
A Proof of Proposition 2.5

Proposition 2.5 is a direct consequence of the following lemma (remember that rh(✓) = [@h(✓)]>).
Lemma A.1 (Smooth functions conserved through a given flow.). Given � 2 C

1(⌦,RD), a function
h 2 C

1(⌦,R) is conserved through the flow induced by � if and only if @h(✓)�(✓) = 0 for all ✓ 2 ⌦.

Proof. Assume that @h(✓)�(✓) = 0 for all ✓ 2 ⌦. Then for all ✓init 2 ⌦ and for all t 2 (0, T✓init) :

d

dt
h(✓(t, ✓init)) = @h(✓(t, ✓init))

.
✓(t, ✓init) = @h(✓(t, ✓init))�(✓(t, ✓init)) = 0.

Thus: h(✓(t, ✓init)) = h(✓init), i.e., h is conserved through �. Conversely, assume that there exists
✓0 2 ⌦ such that @h(✓0)�(✓0) 6= 0. Then by continuity of ✓ 2 ⌦ 7! @h(✓)�(✓), there exists
r > 0 such that @h(✓)�(✓) 6= 0 on B(✓0, r). With ✓init = ✓0 by continuity of t 7! ✓(t, ✓init), there
exists " > 0, such that for all t < ", ✓(t, ✓init) 2 B(✓0, r). Then for all t 2 (0, "): d

dth(✓(t, ✓init)) =
@h(✓(t, ✓init))�(✓(t, ✓init)) 6= 0, hence h is not conserved through the flow induced by �.

B Proof of Proposition 2.7

Proposition B.1. Assume that for each y 2 Y the loss `(z, y) is C2-differentiable with respect to
z 2 Rn. For each ✓ 2 ⇥ we have:

W g
✓ = span

(x,y)2X✓⇥Y
{[@✓g(✓, x)]

>
rz`(g(✓, x), y)}

where X✓ is the set of data points x such that g(·, x) is C2-differentiable in the neighborhood of ✓.

Proof. Let us first show the direct inclusion. Let ⌦ ✓ ⇥ be a neighborhood of ✓ and let � 2 W g
⌦.

Let us show that �(✓) 2 span
(x,y)2X✓⇥Y

{[@✓g(✓, x)]>rz`(g(✓, x), y)}. As � 2 W g
⌦, there exist X =

(xi)i, Y = (yi)i such that 8i g(·, xi) 2 C
2(⌦,R) (and thus xi 2 X✓) and �(·) = rEX,Y (·) 2

C
1(⌦,RD) (cf (3)). Moreover, for each ✓0 2 ⌦, by chain rules and (1), we have:

rEX,Y (✓
0) =

X

i

[@✓g(✓
0, xi)]

>
rz`(g(✓

0, xi), yi),

where xi 2 X✓. Thus �(✓) 2 span
(x,y)2X✓⇥Y

{[@✓g(✓, x)]>rz`(g(✓, x), y)}. This leads to the direct

inclusion.

Now let us show the converse inclusion. Let (x, y) 2 X✓ ⇥ Y . Let us show that
[@✓g(✓, x)]>rz`(g(✓, x), y) 2 W g

✓ . By definition of X✓, there exists a neighborhood ⌦ of ✓ such
that g(·, x) 2 C

2(⌦,RD). By taking X = x and Y = y (i.e. a data set of one feature and one
target), one has still by chain rules rEX,Y (·) = [@✓g(·, x)]>rz`(g(·, x), y) 2 W g

⌦. Finally by
definition (4) of the trace and by (5), [@✓g(✓, x)]>rz`(g(✓, x), y) = rEX,Y (✓) 2 W g

⌦(✓) ✓ W g
✓ as

⌦ is a neighborhood of ✓.

C Proof of Lemma 2.13 and Theorem 2.14

We recall (cf Example 2.10 and Example 2.11) that linear and 2-layer ReLU neural networks satisfy
Assumption 2.9, which we recall reads as:
Assumption 2.9 (Local reparameterization) For each parameter ✓0 2 RD, for each x 2 X✓0 , there is
a neighborhood ⌦ of ✓0 and a function f(·, x) 2 C

2(�(⌦),Rn) such that

8✓ 2 ⌦, g(✓, x) = f(�(✓), x), (16)

where we also recall that

X✓0 := {x 2 X : ✓ 7! g(✓, x) is C2 in the neighborhood of ✓0}. (17)
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A common assumption to Lemma 2.13 and Theorem 2.14 is that the loss `(z, y) is such that `(·, y) is
C
2-differentiable for all y, hence by Proposition 2.7 and Proposition 2.12 we have

W g
✓ = span

(x,y)2X✓⇥Y
{[@✓g(✓, x)]

>
rz`(g(✓, x), y)} and W g

✓ = @�(✓)>W f
�(✓)

where
W f
�(✓)

:= span
(x,y)2X✓⇥Y

{@fx(�(✓))>rz`(g(✓, x), y)} and fx(·) := f(·, x).

Consequence of the assumption (9). To proceed further we will rely on the following lemma that
shows a direct consequence of (9) (in addition to Assumption 2.9 on the model g(✓, ·)).
Lemma C.1. Under Assumption 2.9, considering a loss `(z, y) such that `(·, y) is C2-differentiable
for all y. Denote fx(·) := f(·, x). If the loss satisfies (9), i.e.

span
y2Y

{rz`(z, y)} = Rn, 8z 2 Rn,

then for all ✓ 2 RD,
W f
�(✓) = span

(x,w)2X✓⇥Rn

{@fx(�(✓))>w} (18)

Proof. For ✓ 2 RD, we have

W f
�(✓) = span

(x,y)2X✓⇥Y
{@fx(�(✓))>rz`(g(✓, x), y)}

= span
x2X✓

�
@fx(�(✓))>span

y2Y
{rz`(g(✓, x), y)}

 

(9)
= span

x2X✓

{@fx(�(✓))>Rn
}

= span
(x,w)2X✓⇥Rn

{@fx(�(✓))>w}.

Verification of (9) for standard ML losses. Before proceeding to the proof of Lemma 2.13 and
Theorem 2.14, let us show that (9) holds for standard ML losses.
Lemma C.2. The mean-squared error loss (z, y) 7! `2(z, y) := ky � zk2 and the logistic loss
(z 2 R, y 2 {�1, 1}) 7! `logis(z, y) := log(1 + exp(�zy)) satisfy condition (9).

