ RH𝑖×W𝑖×C𝑖×L𝑖

and 𝑽x, 𝑽z, 𝑽c ∈ RH𝑖×W𝑖×C𝑖×1.
Calculating Change-Aware Attention. As illustrated in Fig. 2(b),
we partition the attention heads into three groups, with two groups
dedicated to extracting features from the images at two time points
using local self-attention mechanisms, while the third group em-
ploys cross-temporal attention mechanisms specifically focused on
the features of change areas. Specifically, we segment the channels
of the query features 𝑸x into 𝑸xs and 𝑸xc, and perform the same
operation for the key features 𝑲x to obtain 𝑲zs and 𝑲zc. Within
each attention head group, the multi-head attention mechanism is
utilized to compute attention features as follows:

�̃�x = MHA(𝑸xs,𝑲
′
x, 𝑽x), (7)

�̃�z = MHA(𝑸z,𝑲zs, 𝑽z), (8)

�̃�c = MHA(𝑸xc,𝑲zc, 𝑽c), (9)

whereMHA(·) denotes the multi-head attention function. Subse-
quently, we concatenate the outputs of all head groups along the
feature dimension to obtain �̃� , which is then processed through a
multi-layer perceptron (MLP) to generate the final features 𝒀 :

�̃�𝑖 = CAT(�̃�x, �̃�z, �̃�c), (10)

𝒀𝑖 = MLP(LN(𝒀𝑖 )) + 𝒀𝑖 , (11)

where LN(·) represents the layer normalization function to acceler-
ate model convergence. By employing three groups of attention, the
model accomplishes both local self-attention and cross-temporal
attention, facilitating feature extraction within the images while
also focusing on features relevant to change areas, thus minimizing
the loss of change information during the feature extraction stage.

Im
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Figure 3: Example samples from the Mining Area Change
Detection dataset. The change areas exhibit a wide range of
scales and intricate and variable shapes.

3.2 Multi-scale Change-Enhanced Aggregator
We design a Multi-scale Change-Enhanced Aggregator (MCEA) to
improve the network’s feature representation of change areas. The
Change-Enhanced Module (CEM) enhances local change features.
Subsequently, the Multi-scale Change Aggregator (MCA) integrates
the multi-scale features output by the CEM across different levels.
Change-Enhanced Module. To enhance the representation of
local features in change areas, we introduce the Change-Enhanced
Module, which combines the mechanisms of local attention and
Depth-wise Separable Convolution to strengthen feature represen-
tation and highlight change areas.

Specifically, the output features 𝒀𝑖 at each stage are decomposed
into two parts along the feature dimension: 𝑿

′
and 𝒁

′
. 𝑿

′
un-

dergoes a linear mapping 𝒇m followed by two DWConv layers to
aggregate local information and generate 𝑸m and 𝑲m, while 𝑽m is
directly obtained from 𝑿

′
using another DWConv layer:

𝑸m = DWConv(𝒇m𝑿
′
), (12)

𝑲m = DWConv(𝒇m𝑿
′
), (13)

𝑽m = DWConv(𝑿
′
), (14)

where 𝒇m is implemented by a fully connected layer. Next, we com-
pute the Hadamard product of 𝑸m and 𝑲m, followed by aggregation
of information through a DWConv layer to generate context-aware
weights 𝑨m:

𝑨m = 𝛿 (DWConv(𝑸m ⊙ 𝑲m)) . (15)

Here, 𝛿 (·) is the activation function tanh introducing nonlinearity
to capture more complex feature relationships. Then, these weights
are combined with 𝑽m and passed through a softmax function 𝜎 (·)
to generate the final enhanced features 𝑴

′
, which are then fused

with the input feature 𝒁
′
:

𝑴
′
= 𝜎 ( 𝑨m√

𝑑m
)𝑽m + 𝒁

′
. (16)

Through this combination, the Change-Enhanced Module ef-
fectively emphasizes local features related to changes, reducing
interference from non-change areas on the decoder, thereby im-
proving the overall performance of change detection.
Multi-scale Change Aggregator. To fully exploit the potential of
multi-scale features and capture complementary information across
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Figure 4: Statistics of the Mining Area Change Detection dataset. (a) Pixel ratio distribution in train and test data. (b) Percentage
of change area for four sizes. (c) Comparison of change maps for the datasets. (d) Distribution of perimeter-area ratios to
characterize the complexity of the area of change.

different levels, we propose a Multi-scale Change Aggregator. This
aggregator operates in a bottom-up manner based on the enhanced
features 𝑴

′
generated by the Change-Enhanced Module.

