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1 ANNOTATION OF MACD DATASET

Our remote sensing change detection dataset undergoes a meticu-
lous annotation process, executed by a team of seasoned experts
with in-depth knowledge of remote sensing interpretation and the
complexities of mining area topography. The multi-tiered annota-
tion strategy ensures dataset accuracy and reliability for change
detection analysis:

Coarse Localization of Mining Areas: In the initial phase, our
annotation process commences with an analysis of large-scale im-
agery using geographical coordinates to identify the approximate
boundaries of mining areas. To ensure the completeness of the
region under study, we establish a buffer zone extending 200 to 300
pixels from the epicenter of the mining area, thereby creating a
preliminary map for coarse localization.

Image Registration and Cropping: Following the coarse local-
ization phase, we meticulously register images of the same mining
area captured at different times by various sensors. This registration
process is essential as it ensures the comparability of image data
acquired at different time points. Once registration is complete, we
standardize the images by resizing them to a uniform dimension of
128 x 128 pixels. This standardization facilitates a consistent and
in-depth annotation process.

Fine Annotation: In the critical phase of detailed data annotation,
our team of experts employed ArcGIS 10.2 software to conduct
comprehensive pixel-level annotation of mining areas across two
distinct time frames. This meticulous process involved the precise
delineation of boundaries and the accurate identification of internal
features within each sample, thereby ensuring the integrity and
quality of the annotated data for our dataset. As a result of this
precise work, we have generated individual mask maps for the dual
temporal imagery.

Generation of Change Maps: By subtracting the mask maps
derived from dual temporal imagery, we generated change maps
that accurately pinpoint locations where alterations have occurred
within the mining areas. This process is complemented by a ro-
bust annotation protocol and stringent quality assurance measures,
including cross-validation among annotators and expert panel re-
views. These measures collectively ensure the exceptional accuracy
and robustness of our dataset, making it highly suitable for refining
and evaluating sophisticated change detection models.

2 EXPERIMENTS

In this section, we begin by presenting an overview of the datasets
involved, along with the pertinent experimental parameters, com-
parative methods, and evaluation metrics. Subsequently, we aug-
ment the discussion with additional visual examples from each
dataset, providing a more comprehensive understanding of the
data characteristics. Furthermore, we conduct a thorough statistical
analysis of the performance results for all methods across each
dataset.

Experimental Datasets. Our experiments are conducted on three
datasets: MACD, LEVIR, and WHU, each providing unique chal-
lenges for change detection algorithms.

MACD Dataset: Our MACD dataset consists of 2133 image
pairs at a resolution of 128 x 128 pixels. The dataset is split into
1801 pairs for training and 332 for testing. Spanning from 2018 to
August 2023, data collection has been conducted multiple times,
capturing a diverse range of solar elevation angles, seasons, and
weather conditions. A key feature of MACD is the diverse scale
and complexity of change areas, characterized by intricate shapes
and curved edges, which distinguishes it from datasets focused on
urban structures.

LEVIR Dataset: The LEVIR dataset [3] is an optical dataset
widely used for remote sensing change detection. It includes 637
high-resolution images of 1024 X 1024 pixels, covering various re-
gions in Texas with significant landscape and structural changes.
The dataset’s dual-temporal images record substantial alterations,
and the variations in acquisition times, seasons, and lighting condi-
tions present challenges for neural network performance. We use a
default sub-image size of 256 X 256 pixels, and the data is randomly
partitioned into training, validation, and test sets following a ratio
of 7 : 1: 2, yielding set sizes of 7120, 1024, and 2048, respectively.

WHU Dataset: The WHU dataset [8] contains detailed building
information with a resolution of 0.075m/pixel and an original size
of 32507 X 15354 pixels. We cropped the images non-overlappingly
to 256 X 256 pixels. Given the relatively small size of the WHU
dataset, we partitioned it into training, validation, and test sets
with a ratio of 8 : 1 : 1, resulting in set sizes of 6096, 762, and 762,
respectively.

In summary, the MACD dataset introduces a high level of com-
plexity with its diverse and intricately shaped change areas, re-
flecting the dynamic nature of mining regions and presenting a
significant challenge for change detection algorithms. The LEVIR
dataset, with its high-resolution imagery capturing various urban
landscapes, emphasizes the need for algorithms to handle signif-
icant alterations and environmental variations. Lastly, the WHU
dataset, with its fine-grained building information, tests the algo-
rithms’ ability to detect changes in dense urban structures. Together,
these datasets provide a comprehensive evaluation platform, en-
abling the assessment of algorithmic performance across a range
of scenarios and complexities, and thus driving the advancement
of change detection technologies.