Proof. To show that `2 satisfies (9) we observe that, with ei the i-th canonical vector, we have

Rn = span{ei : 1  i  n} = span
y2{z�ei/2}n

i=1

2(z � y) ✓ span
y2Rn

2(z � y) = span
y2Rn

rz`2(z, y) ✓ Rn.

For the logistic loss, rz`logis(z, y) =
�y exp(�zy)
1+exp(�zy) 6= 0 hence spanyrz`logis(z, y) = R.

Remark C.3. In the case of the cross-entropy loss (z 2 Rn, y 2 {1, · · · , n}) 7! `cross(z, y) := �zy+

log (
Pn

i=1 exp zi), `cross does not satisfy (9) as rz`cross(z, y) = �ey +

 
exp(z1)/(

P
i exp zi)

· · ·

exp(zn)/(
P

i exp zi)

!

satisfies for all z 2 Rn:

spanyrz`cross(z, y) = {w := (w1, · · · , wn) 2 Rn :
X

wi = 0} =: Lcross.

An interesting challenge is to investigate variants of Lemma 2.13 under weaker assumptions that
would cover the cross-entropy loss.

The case of linear neural networks of any depth. Let us first prove Lemma 2.13 and Theorem 2.14
for the case of linear neural networks.
Theorem C.4 (linear networks). Consider a linear network parameterized by q matrices, ✓ =
(U1, . . . , Uq) and defined via g(✓, x) := U1 . . . Uqx. With �(✓) := U1 . . . Uq 2 Rn⇥m (identified
with Rd with d = nm), and for any loss ` satisfying (9), we have for all ✓ 2 RD, W f

�(✓) = Rd and
W g
✓ = range(@�(✓)>).
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Proof. Let ✓ 2 ⇥ = RD. As we can factorize the model (cf Example 2.10) by g(·, x) =
�(·)x =: fx(�(·)) 2 Rn for x 2 X✓ = Rm. Thus, by using Lemma C.1: W f

�(✓) =

spanx2X✓,w2Rn{[@fx(�(✓))]>w} = spanx2Rm,w2Rn{wx>
} = Rd. Finally by Proposition 2.12:

W g
✓ = @�(✓)>W f

�(✓) = range(@�(✓)>).

The case of two-layer ReLU networks. In the case of two-layer ReLU networks with r neurons, one
can write ✓ = (U, V, b, c) 2 Rn⇥r

⇥ Rm⇥r
⇥ Rr

⇥ Rn, and denote uj (resp. vj , bj) the columns of
U (resp. columns of V , entries of b), so that g✓(x) =

Pr
j=1 uj�(v>j x+ bj) + c. The set X✓ (defined

in (17)) is simply the complement in the input domain Rm of the union of the hyperplanes

Hj := {x 2 Rm : v>j x+ bj = 0}. (19)

Theorem C.5 (two-layer ReLU networks). Consider a loss `(z, y) satisfying (9) and such that `(·, y)
is C2-differentiable for all y. On a two-layer ReLU network architecture, let ✓ be a parameter such
that all hyperplanes Hj defined in (19) are pairwise distinct. Then, with �ReLU the reparameterization
of Example 2.11, we have: W f

�ReLU(✓)
= Rd and W g

✓ = range(@�ReLU(✓)>).

Proof. Let ✓ be a parameter such that all hyperplanes Hj defined in (19) are pairwise distinct. Since
the loss ` satisfies (9), by Lemma C.1, we only need to show that:

span
(x,w)2X✓⇥Rn

{@fx(�(✓))>w} = Rd.

For convenience we will use the shorthand C✓,x for the Jacobian matrix @fx(�(✓)).

1st case: We consider first the case without bias (bj , c = 0). In that case, by Example 2.11 we have
�(✓) := (ujv>j )

r
j=1 where we write: ✓ = (U, V ) 2 Rn⇥r

⇥ Rm⇥r, and denote uj (resp. vj) the
columns of U (resp. columns of V ). Here d = rnm and it can be checked (see Example 2.11) that

C>
✓,x :=

 
"1(x, ✓)A(x)

· · ·

"r(x, ✓)A(x)

!
2 R(rnm)⇥n

where:

A : x 2 Rm
7! A(x) :=

0

B@

x 0 · · · 0
0 x · · · 0
· · · · · · · · · · · ·

0 · · · 0 x

1

CA 2 R(nm)⇥n,

and where "i(x, ✓) = 1(v>i x > 0). For j = 1, · · · , r we denote:

A
+
j := {x 2 Rm : v>j x > 0}, and A

�
j := {x 2 Rm : v>j x < 0}.

The open Euclidean ball of radius r > 0 centered at c 2 Rm is denoted B(c, r).

Consider a hidden neuron i 2 {1, · · · , r} and denote H0
i := Hi�

⇣S
j 6=i Hj

⌘
. Since the hyperplanes

are pairwise distinct, H0
i 6= ; so we can consider an arbitrary x0

2 H
0
i. Given any ⌘ > 0, by continuity

of x 2 Rm
7! (v>1 x, · · · , v

>
r x) 2 Rr, there exists x+

⌘ 2 B(x0, ⌘) \ A
+
i and x�

⌘ 2 B(x0, ⌘) \ A
�
i

such that for all j 6= i, sign(v>j x±
⌘ ) = sign(v>j x0). It follows that x±

⌘ 2 X✓ (remember that X✓ is the
complement of [jHj). As a consequence:

0

BBBBBB@

0
· · ·

0
A(x0)
0
· · ·

0

1

CCCCCCA
= lim
⌘!0

⇣
C>
✓,x+

⌘
� C>

✓,x�
⌘

⌘
2 span

x2X✓

{C>
✓,x} = span

x2X✓

{C>
✓,x},

where the nonzero line in the left-hand-side is the i-th, and we used that every finite-dimensional
space is closed.
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Moreover still by continuity of x 2 Rm
7! (v>1 x, · · · , v

>
r x) 2 Rr, there exists � > 0, such that for

k = {�2,�1, 1, 2}, the vectors defined as:

xk := x0 + �kvi,

satisfy for all j 6= i, sign(v>j xk) = sign(v>j x0) and v>i xk 6= 0, so that xk 2 X✓ and we similarly
obtain 0

BBBBBB@

0
· · ·

0
�A(vi)

0
· · ·

0

1

CCCCCCA
= C>

✓,x2
� C>

✓,x1
�

⇣
C>
✓,x�1

� C>
✓,x�2

⌘
2 span

x2X✓

{C>
✓,x}.