Specifically, the fused features𝑴
′
𝑖
from lower levels are not only

forwarded to the corresponding decoder levels but also propagated
upwards to fuse with shallower features 𝑴𝑖−1. This process is
mathematically described by the function:

𝑴
′
𝑖−1 = 𝒇MCA (𝑴

′
𝑖−1 +𝑴𝑖 ), (17)

where 𝑖 denotes the stage number, and 𝒇MCA (·) is a function ob-
tained through upsampling operations and a 3 × 3 convolutional
kernel with learnable parameters. The upsampling operation ad-
justs the spatial resolution of features to match those of shallower
features, while the convolutional kernel captures and integrates
feature information from different levels.

Through Multi-scale Change Aggregator, the model effectively
integrates features from different levels, enhancing its capability to
recognize changes across various scales.

3.3 Loss Function
We employ the loss function set L to guide the model training. The
overall loss is defined as follows:

L = Lp +
N∑︁
𝑗=1

𝛼 𝑗 (LWBCE
𝑗 + LSSIM

𝑗 + LSIoU
𝑗 ). (18)

Here, Lp is cross entropy loss that evaluates the accuracy of the
final change map. In our model, indexed by 𝑗 over 𝑁 = 4 stages, the
loss function integrates Weighted Binary Cross-Entropy (WBCE)
for class balance, Structural Similarity Index (SSIM) for structural
coherence, and Structural Intersection over Union (SIoU) for bound-
ary precision, optimized by stage-specific weights 𝛼 𝑗 .

4 MINING AREA CHANGE DETECTION
DATASET

We introduce the Mining Area Change Detection (MACD) dataset,
which is the first compilation specifically tailored for change de-
tection in mining areas. Distinguished from urban construction
and land cover monitoring datasets in Tab. 1, the MACD dataset
encompasses a broad range of scale variations and intricate change

Table 1: Summary of popular change detection datasets.

Name Object Scale Variation Complex Shape

WHU [12] Building ✓ ✗

LEVIR [4] Buildings ✗ ✗

ABCD [11] Buildings ✗ ✗

ZY3 [28] Land Cover ✗ ✓

CCD [14] Complex Scenarios ✗ ✗

SYSU [21] Complex Scenarios ✓ ✗

MACD Mining Area ✓ ✓

patterns, which is designed to enhance the performance of change
detection algorithms in addressing a diversity of real-world issues.

4.1 Construction of Dataset
Data Collection. Our dataset is collected from various open-pit
mining areas in the Chongqing region of China. These images are
sourced from four Chinese satellites: Gaofen-1, Gaofen-2, Gaofen-
6, and Ziyuan-3, with resolutions ranging from 2m to 0.8m. The
imagery is acquired over a period from 2018 to August 2023, en-
compassing a variety of weather conditions, random variations in
solar elevation angles, seasonal changes, differences in illumina-
tion, and sensor variations. These broad temporal scope and diverse
conditions ensure the diversity and complexity of the dataset.
Data Annotation. The dataset annotation is completed by experts
with extensive experience in remote sensing image interpretation
and profound understanding of mining configurations. The an-
notation process involved coarse localization, image registration,
cropping, fine-grained annotation and generation of change maps.
Detailed descriptions can be found in Supplementary Materials.

4.2 Analysis of Dataset
Our dataset comprises a total of 2133 pairs of temporal images,
partitioned into a training set with 1801 image pairs and a test
set with 332 image pairs, all with a resolution of 128 × 128 pixels.
We conduct a detailed statistical analysis to highlight the dataset’s
unique characteristics compared to other datasets.
Scale Variation. Fig. 4(a) illustrates the distribution of change area
pixel ratios in both the training and testing sets of our dataset. The
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Table 2: Quantitative Comparison on Mining Area Change
Detection dataset. All scores are described in percentages (%).

Methods F1 IoU Pre. Rec. OA FLOPs #Param.