Implemented Details. We stack (3, 6, 6, 3) Dynamic Change-Aware
Attention modules in each of the four stages of our One-stream
Change Detection Transformer. The local window size L; of Dy-
namic Change-Aware Attention for each stage is set to (3,3,5,5).
The C; is set to (64, 128, 250, 320).

Pseudo-Code The inference detail of our Multi-scale Change-
Aware Transformer (MACT) for change detection is shown in Al-
gorithm 1.
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Figure 1: Comparison of our dataset with WHU and LEVIR datasets reveals that the change regions in WHU and LEVIR are
predominantly regular in shape, whereas our MACD dataset exhibits a greater diversity in scale and complexity of changes.

Algorithm 1: MCAT for change detection

Comparinson Methods. We have conducted a comprehensive

Input: Two temporal remote sensing images (I, I, )
Output: Chaneg map p

: Step1: Chang-aware Encoder
for stage 7 € {1,2,3,4} do
Y; =Dynamic Change-aware Attention (Y;_1);

end

for layer i € {1,2,3,4}do
M; = Change-enhanced Module (Y;);

1

2

3

4:

5: Step2: Change-enhanced Multiscal Aggregator

6

7

8 M; = Multi-scale Change Aggregator (M;_, + M;);
9

: end
10:Step3: Change Map Generation
11: P = Decoder (M;)i € {1,2,3,4};
12: Reutrn: p

comparison of our model against several state-of-the-art approaches
in remote sensing change detection, encompassing FC-EF [5], FC-
Siam-Diff [10], FC-Siam-Conc [5], IFNet [12], DASNet [4], DTCD-
SCN [11], SNUNet [6], BIT [2], SARAS [1], ChangeFormer [7], and
USSFC-Net [9]. Next, we briefly describe the main ideas of these
ten methods.

FC-EF [5]: the network architecture of this method is based
on UNet, using an early additive fusion strategy. Raw diachronic
images are concatenated as network inputs and processed through
a one-stream convolutional network to detect changes.

FC-Siam-Diff [10]: this method employs a post-fusion strategy
based on FC-EF networks. Multi-scale features are extracted from
a dual convolutional network of diachronic images and algebraic
operations are used to obtain parallax features to detect changes.

FC-Siam-Conc [5]: the method uses the U-Net architecture. Bitem-
poral features transmitted by a shallow network are fused through
connections and integrated with deep semantic information.

IFNet [12]: the method employs channel attention and spatial at-
tention to enhance the extraction of disparity features, respectively.

A deep supervision mechanism is used to supervise the disparity
feature extraction process.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

259

261

262

263

264

265

266

267

268

269

270

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: Multi-scale Change-Aware Transformer for Remote Sensing Image Change Detection

F1 (% F1 (%

oo WHU o0 LEVIR
94 96

92.90
93 o4
92 91.58 91.49 92.13
90.84 92 o140
2 90.26
% 90
88.09
89 88
88 36
DTCDSCN BIT SARAS  ChangeFormer Qurs DTCDSCN BIT SARAS

ACM MM, 2024, Melbourne, Australia

F1 (%)
68
93.75 66

MACD

65.71
64.72

63.49
64 62.74

62

91.32

60 5871
58

56

DTCDSCN BIT SARAS  ChangeFormer Ours

ChangeFormer Ours

Figure 2: F1 Score Comparison Across Three Datasets. The bar graph illustrates the F1 values obtained by our method on the
LEVIR, MACD, and an additional third dataset. Notably, our approach outperforms others on all datasets, with particularly
consistent results observed on both the LEVIR and MACD datasets, indicating a robust performance in change detection tasks.

Image 1 DTCDSCN SUNet DASNet

Image 2

SARAS (V2)

BIT ChangeFormer OSCD (Ours) Ground Truth

Figure 3: Visual results on the MACD dataset are depicted. (a)-(d) four representative samples. White represents true positives,
black denotes true negatives, red indicates false negatives, and green represents false positives.

DASNet [4]: DASNet is a fully convolutional Siamese neural
network based on dual attention, extracting spatial and channel in-
formation through two separate attention mechanisms. It addresses
the issue of sample imbalance by incorporating a weighted bilateral
contrastive loss.

DTCDSCN [11]: this method creates a dual attention module
with channel attention and spatial attention to enhance feature
information based on SE-ResNet.