As this holds for every x0
2 H

0
i, and since span{vi,H0

i} = Rm, we deduce that for any x 2 Rm

0

BBBBBB@

0
· · ·

0
A(x)
0
· · ·

0

1

CCCCCCA
2 span

x2X✓

{C>
✓,x}.

As this holds for every hidden neuron i = 1, · · · , r it follows that for every x1, · · · , xr
2 Rm

0

@
A(x1)
· · ·

A(xr)

1

A 2 span
x2X✓

{C>
✓,x}.

Moreover, by definition of A(·), for each x 2 Rm and each w = (w1, · · · , wn) 2 Rn, we have

A(x)w =

 
w1x
· · ·

wnx

!
2 Rnm.

Identifying Rnm with Rm⇥n and the above expression with xw>, we deduce that

span
x2Rm,w2Rn

A(x)w = Rnm

and we let the reader check that this implies

span
x1,··· ,xr2Rm,w2Rn

0

@
A(x1)
· · ·

A(xr)

1

Aw = span
x1,··· ,xr2Rm,w2Rn

0

@
A(x1)w

· · ·

A(xr)w

1

A = Rrnm.

Thus, as claimed, we have
span

x2X✓,w2Rn
{C>

✓,xw} = Rrnm = Rd.

2d case: General case with biases. The parameter is ✓ = (U, V, b, c) 2 Rn⇥r
⇥ Rm⇥r

⇥ Rr
⇥ Rn

with b = (bi)ri=1, where bi 2 R the bias of the i-th hidden neuron, and c the output bias.

In that case, d = rn(m + 1) and one can check that the conditions of Assumption 2.9 hold with
�ReLU(✓) := ((uiv>i , uibi)ri=1, c) and fx(�) := C✓,x� where C✓,x is expressed as:

C>
✓,x :=

0

B@

"1(x, ✓)A0(x)
· · ·

"r(x, ✓)A0(x)
In

1

CA 2 R(rn(m+1)+n)⇥n

where, denoting x̄ = (x>, 1)> 2 Rm+1, we defined
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A0 : x 2 Rm
7! A0(x) :=

0

B@

x̄ 0 · · · 0
0 x̄ · · · 0
· · · · · · · · · · · ·

0 · · · 0 x̄

1

CA 2 Rn(m+1)⇥n,

and "i(x, ✓) := 1(v>i x+ bi > 0).

Using the sets

A
+
j := {x 2 Rm : v>j x+ bj > 0}, and A

�
j := {x 2 Rm : v>j x+ bj < 0},

a reasoning analog to the case without bias allows to show that for each i = 1, · · · , r:

span
x2Rm

0

BBBBBB@

0
· · ·

0
A0(x)
0
· · ·

0

1

CCCCCCA
2 span

x2X✓

{C>
✓,x}

so that, again, for every x1, . . . , xr
2 Rm we have
0

B@

A0(x1)
· · ·

A0(xr)
0

1

CA 2 span
x2X✓

{C>
✓,x}.

As

0

B@

0
· · ·

0
In

1

CA 2 span
x2X✓

{C>
✓,x} too, we obtain that

0

B@

A0(x1)
· · ·

A0(xr)
In

1

CA 2 span
x2X✓

{C>
✓,x}.

Now, for each x 2 Rm and w = (w1, · · · , wn) 2 Rn, we have

A0(x)w =

 
w1x̄
· · ·

wnx̄

!
=

0

BBB@

w1x
w1

· · ·

wnx
wn

1

CCCA
2 Rn(m+1).

Again, identifying the above expression with w(x>, 1) 2 Rn⇥(m+1) it is not difficult to check that

span
x2Rm,w2Rn

A0(x)w = Rn(m+1),

and we conclude as before.

In both cases we established that W f
�ReLU

(✓) = Rd. Finally by Proposition 2.12 we obtain W g
✓ =

@�ReLU(✓)>W
f
�ReLU(✓)

= range(@�ReLU(✓)>).

Combining Theorem C.4 and Theorem C.5 establishes Lemma 2.13 Theorem 2.14 as claimed. One
can envision extensions of these results to deeper ReLU networks, using notations and concepts from
[27] that generalize observations from Example 2.11 to deep ReLU networks with biases. Given a
feedforward network architecture of arbitrary depth, denote ✓ the collection of all parameters (weights
and biases) of a ReLU network on this architecture, and consider ✓ 7! �ReLU(✓) the rescaling-invariant
polynomial function of [27, Definition 6] and C✓,x, the matrices of [27, Corollary 3] such that the
output of the network with parameters ✓, when fed with an input vector x 2 Rm, can be written
g(✓, x) = C✓,x�(✓). From its definition in [27, Corollary 3], given x, the matrix C✓,x only depends
on ✓ via the so-called activation status of the neurons in the network (cf [27, Section 4.1]).
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D Proof of Lemma 3.2

Lemma D.1. Given ✓ 2 ⇥, if for a given i, dim(Wi+1(✓0)) = dim(Wi(✓)) for every ✓0 in a
neighborhood of ✓, then for all k � i, we have Wk(✓0) = Wi(✓0) for all ✓0 in a neighborhood ⌦
of ✓, where the Wi are defined by Proposition 3.1. Thus Lie(W )(✓0) = Wi(✓0) for all ✓0 2 ⌦. In
particular, the dimension of the trace of Lie(W ) is locally constant and equal to the dimension of
Wi(✓).

Proof. The result is obvious for k = i. The proof is by induction on k starting from k = i+ 1. We
denote m := dim(Wi(✓)).