FC-EF [6] 62.25 45.19 71.17 55.32 82.66 0.89G 1.35M
Siam-Conc [6] 47.21 30.90 42.40 53.26 84.80 1.33G 1.55M
Siam-Diff [16] 59.03 41.87 63.16 55.40 80.96 1.18G 1.35M
IFNet [19] 63.28 46.28 67.04 59.92 84.47 27.35G 50.71M
DASNet [5] 50.04 33.37 46.87 53.68 84.80 6.56G 11.33M
DTCDSCN [17] 62.16 45.09 68.08 57.18 84.73 41.07G 20.44M
SUNet [9] 62.82 45.80 74.30 54.42 85.40 8.42G 47.62M
BIT [3] 65.39 48.57 71.37 60.33 85.48 3.31G 31.26M
ChangeFormer[1] 64.92 48.06 68.92 61.36 83.18 7.82G 43.99M
SARAS (V2) [2] 66.93 50.30 72.25 62.34 83.46 66.64G 102.76M
USSFC-Net [15] 65.34 48.53 71.62 60.08 83.18 1.22G 1.52M
MACT (Ours) 67.22 50.63 70.68 64.09 85.11 10.64G 34.9M

statistical graph reveals that the dataset significantly showcases
a broad range of scale variations, covering change area pixel ra-
tios from 10% to over 80%. Changes are categorized into (less than
5%), medium (5% to 15%), and large (greater than 15%) areas rel-
ative to the image size, as illustrated in Fig. 4(b). The LEVIR [4]
and WHU [12] datasets predominantly contain small change areas,
while large changes are relatively rare. Our dataset, on the other
hand, exhibits a balanced distribution across small, medium, and
large change areas, a design intended to test the performance of
change detection algorithms on different scales.
Irregular Morphology. We use the ratio of the perimeter to area
of change regions as a complexity metric, where a higher value
indicates greater irregularity. As shown in Fig. 4(c), the distribution
of change region complexity across various datasets reveals that our
mining area dataset contains regions with higher morphological
complexity compared to urban structures or land cover datasets.
Similarly, Fig. 4(d) confirms themorphological complexity ofmining
area changes, characterized by irregular features such as fractures,
overlaps, and voids. Therefore, the dataset requires algorithms to
accurately identify complex boundaries and morphologies.

5 EXPERIMENTS
5.1 Implementation Details
We conduct experiments on our MACD, LEVIR [4] and WHU [12]
dataset. The model is trained with the Adam optimizer [13] and
exponential learning rate decay. The initial learning rate is set to
0.004, and the training process consists of 100 epochs with a batch
size of 64. The comparative methods, evaluation metrics and more
implementation details are detailed in the Supplementary Materials.

5.2 Experiments on MACD Dataset
Quantitative Results. Upon reviewing the data in Tab. 2, while
SUNet achieves the highest accuracy at 74.30%, it exhibits variance
in other critical metrics, indicating a possible inclination towards
false positives. Comparatively, SARAS, with its scale sensitivity,
delivers a more consistent and superior performance across the
board. Our proposed method not only outshines SARAS but also

(a)

(b)

(c)

(d)

USSFCNetChangeFormerSARAS Image 2Image 1 Ground TruthMCAT (Ours)

Figure 5: Comparison of state-of-the-art change detection
methods on MACD dataset. Predicted results are color-coded:
white for true positives, black for true negatives, green for
false positives, and red for false negatives.

Image1 Image2 BIT ChangeFormer MCAT (Ours) Ground Truth

(a)

(b)

USSFCNet

(c)

(d)

(a)

Figure 6: Comparison results on LEVIR (examples in (a) and
(b)) and WHU (examples in (c) and (d)) datasets.

significantly improves upon it, particularly with a 1.75% increase in
recall—a testament to the effectiveness of our early feature interac-
tion approach for pinpointing changes. Moreover, Our Transformer
demonstrates a 0.29% enhancement in F1 score and a 0.33% uptick in
IoU, underscoring its robustness and precision in change detection
tasks. These quantitative leaps highlight our method’s advanced ca-
pability in handling the nuanced complexities of change detection.
EfficiencyAnalysis. FromTab. 2,Multi-scale Change-Aware Trans-
former,with 10.64M parameters and 34.94G FLOPS, strikes an ef-
fective balance between performance and efficiency. In contrast,
models like FC-EF, FC-Siam-conc, FC-Siam-diff, and DASNet, de-
spite their low parameter counts, underperform in terms of F1 score
and IoU metrics. MACT outperforms SARAS, which has 102.7M
parameters and 66.64G FLOPS, by reducing the parameter count
and computational cost by 90.1% and 47.9%, respectively, without
compromising performance. Although USSFC-Net is lightweight, it
shows a notable performance deficit when handling complex data.
This analysis underscores Multi-scale Change-Aware Transformer’s
superior performance and efficiency, outpacing existing models in
both parameter count and computational cost.
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Table 3: Comparison results for the LEVIR [4] and WHU [12] datasets. All scores are described in percentages (%).