SNUNet [6]: SNUNet uses the UNet++ architecture to compen-
sate for details and semantic information through dense hopping
connections, with the core being an integrated channel attention
module that handles multi-scale semantic information.

BIT [2]: this method uses ResNet as the backbone. The use of two
decoder transformers is used to establish long-term dependencies
on deep semantic information. Detailed semantic information is
emphasized by subtracting and taking the absolute value of the
difference features.

SARAS [1]: the network is a multiscale architecture that com-
bines ResNet and Transformer, addressing boundary noise from
objects of different scales through a scale-aware module and a
relation-aware module. Additionally, the method utilizes a cross-
transform module to fuse features from different scales, enhancing
the representation for improved change detection

ChangFormer [7]: this method uses the transformer architecture
as a backbone network. It creates a difference module to continu-
ously aggregate feature information for the difference features in
each layer.

USSFC-Net [9]: USSFC-Net is an ultra-lightweight remote sens-
ing change detection network. It uses a pseudo-siamese U-Net as
the backbone to flexibly capture multi-scale features of change
objects through multi-scale decoupled convolution. In addition,
spatial spectral features are cooperated with the strategy to better
capture the change-related features.

To ensure a fair and rigorous comparison, we have reimple-
mented all methods, optimizing each by selecting the parameter
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Figure 4: Qualitative results of different change detection methods on LEVIR and WHU dataset. (a)-(h) eight representative
samples.
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set that yielded the highest F1 scores on the validation set during

training. L TP
Evaluation Metrics. The effectiveness of our model is quantified precision = 757" @
using the F1 score and Intersection over Union (IoU) as the pri- = TP 5
mary metrics. We also report additional metrics including precision recal = TP EN @
(Prec.), recall (Rec.), and overall accuracy (OA). These metrics are OA = TP + TN
computed using the formulas below: " TP + FN + TN + FP )
TP
IoU= ———— 4)
TP + FP + FN
2
1= T (5)

recall ™! + precision™

Here, TP (True Positives) is the count of correctly identified
changed pixels. FP (False Positives) is the number of pixels in-
correctly labeled as changed. TN (True Negatives) represents the
unchanged pixels correctly identified as such. FN (False Negatives)
is the count of changed pixels incorrectly classified as unchanged.
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Figure 5: The selection of the window size on different stages.

The F1 score and IoU are scaled between 0 and 1, where values
nearing 1 signify higher model accuracy.
Numerical Results Statistics. Fig. 2 presents a comparative anal-
ysis of four selected methods, showcasing their performance across
the WHU, LEVIR, and our MACD datasets. Our proposed method
demonstrates outstanding performance on three remote sensing im-
age change detection datasets: WHU, LEVIR, and MACD. Notably,
our method leads across the board in terms of the F1 score, a criti-
cal metric for assessing the reliability and effectiveness of change
detection tasks. On the WHU and LEVIR datasets, where change
areas are regular and the scale variation is minimal, most change
detection algorithms can achieve satisfactory results. However, our
method not only achieves high accuracy of 92.90% and 93.75%, but
also exhibits greater robustness. This advantage stems from the
innovative feature extraction and fusion strategies employed by
our model, which can precisely capture change areas even when
the changes are subtle. When it comes to the MACD dataset, which
features large-scale and complex-shaped change areas, the require-
ments for an algorithm’s multi-scale and shape adaptability are
heightened. Current methods often struggle with this dataset, as
evidenced by the lower F1 scores, reflecting their limitations in
handling complex changes. The SARAS method performs well on
MACD because it is specifically designed to address multi-scale
change areas. Nonetheless, our method still takes the lead with an
F1 score of 65.71%, a result that underscores the significant strength
of our model in dealing with complex change areas.
More Qualitative Results. Due to space limitations in the main
text, we present visual results for only a subset of methods. To
comprehensively showcase the visual superiority of our method,
we supplement additional visual predictions on all three datasets.
The samples depicted in Fig. 3 illustrate the robust performance
of our method across a spectrum of change detection scenarios,
including complex, large-area, and small-region changes. Our ap-
proach accurately captures the nuances of genuine semantic changes,
providing a detailed representation of the transformations within
the imagery. For instance, Fig. 3(a) and (c) highlight our method’s
capability to detect scale variations effectively. These figures show-
case two distinct instances where other methods falter, particularly
in identifying fine details within large change areas. The limitations

ACM MM, 2024, Melbourne, Australia

lmae 2 DCAA  Ground Truth

Image 1

Figure 6: Comparison of attention maps between Global At-
tention (GA), Self-Attention (SA), Cross-Attention (CA) and
Dynamic Change-Aware Attention (DCAA).

of these alternative methods result in a higher number of false nega-
tives, as indicated by the red color in the comparative analysis. Our
method, however, excels in these challenging scenarios, delivering
a more comprehensive and precise detection of changes.