1st step: Initialization k = i + 1. By definition of the spaces Wi (cf Proposition 3.1) we have
Wi ⇢ Wi+1 hence Wi(✓) ✓ Wi+1(✓). Since dim(Wi+1(✓)) = dim(Wi(✓)) = m, it follows
that there exists �1, · · · ,�m 2 Wi such that span

j
�j(✓) = Wi(✓) = Wi+1(✓) (hence the m

vectors (�1(✓), · · · ,�m(✓)) are linearly independent). Since each �j is smooth, it follows that
(�1(✓0), · · ·�m(✓0)) remain linearly independent on some neighborhood ⌦ of ✓, which we assume to
be small enough to ensure dimWi+1(✓0) = m for all ✓0 2 ⌦. As �j 2 Wi ⇢ Wi+1, we obtain that
for each ✓0 2 ⌦, the family {�j(✓0)}mj=1 is a basis of the m-dimensional subspace Wi+1(✓0), hence:

Wi(✓
0) ⇢ Wi+1(✓

0) = spanj�j(✓
0) ⇢ Wi(✓

0), 8✓0 2 ⌦ (20)

2nd step: Induction. We assume Wk(✓0) = Wi(✓0) on ⌦. Let us show that Wk+1(✓0) = Wi(✓0) on
⌦. Since Wk+1 := Wk + [W0,Wk] it is enough to show that [W0,Wk](✓0) ✓ Wi(✓0) on ⌦. For this,
considering two vector fields, f 2 W0 and � 2 Wk, we will show that [f,�](✓0) 2 Wi+1(✓0) for
each ✓0 2 ⌦. In light of (20), this will allow us to conclude.

Indeed, from the induction hypothesis we know that Wk(✓0) = spanj�j(✓0) = Wi(✓0) on ⌦, hence
for each ✓0 2 ⌦ there are coefficients aj(✓0) such that �(✓0) =

Pm
j=1 aj(✓

0)�j(✓0). Standard
linear algebra shows that these coefficients depend smoothly on �(✓0) and �j(✓0), which are smooth
functions of ✓0, hence the functions aj(·) are smooth. By linearity of the Lie bracket and of Wi+1(✓0)
it is enough to show that [f, aj�j ](✓0) 2 Wi+1(✓0) on ⌦ for each j. Standard calculus yields

[f, aj�j ] = (@f)(aj�j)� @(aj�j)| {z }
=�j@aj+aj@�j

f = aj [(@f)�j � (@�j)f ]� �j(@aj)f

= aj [f,�j ]� [(@aj)f ]�j

since (@aj)f is scalar-valued (consider the corresponding dimensions). Since f 2 W0 and �j 2 Wi,
by definition of Wi+1 (cf Proposition 3.1) we have [f,�j ],�j 2 Wi+1 hence by linearity we conclude
that [f, aj�j ](✓0) 2 Wi+1(✓0). As this holds for all j, we obtain [f,�](✓0) 2 Wi+1(✓0). As this
is valid for any f 2 W0, � 2 Wk this establishes [W0,Wk](✓0) ✓ Wi+1(✓0)

(20)
= Wi(✓0) and we

conclude as claimed that Wi(✓0) ✓ Wk+1(✓0) = Wk(✓0) + [W0,Wk](✓0) ✓ Wi(✓0) on ⌦.

E Proof of Theorem 3.3

We recall first the fundamental result of Frobenius using our notations (See Section 1.4 of [13]).
When we refer to a “non-singular distribution”, it implies that the dimension of the associated trace
remains constant (refer to the definition of “non-singular” on page 15 of [13]). Being “involutively
consistent” directly relates to our second assertion using the Lie bracket (see equation 1.13 on page
17 of [13]). Lastly, “completely integrable” aligns with our first assertion regarding orthogonality
conditions (refer to equation 1.16 on page 23 of [13]).
Theorem E.1 (Frobenius theorem). Consider W ✓ X (⌦), and assume that the dimension of W (✓)
is constant on ⌦ ✓ RD. Then the two following assertions are equivalent:

1. each ✓ 2 ⌦ admits a neighborhood ⌦0 such that there exists D � dim(W (✓)) independent
conserved functions through W|⌦0 ;

2. the following property holds:

[u, v](✓) 2 W (✓), for each u, v 2 W, ✓ 2 ⌦ (21)
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Proposition E.2. Under the assumption that dim(W (✓)) is locally constant on ⌦, Condition (21) of
Frobenius Theorem holds if, and only if, the linear space W 0 := {� 2 X (⌦), 8✓ 2 ⌦ : �(✓) 2 W (✓)}
(which is a priori infinite-dimensional) is a Lie algebra.

Proof. ( If W 0 is a Lie algebra, then as W ⇢ W 0 we get: for all u, v 2 W ⇢ W 0, [u, v] 2 W 0.
Given the definition of W 0 this means that (21) is satisfied.

) Assuming now that (21) holds, we prove that W 0 is a Lie algebra. For this, given X,Y 2 W 0 we
wish to show that [X,Y ](✓) 2 W (✓) for every ✓ 2 ⌦.

Given ✓ 2 ⌦, we first reason as in the first step of the proof of Lemma 3.2 to obtain the existence
of a neighborhood ⌦0 of ✓ and of m := dim(W (✓0)) vector fields �1, · · · ,�m 2 W such that
(�1(✓0), · · · ,�m(✓0)) is a basis of W (✓0) for each ✓0 2 ⌦. By definition of W 0 we have X(✓0) 2
W (✓0) and Y (✓0) 2 W (✓0) for every ✓0 2 ⌦0. Thus, there are smooth functions aj , bj such that
X(·) =

Pm
1 ai(·)�i(·) and Y (·) =

Pm
1 bi(·)�i(·) on ⌦0, and we deduce by bilinearity of the

Lie brackets that [X,Y ](✓0) =
P

i,j [ai�i, bj�j ](✓0) on ⌦0. Since W (✓) is a linear space, we will
conclude that [X,Y ](✓) 2 W (✓) if we can show that [ai�i, bj�j ](✓) 2 W (✓). Indeed, we can
compute

[ai�i, bj�j ] = aibj [�i,�j ] + bj [(@ai)�j ]�j � ai[(@bj)�i]�j

where, due to dimensions, both (@ai)�j and (@bj)�i are smooth scalar-valued functions. By con-
struction of the basis {�j}j we have �i(✓),�j(✓) 2 W (✓), and by assumption (21) we have
[�i,�j ](✓) 2 W (✓), hence we conclude that [X,Y ](✓) 2 W (✓). Since this holds for any choice of
X,Y 2 W 0, this establishes that W 0 is a Lie algebra.

Theorem E.3. If dim(Lie(W�)(✓)) is locally constant then each ✓ 2 ⌦ has a neighborhood ⌦0

such that there are D � dim(Lie(W�)(✓)) (and no more) independent conserved functions through
W�|⌦0 .