Methods LEVIR WHU
F1 IoU Pre. Rec. OA F1 IoU Pre. Rec. OA

FC-EF [6] 81.05 68.14 84.88 77.55 97.99 72.82 57.26 77.24 68.88 97.82
FC-Siam-Diff [16] 87.87 78.36 92.39 83.77 98.83 91.15 84.52 94.44 88.08 98.49
FC-Siam-Conc [6] 88.44 79.27 92.12 85.04 98.88 92.19 86.26 93.91 90.54 98.64
DTCDSCN [17] 88.09 78.71 90.14 86.12 98.83 93.04 87.34 96.81 89.55 98.81
SUNet [9] 92.37 85.83 93.40 91.37 98.68 90.33 83.13 92.39 88.36 98.28
BIT [3] 92.54 86.12 93.75 91.36 98.62 93.61 87.13 97.46 90.06 99.08
DASNet [5] 93.00 86.92 93.91 92.11 98.27 90.10 83.13 91.89 88.37 98.28
ChangeFormer [1] 91.45 84.25 94.39 88.69 98.38 91.32 85.26 93.39 89.34 98.54
SARAS (V2) [2] 92.59 86.20 93.76 91.45 98.30 89.90 86.15 91.43 88.42 98.08
USSFC-Net [15] 93.63 88.02 95.13 92.17 98.93 93.13 87.17 94.38 91.91 98.62
MACT (Ours) 93.76 88.25 95.19 92.40 98.84 93.73 88.21 95.36 92.15 98.77

Before CEM After CEMImage 1 Image 2

Figure 7: Comparison of feature maps before and after
Change-Enhanced Module.

Qualitative Results. From Fig. 5, it’s evident that change areas
in our dataset exhibit complex and irregular shapes. Overall, our
method produces more satisfactory visual results, effectively han-
dling both large-scale complete changes and intricate structures.
In Fig. 5(a), compared to other methods, we mitigate the impact
of non-mining areas in the top left corner, reducing false posi-
tive predictions. Our approach achieves this by utilizing Dynamic
Change-Aware Attention during the encoding stage to extract rel-
evant change area features, as depicted in Fig. 5(c). Unlike most
comparative methods struggling to capture complete large-scale
changes due to insufficient global and local information, our method
maintains internal compactness by integrating multiscale features
at various stages, ensuring the integrity of detection areas.

5.3 Experiments on LEVIR and WHU Dataset.
Quantitative Results. Tab. 3 presents a comparison of change
detection methods on the LEVIR [4] and WHU [12] datasets. Our
approach achieves the highest F1 and IoU, with 93.76%, 88.25%,
and 93.73%, 88.21% respectively. Among the comparative methods,
BIT, SARAS, ChangeFormer and USSFCNet also demonstrate good
performance, with USSFCNet and SARAS following closely with F1
of 93.13% and 89.90%. Our method significantly improves detection

(a) Initial Feature Distribution (b)Result with Global Attention

(c) Result after Incorporating DCAA (d) Result after Incorporating MCEA

Figure 8: Visualization of features enhanced by different
modules via t-SNE.

Table 4: Validation of single-stream framework strategy.
DMCA is a reimplementation of the dual-stream framework
based on Multi-scale Change-Aware Transformer (MACT).

Models F1 IoU Pre. FLOPs (G) #Param. (M)

MACT 93.75 88.76 95.19 10.64 34.94
DMCA 92.67 87.64 93.34 16.83 38.35

accuracy by specifically targeting feature extraction in change areas,
particularly in identifying complex and irregular changes.
Qualitative Results. Sample instances in Fig. 6 illustrate our
method’s excellent performance in detecting complex, large-area
and small-area changes. In dense urban areas (as shown in Fig. 6(a)
and (b)), our method accurately identifies changes and reduces
noise, outperforming other methods especially in edge detection of
buildings. This advantage stems from the multi-scale strategy that
integrates features at various levels and preserves edge details. In
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Table 5: Ablations on the Dynamic Change-Aware Attention.

Models F1 IoU Pre. FLOPs (G) #Param. (M)

MACT (Ours) 93.75 88.76 95.19 10.64 34.94
GA-Transformer 93.21 88.67 95.16 11.72 35.02
SA-Transformer 92.57 88.48 95.13 10.48 32.71
CA-Transformer 93.51 88.37 95.16 10.72 34.25

Table 6: Multi-scale Change-Enhanced Aggregator Ablation
Study. Baseline indicates the absence of the aggregator, CEM
denotes the Change-Enhanced Module, and MCA stands for
Multi-scale Change Aggregator.

Baseline CEM MCA F1 IoU Rec.