In Fig. 4(a), (b), and (c), our Multi-scale Change-Aware Trans-
former is showcased alongside SARAS, where both accurately de-
tect changes within dense building areas while effectively miti-
gating noise interference. A comparative analysis reveals that our
method provides a more comprehensive detection of building edges,
as exemplified in Fig. 4(c), (d), (e), and (f). This enhancement is cred-
ited to MCAT’s sophisticated feature processing, which contrasts
with the BIT model’s direct upsampling of low-level features to the
original resolution, a technique that often results in a less detailed
edge representation. Unlike BIT, our approach employs a hierarchi-
cal fusion of change-enhanced multiscale features, which are then
relayed to the decoder, ensuring the preservation of fine details.

When evaluating the performance of DASNet, SUNet, and DTCD-
SCN, as depicted in Fig. 4(g) and Fig. 3(c), these methods exhibit a
more pronounced incidence of missed detections, particularly in
larger-scale changes, which are marked in red. This shortcoming is
attributed to their inability to integrate global and complementary
local information, leading to inaccuracies in change detection. In
stark contrast, Multi-scale Change-Aware Transformer maintains
the internal compactness of change regions and the integrity of
boundary detection through the strategic use of varying window
sizes across different stages and the fusion of multiscale features.

Furthermore, our method demonstrates exceptional proficiency
in suppressing false positives. As illustrated in Fig. 4(g), other meth-
ods are often misled by non-building areas with similar color pro-
files, resulting in misjudgments. Multi-scale Change-Aware Trans-
former, however, directly engages with change regions during the
feature extraction phase and subsequently enhances them locally.
This targeted interaction enables Multi-scale Change-Aware Trans-
former to effectively filter out irrelevant change regions, leading to
more precise detection outcomes.

3 ABLATION STUDY

We add more ablation studies on different components. on the
LEVIR dataset and also present the results on our MACD dataset.

Analysis of Dynamic Change-Aware Attention. Fig. 6 offers a
detailed analysis of the benefits of our proposed Dynamic Change-
Aware Attention (DCAA) mechanism. It reveals that DCAA is par-
ticularly adept at discerning change regions and achieving precise
focus on areas where alterations occur. This superior performance
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Table 1: Experiments on the Impact of the Number of Stacked
Dynamic Change-Aware Attention Modules at Each Stage.

Ly L L Ly | F IoU
2 2 2 2 92.71 88.10
3 3 3 3 93.67 88.64
3 3 6 3 93.55 88.44
3 3 18 3 93.66 88.62
3 4 6 3 93.75  88.76
3 6 6 3 93.54 88.42

is a direct result of the module’s innovative approach to feature ex-
traction, which efficiently orchestrates interactions between feature
maps. By prioritizing change areas for extraction and enhancement
from the earliest stages, DCAA minimizes the computational re-
sources allocated to static regions, thereby enhancing the overall
efficiency and accuracy of the change detection process.

Effect of Local Window Sizes. Furthermore, we experimentally
validate the choice of window size M; for different stages. As shown
in Fig. 5, the overall trend indicates that the performance signifi-
cantly benefits from mixed-scale windows, outperforming single-
scale windows. The richer the variety of window scales, the better
the performance. For the four stages, the window sizes of (3, 3,5, 7)
performs the best. The progressive local window sizes that extracts
local details with a small window for shallow features and captures
the overall outline with a large-scale window for deep abstract
features. This progressive strategy effectively captures features of
various scales, providing ample room for multiscale aggregation in
Change-Enhanced Multiscale Aggregator.

Effect of Numbers of Layer in Stage. To investigate the influence
of network depth on model performance, we conduct experiments
by varying the number of stacked Dynamic Change-Aware Atten-
tion modules at each stage and analyze the results on the LEVIR
dataset. Throughout the experiments, we maintained the number of
stacked layers mostly consistent, except for the first and last stages,
where we altered the depth of the middle two stages to observe the
outcomes.

As presented in Tab. 1, it is evident that the results are at their
lowest when the number of layers is set to 2 for each stage. With
an increase in network depth, both F1 and IoU values experience a
slight improvement, reaching optimal performance with the com-
bination (3, 4, 6, 3). Consequently, we selected (3,4, 6, 3) as the con-
figuration for stacked modules at each stage in our model.
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