Proof. 1st step: Existence of ⌦0 and of D� dim(Lie(W�)(✓)) independent conserved functions. Let
✓ 2 ⌦. Since dim(Lie(W�)(✓)) is locally constant there is a neighborhood ⌦00 of ✓ on which it is
constant. Since W := Lie(W�)|⌦00 ✓ X (⌦00) is a Lie Algebra, by Proposition E.2 and Frobenius
theorem (Theorem E.1) there exists a neighborhood ⌦0

✓ ⌦00 of ✓ and D � dim(W (✓)) independent
conserved functions through W|⌦0 . As W� ⇢ Lie(W�), these functions are (locally) conserved
through W� too. We only need to show that there are no more conserved functions.

2nd step: There are no more conserved functions. By contradiction, assume there exists ✓0 2 ⌦,
an open neighborhood ⌦0 of ✓0, a dimension k < dim(Lie(W�)(✓0)), and a collection of D � k
independent conserved functions through W�, gathered as the coordinates of a vector-valued function
h 2 C

1(⌦0,RD�k). Consider W := {X 2 X (⌦0), 8✓ 2 ⌦0, X(✓) 2 ker@h(✓)}. By the definition of
independent conserved functions, the rows of the (D � k)⇥D Jacobian matrix @h(✓) are linearly
independent on ⌦0, and the dimension of W (✓) = ker@h(✓) is constant and equal to k on ⌦0. By
construction of W and Proposition 2.5, the D�k coordinate functions of h are independent conserved
functions through W . Thus, by Frobenius Theorem (Theorem E.1) and Proposition E.2, W is a Lie
algebra. By Proposition 2.5 we have W�(✓) = range@�(✓)> ⇢ ker@h(✓) on ⌦0, hence W�|⌦0 ⇢ W ,
and therefore Lie(W�)|⌦0 = Lie(W�|⌦0) ⇢ W . In particular: Lie(W�)(✓0) ⇢ W (✓0), which leads
to the claimed contradiction that dim(Lie(W�)(✓0))  dim(W (✓0)) = k.

F Proofs of the Examples of Section 3.3 and additional example

F.1 Proof of the result given in Example 3.5

Proposition F.1. Consider ✓ = (U, V ) 2 Rn⇥r
⇥ Rm⇥r, �, and ⌦ ✓ RD, D = (n + m)r, as

in Example 3.5. The dimension of W�(✓) is constant and equal to (n +m � 1)r and W� verifies
condition (13) of Frobenius Theorem (i.e. condition (21) of Theorem E.1).

Proof. Denoting ui (resp. vi) the columns of U (resp. of V ), for ✓ 2 ⌦ we can write �(✓) =
( (ui, vi))i=1,···r with  : (u 2 Rn

� {0}, v 2 Rm
� {0}) 7! uv> 2 Rn⇥m. As this decouples �

into r functions each depending on a separate block of coordinates, Jacobian matrices and Hessian
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matrices are block-diagonal. Establishing condition (21) of Frobenius theorem is thus equivalent to
showing it for each block, which can be done by dealing with the case r = 1. Similarly, W�(✓) is
a direct sum of the spaces associated to each block, hence it is enough to treat the case r = 1 (by
proving that the dimension is n+m� 1) to obtain that for any r � 1 the dimension is r(n+m� 1).

1st step: We show that W� satisfies condition (21) of Frobenius Theorem. For u 2 Rn
� {0},

v 2 Rm
� {0} we write ✓ = (u; v) 2 RD = Rn+m and �i,j(✓) := uivj for i = 1, · · · , n

and j = 1, · · · ,m. Now ui and vj are scalars (and no longer columns of U and V ). Denoting
ei 2 RD = Rn+m the vector such that all its coordinates are null except the i-th one, we have:

r�i,j(✓) = vjei + uien+j 2 RD,

@2�i,j(✓) = Ej+n,i + Ei,j+n 2 RD⇥D,

with Ei,j 2 RD⇥D the one-hot matrix with the (i, j)-th entry being 1. Let i, k 2 {1, · · · , n} and
j, l 2 {1, · · · ,m}.

1st case: (i, j) = (k, l) Then trivially @2�i,j(✓)r�k,l(✓)� @2�k,l(✓)r�i,j(✓) = 0.
2nd case: ((i 6= k) and (j 6= l)) Then

[r�i,j ,r�k,l](✓) = (Ej+n,i+Ei,j+n)(vlek+uken+l)�(El+n,k+Ek,l+n)(vjei+uien+j) = 0�0.

3d case: i = k and j 6= l. Then as u 6= 0, there exists l0 2 {1, · · · , n} such that ul0 6= 0.

@2�i,j(✓)r�k,l(✓)� @2�k,l(✓)r�i,j(✓) = vlen+j � vjen+l

=
vl
ul0

r�l0,j(✓)�
vj
ul0

r�l0,l(✓),

2 span{r�i,j(✓)} = W�(✓).

4d case: ((i 6= k) and (j = l)) We treat this case in the exact same way than the 3d case.

Thus W� verifies condition (13) of Frobenius Theorem.

2d step: We show that dim(W�(✓)) = (n+m� 1). As u, v 6= 0 each of these vectors has at least
one nonzero entry. For simplicity of notation, and without loss of generality, we assume that u1 6= 0
and v1 6= 0. It is straightforward to check that (r�1,1(✓), (r�1,j(✓))j=2,··· ,m, (r�i,1(✓))i=2,··· ,n)
are n +m � 1 linearly independent vectors. To show that dim(W�(✓)) = (n +m � 1) is it thus
sufficient to show that they span W�(✓). This is a direct consequence of the fact that, for any i, j, we
have

r�i,j(✓) = vjei + uien+j =
vj
v1

(v1ei + uien+1) +
ui

u1
(u1en+j + vje1)�

vjui

u1v1
(u1en+1 + v1e1) ,

=
vj
v1

r�i,1(✓) +
ui

u1
r�1,j(✓) +

vjui

u1v1
r�1,1(✓).