✓ ✗ ✗ 92.53 86.46 90.55
✓ ✓ ✗ 92.96 87.51 91.31
✓ ✗ ✓ 93.14 87.80 91.61
✓ ✓ ✓ 93.75 88.76 92.40

terms of integrity preservation (as shown in Fig. 6(c)), our method
effectively handles change areas of different scales, reducing predic-
tion errors. When facing color-similar non-building areas (as shown
in Fig. 6(d)), our method effectively excludes irrelevant information
by interacting with change areas, enhancing detection accuracy.
Visualization of Intermediate Features. Fig. 7 demonstrates the
substantial enhancement in feature extraction brought about by the
Change-Enhanced Module. Prior to processing with this module,
the feature maps show a vague delineation between change areas
and background. In contrast, post-processing with the Change-
Enhanced Module significantly sharpens the focus on these change
areas, effectively distinguishing them from unchanged regions.

Additionally, we perform a two-dimensional projection of test
set data points using t-distributed stochastic neighbor embedding
(t-SNE). As shown in Fig. 8(a), the initial features display a mixed
state of changed and unchanged pixels. The method using direct
global attention (Fig. 8(b)) fails to effectively differentiate between
the two types of pixels. In contrast, our Dynamic Change-Aware
Attention (Fig. 8(c)) causes samples of the same class to cluster
more tightly together. Finally, Fig. 8(d) indicates that the Multi-scale
Change-Enhanced Aggregator successfully strengthens inter-class
differences, eliminating the interference of irrelevant information.

In summary, our method consistently demonstrates strong per-
formance. The Dynamic Change-Aware Attention and Multi-scale
Change-Enhanced Aggregator encourage the model to effectively
leverage and hierarchically aggregate local change features.

5.4 Ablation Study
To thoroughly validate the advantages ofMulti-scale Change-Aware
Transformer, a series of ablation studies are conducted. For details
on model parameter selection, refer to the Supplementary Materials.
Effect of Single-stream Pipeline. We conduct experiments with
a comparative analysis of frameworks to validate the superiority
of the single-stream architecture. By streamlining the backbone
and head structures, we juxtapose our approach against a dual-
stream counterpart. Specifically, we develop a pyramidal structure,

Image 1 Image 2 MCAT (Ours) Ground TruthNo-MCEA

Figure 9: Examples of results with and without Multiscal Ag-
gregaator. The No-MCEA referring to our approach excludes
the Multi-scale Change-Enhanced Aggregator.

termed DMCA, which executes local attention operations at each
stage and amalgamates the outputs from two encoders, all the
while maintaining the integrity of the decoder structure. Tab. 4
delineates that while our revampe dual-stream model surpasses
the performance of most advanced methods, it fails to match the
finesse of our framework. This disparity underscores the efficacy of
the single-stream architecture, whose integrated feature extraction
facilitates seamless early-stage interaction between dual inputs.
Analysis of Dynamic Change-Aware Attention. To evaluate the
effectiveness of the Dynamic Change-Aware Attention mechanism,
we replace Dynamic Change-Aware Attention with other attention
mechanisms, including Global Attention (GA), Self-Attention (SA),
and Cross-Attention (CA). Data in Tab. 5 indicate that Dynamic
Change-Aware Attention achieves the best overall performance
under similar parameters and computational costs.
Effect of Multi-scale Change-Enhanced Aggregator. Tab. 6
shows that the introduction of the Change-Enhanced Module in-
creased the F1 score and IoU score by 0.43% and 1.05% respectively.
The model including the Multi-scale Change Aggregator shows sig-
nificant improvements across all metrics compared to the baseline,
especially with an increase of 0.61% in F1 and 1.34% in IoU. Fig. 9
also clearly highlight the significant performance improvements
brought by Multi-scale Change Aggregator’s multi-scale fusion
strategy. The Multi-scale Change-Enhanced Aggregator enables
the network to flexibly respond to changes in areas of various scales.

6 CONCLUSION
We introduce an innovative framework known as the Multiscale
Change-Aware Transformer, which seamlessly integrates feature
extraction and relationship modeling through a Dynamic Change-
Aware Attention module, enhancing the feature extraction and
interaction process between input image pairs. Furthermore, the
Change-Enhanced Multiscale Aggregator targets the mining of
multiscale features from change regions, significantly boosting the
model’s detection capabilities across various scales of change. In
addition, we develop the Mining Area Change Detection dataset
that encompasses complex morphologies and large-scale changes,
effectively addressing the limitations of existing datasets that pre-
dominantly focus on changeswith regular shapes. Our experimental
results substantiate that our proposed method achieves state-of-
the-art performance levels in change detection tasks, particularly
excelling in the handling of complex and large-scale changes.
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