F.2 An additional example beyond ReLU

In complement to Example 3.5, we give a simple example studying a two-layer network with a
positively homogeneous activation function, which include the ReLU but also variants such as the
leaky ReLU or linear networks.
Example F.2 (Beyond ReLU: Neural network with one hidden neuron with a positively homogeneous
activation function of degree one). Let � be a positively one-homogeneous activation function. In (6),
this corresponds to setting g(✓, x) =

Pr
i=1 ui�(hvi, xi) 2 R. Assuming hvi, xi 6= 0 for all i to avoid

the issue of potential non-differentiability at 0 of � (for instance for the ReLU), and in particular
assuming vi 6= 0, the function minimized during training can be factored via �(✓) = ( (ui, vi))ri=1
where

✓ := (u 2 R, v 2 Rd�1
� {0})

 
7! (ukvk, v/kvk) 2 R ⇥ Sd�1 ⇢ Rd. (22)

Proposition F.3. Consider d � 2 and �(✓) = ( (ui, vi))ri=1 where  is given by (22) on ⌦ := {✓ =
(u 2 Rr, V = (v1, . . . , vr) 2 Rm⇥r) : vi 6= 0}. We have dim(W�(✓)) = r(d� 1) and W� verifies
condition (21) of Frobenius Theorem (Theorem E.1), so each ✓ = (u, V ) 2 ⌦ admits a neighborhood
⌦0 such that there exists r (and no more) conserved function through W�|⌦0 .

As in Example 3.5, such candidate functions are given by hi : (ui, vi) 7! u2
i � kvik2. A posteriori,

these functions are in fact conserved through all W�.
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Proof of Proposition F.3. As in the proof of Proposition F.1 it is enough to prove the result for r = 1
hidden neuron. Note that here D = d. To simplify notations, we define �0, ...,�d�1 for ✓ = (u, v)
as:

�0(✓) = ukvk,
and for i = 1, ..., d� 1:

�i(✓) = vi/kvk.

1st step: explicitation of span{r�0, ...,r�d�1}. We have

@�(✓) =

0

BB@

kvk uv>/kvk

0(d�1)⇥1
1

kvkPv

1

CCA ,

where: Pv := Id�1 � vv>/kvk2 is the orthogonal projector on (Rv)? (seen here as a subset of Rd�1)
and its rank is d � 2. Thus dim(W�(✓)) = rank(@�(✓)) = d � 1 and span{r�0, ...,r�d�1} =
Rr�0 + (Rv)?.

2d step: calculation of the Hessians.

1st case: The Hessian of �i for i � 1. In this case, �i does not depend on the first coordinate u so we
proceed as if the ambient space here was Rd�1. We have already that for i � 1:

r�i(✓) = ei/kvk � viv/kvk
3

hence
@2�i = 3vivv

>/kvk5 � 1/kvk3
�
viId�1 + Vi + V >

i

�
,

where all columns of matrix Vi := (0, ..., v, 0, ..., 0) are zero except the i-th one, which is set to v.

2d case: The Hessian of �0. Since

r�0(✓) =
�
kvk, uv>/kvk

�>
.

we have

@2�0(✓) =

0

BB@

0 v>/kvk

v/kvk u
kvkPv

1

CCA .

3rd step: Conclusion.

1st case: i, j � 1 and i 6= j. We have:
@2�i(✓)r�j(✓)� @2�j(✓)r�i(✓),

= vj/kvk
4ei � vi/kvk

4ej 2 (Rv)?,
⇢ span{r�0(✓), ...,r�d�1(✓)}.

2d case: i � 1 and j = 0. We have:
@2�i(✓)r�0(✓)� @2�0(✓)r�i(✓),

= �2u/kvkr�i(✓),

2 span{r�0(✓), ...,r�d�1(✓)}.

In both cases, we obtain as claimed that the condition (21) of Frobenius Theorem is satisfied, and we
conclude using the latter.

G Proof of Proposition 3.7 and additional example

Proposition G.1. Assume that rank(@�(✓)) is constant on ⌦ and that W� satisfies (13). If t 7! ✓(t)
satisfies the ODE (2) then there is 0 < T ?✓init < T✓init such that z(t) := �(✓(t)) 2 Rd satisfies the
ODE ⇢ .

z(t) = �M(z(t), ✓init)rf(z(t)) for all 0  t < T ?✓init ,
z(0) = �(✓init),

(23)

where M(z(t), ✓init) 2 Rd⇥d is a symmetric positive semi-definite matrix.
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Proof. As z = �(✓) and as ✓ satisfies (2), we have:
.
z = @�(✓)

.
✓ = �@�(✓)r(f � �)(✓) = �@�(✓)[@�(✓)]>rf(z).

Thus, we only need to show M(t) := @�(✓(t))[@�(✓(t))]>, which is a symmetric, positive semi-
definite d⇥ d matrix, only depends on z(t) and ✓init. Since dimW�(✓) = rank(@�(✓)) is constant
on ⌦ and W� satisfies (13), by Frobenius Theorem (Theorem E.1), for each ✓ 2 ⌦, there exists a
neighborhood ⌦1 of ✓ and D� d0 independent conserved functions hd0+1, · · · , hD through (W�)|⌦0 ,
with d0 := dimW�(✓) = rank(@�(✓)). Moreover, by definition of the rank, for the considered
✓, there exists a set I ⇢ {1, . . . , d} of d0 indices such that the gradient vectors r�i(✓), i 2 I are
linearly independent. By continuity, they stay linearly independent on a neighborhood ⌦2 of ✓. Let
us denote PI the restriction to the selected indices and

✓0 2 RD
7�! �I(✓

0) := (PI�(✓
0), hd0+1(✓

0), ..., hD(✓0)) 2 RD

As the functions hi are independent conserved functions, for each ✓0 2 ⌦0 := ⌦1 \⌦2 their gradients
rhi(✓0), d0 + 1  i  D are both linearly independent and (by Proposition 2.5 and (8)) orthogonal
to W�(✓0) = range[@�(✓0)]> = span{r�i(✓) : i 2 I}. Hence, on ⌦0, the Jacobian @�I is an
invertible D ⇥D matrix. By the implicit function theorem, the function �I is thus locally invertible.
Applying this analysis to ✓ = ✓(0) and using that hi are conserved functions, we obtain that in an
interval [0, T ?✓init) we have

�I(✓(t)) = (PIz(t), hd+1(✓init), ..., hD(✓init)) (24)

By local inversion of�I this allows to express ✓(t) (and therefore also M(t) = @�(✓(t))[@�(✓(t))]>)
as a function of z(t) and of the initialization.

In complement to Example 3.8 we provide another example related to Example F.2.
Example G.2. Given the reparametrization � : (u 2 R, v 2 Rd�1

� {0}) 7! (ukvk, v/kvk) 2

R ⇥ Sd�1 ⇢ Rd (cf (22)), the variable z := (r, h) = (ukvk, v/kvk) satisfies (23) with:

M(z, ✓init) =

0

BB@

p
r2 + �2 01⇥k

0(d�1)⇥1
1

�+
p
r2+�2

Ph

1

CCA , where Ph := Id�1 � hhT /khk2 and � :=

u2
init � kvinitk

2.

H Proofs of results of Section 4

H.1 Proof of Proposition 4.2

Proposition H.1. Consider  : (U, V ) 7! U>U � V >V 2 Rr⇥r and assume that (U ;V ) has full
rank. Then:

1. if n+m  r, the function  gives (n+m)(r � 1/2(n+m� 1)) independent conserved
functions,

2. if n+m > r, the function  gives r(r + 1)/2 independent conserved functions.

Proof. Let write U = (U1; · · · ;Ur) and V = (V1; · · · ;Vr) then:  i,j(U, V ) =
hUi, Uji � hVi, Vji for i, j = 1, · · · , r. Then fi,j := r i,j(U, V ) =
(0; · · · ; 0;Uj

(i)

; · · · ;Ui
(j)

; 0; · · · ; �Vj
(i+r)

; · · · ; Vi
(j+r)

; · · · ; 0)> 2 R(n+m)r⇥1.

1st case: n+m  r. As (U ;V ) has full rank, its rank is n+m. In particular, U and V have a full
rank too. Without loss of generality we can assume that (U1, · · · , Un+m) are linearly independent,
and (V1, · · · , Vn+m) too. Then for all i > n + m,Ui 2 FU := span(U1, · · · , Un+m) and Vi 2

FV := span(V1, · · · , Vn+m). We want to count the number of fi,j that are linearly independent.

1. if i  j 2 [[1, n+m]], then all the associated fi,j are linearly independent together. There
are (n+m)(n+m+ 1)/2 such functions. Moreover, these functions generate vectors of
the form:

(A1; · · · ;An+m; 0; · · · ; 0;B1; · · · ;Bn+m; 0; · · · ; 0)
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where Ai 2 FU and Bi 2 FV .

2. if i 2 [[1, n+m]] and j 2 [[n+m+1, r]], then all of the associated fi,j are linearly independent
and the last ones are linearly independent together. We obtain (n+m)(r � (n+m)) more
functions. Moreover, these functions generate vectors of the form:

(0 · · · ; 0;An+m+1; · · · ;Ar;

0; · · · ; 0;Bn+m+1; · · · ;Br)

where Ai 2 FU and Bi 2 FV .

3. if i  j 2 [[n+m+1, r]], the associated fi,j are linearly dependent of thus already obtained.

Finally there are exactly (n+m)(r � 1/2(n+m� 1) independent conserved functions given by  .

2d case: n +m > r. Then all (Ui;�Vi) for i = 1, · · · r are linearly independent. Then there are
r(r + 1)/2 independent conserved functions given by  .

H.2 Proofs of other results

Proposition H.2. For every � 2 Rn⇥m denote S� :=

✓
0 �
�> 0

◆
, one has @�(U, V )> : � 2

Rn⇥m
7! S� · (U ;V ). Hence W� = span{A�, 8� 2 Rn⇥m

}, where A� : (U ;V ) 7! S� · (U ;V )
is a linear endomorphism. Moreover one has [A�, A�0 ] : (U, V ) 7! [S�, S�0 ]⇥ (U ;V ).

This proposition enables the computation of the Lie brackets of W� by computing the Lie bracket of
matrices. In particular, Lie(W�) is necessarily of finite dimension.
Proposition H.3. The Lie algebra Lie(W�) is equal to

⇢
(U ;V ) 7!

✓
In 0
0 �Im

◆
⇥M ⇥

✓
U
V

◆
: M 2 An+m

�

where An+m ⇢ R(n+m)⇥(n+m) is the space of skew symmetric matrices.
Remark H.4. By the characterization of Lie(W�) in Proposition H.3 we have that the dimension of
Lie(W�) is equal to (n+m)⇥ (n+m� 1)/2.

Proof. 1st step: Let us characterize W1 = span{W� + [W�,W�]}. Let �,�0
2 Rn⇥m, then:

[A�, A�0 ]((U, V )) = [S�, S�0 ]⇥ (U ;V ) =

✓
Y, 0
0, Z

◆
⇥

✓
U
V

◆
, (25)

with Y := ��0>
��0�>

2 An and Z := �>�0
��0>� 2 Am. Then:

W1 =

⇢
(U ;V ) 7!

✓
Y,X
X>, Z

◆
⇥

✓
U
V

◆
: X 2 Rn⇥m, Y 2 An, Z 2 Am

�
,

=

⇢
uM := (U ;V ) 7!

✓
In, 0
0,�Im

◆
⇥M ⇥

✓
U
V

◆
: M 2 An+m

�
.

2d step: Let us show that W2 = W1. Let M,M 0
2 An+m. Then:

[uM , uM 0 ] =

✓
In, 0
0,�Im

◆✓
M

✓
In, 0
0,�Im

◆
M 0

�M 0
✓

In, 0
0,�Im

◆
M

◆
=

✓
In, 0
0,�Im

◆
M̃,

with M̃ := M

✓
In, 0
0,�Im

◆
M 0

�M 0
✓

In, 0
0,�Im

◆
M 2 An+m.

Finally: Lie(W�) = W1 =

⇢
(U ;V ) 7!

✓
In, 0
0,�Im

◆
⇥M ⇥

✓
U
V

◆
: M 2 An+m

�
.

Eventually, what we need to compute is the dimension of the trace Lie(W�)(U, V ) for any (U, V ).

Proposition H.5. Let us assume that (U ;V ) 2 R(n+m)⇥r has full rank. Then:
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1. if n+m  r, then dim(Lie(W�)(U ;V )) = (n+m)(n+m� 1)/2;

2. if n+m > r, then dim(Lie(W�)(U ;V )) = (n+m)r � r(r + 1)/2.

Proof. Let us consider the linear application:

� : M 2 An+m 7!

✓
In, 0
0,�Im

◆
⇥M ⇥

✓
U
V

◆
,

where An+m ⇢ R(n+m)2 is the space of skew symmetric matrices. As range�(An+m) =
Lie(W�)(U ;V ), we only want to calculate rank�(An+m). But by rank–nullity theorem, we have:

dim ker �+ rank � = (n+m)(n+m� 1)/2.

1st case: n+m  r. Then as (U ;V ) has full rank n+m, � is injective and then rank�(An+m) =
(n+m)(n+m� 1)/2.

2d case: n + m > r. We write (U ;V ) = (C1; · · · ;Cr) with (C1, · · · , Cr) that are linearly
independent as (U ;V ) has full rank r. Let M 2 An+m such that �(M) = 0. Then M · (U ;V ) = 0.
Then we write M> = (M1; · · · ;Mn+m). Then as M ⇥ (U ;V ) = 0, we have that hMi, Cji = 0 for
all i = 1, · · · , n +m and for all j = 1, · · · , r. We note C := span

i=1,··· ,r
Ci that is of dimension r as

(U ;V ) has full rank r.

M1 must be in C? and its first coordinate must be zero as M must be a skew matrix. Then M1 lies
in a space of dimension n + m � r � 1. Then M2 must be in C? too, and its first coordinate is
determined by M1 and its second is null as M is a skew matrix. Then M2 lies in a space of dimension
n+m� r � 2. By recursion, after building M1, · · · ,Mi, Mi+1 must be in C? too, and its i first
coordinates are determined by M1, · · · ,Mi and its i+ 1-th one is null as M is a skew matrix. Then
Mi+1 lies in a space of dimension max(0, n+m� r � (i+ 1)). Finally the dimension of ker� is
equal to:

n+m�rX

i=1

(n+m� r � i) = (n+m� r � 1)(n+m� r)/2.

Then: rank�(An+m) = (n+m)r � r(r + 1)/2.

Thanks to this explicit characterization of the trace of the generated Lie algebra, combined with
Proposition 4.2, we conclude that Proposition 4.1 has indeed exhausted the list of independent
conservation laws.
Corollary H.6. If (U ;V ) has full rank, then all conserved functions are given by  : (U, V ) 7!
U>U � V >V . In particular, there exist no more conserved functions.

Proof. As (U ;V ) has full rank, this remains locally the case. By Proposition 4.3 the dimension
of Lie(W�)(U ;V ) is locally constant, denoted m(U, V ). By Theorem 3.3, the exact number of
independent conserved functions is equal to (n+m)r �m(U, V ) and that number corresponds to
the one given in Proposition 4.2.

I About Example 3.6

Proposition I.1. Let us assume that (U ;V ) 2 R(n+m)⇥r has full rank. If max(n,m) > 1 and r > 1,
then W� does not satisfy the condition (13).

Proof. Let us consider the linear application:

�0 : � 2 Rn⇥m
7!

✓
0,�
�>, 0

◆
⇥

✓
U
V

◆
.

By Proposition H.2, range�0(Rn⇥m) = W�(U ;V ). Thus, as by definition W�(U ;V ) ✓

Lie(W�(U ;V )), W� does not satisfy the condition (13) if and only if dim(W�(U ;V )) <
dim(LieW�(U ;V )).
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1st case: n+m  r. Then as (U ;V ) has full rank n+m, �0 is injective and then rank�0(Rn⇥m) =
n⇥m.

Thus by Proposition H.5, we only need to verify that: n ⇥ m < (n + m)(n + m � 1)/2 =:
LieW�(U ;V ). It is the case as max(n,m) > 1.

2d case: n + m > r. We write (U ;V ) = (C1; · · · ;Cr) with (C1, · · · , Cr) that are linearly
independent as (U ;V ) has full rank r. Let � 2 Rn⇥m such that �0(�) = 0. Let us define the
symmetric matrix M by:

M :=

✓
0,�
�>, 0

◆
. (26)

Then M · (U ;V ) = 0. Then we write M> = (M1; · · · ;Mn+m). Then as M ⇥ (U ;V ) = 0, we
have that hMi, Cji = 0 for all i = 1, · · · , n+m and for all j = 1, · · · , r. We note C := span

i=1,··· ,r
Ci

that is of dimension r as (U ;V ) has full rank r.

For all i = 1, · · · , n, Mi must be in C? and its n first coordinate must be zero by definition (26). Then
Mi lies in a space of dimension max(0, n+m� r � n). For all j > n, Mj are entirely determined
by {Mi}in by definition (26). Finally the dimension of ker�0 is equal to: n⇥max(0,m� r). Then:
dim(W�(U ;V )) = rank�0(Rn⇥m) = nm� n⇥max(0,m� r).

Thus by Proposition H.5, we only need to verify that: nm� nmax(0,m� r) < (n+m)r � r(r +
1)/2 =: LieW�(U ;V ).

Let us assume m < r. Then by looking at f(r) := (n + m)r � r(r + 1)/2 � nm =
dim(LieW�(U ;V )) � dim(W�(U ;V )) for r 2 {m + 1, · · · , n + m � 1} =: In,m, we have:
f 0(r) = (n +m) � 1/2 � r > 0 (as n +m > r is an integer), so f is increasing, so on In,m, we
have (as r > m): f(r) > f(m) = (n+m)m�m(m+ 1)/2� nm = m2

�m(m+ 1)/2 � 0 as
m � 1.

Let us assume m � r. Then

dim(LieW�(U ;V ))� dim(W�(U ;V )) = (n+m)r � r(r + 1)/2� (nm� n(m� r)),

= mr � r(r + 1)/2,

� r2 � r(r + 1)/2 as m � r,

> 0 as r > 1.

Thus dim(LieW�(U ;V ))� dim(W�(U ;V )) > 0.

J Details about experiments

We used the software SageMath [29] that relies on a Python interface. Computations were run in
parallel using 64 cores on an academic HPC platform.

First we compared the dimension of the generated Lie algebra Lie(W�)(✓) (computed using the
algorithm presented in Section 3.3) with D �N , where N is the number of independent conserved
functions known by the literature (predicted by Proposition 4.1 for ReLU and linear neural networks).
We tested both linear and ReLU architectures (with and without biases) of various depths and widths,
and observed that the two numbers matched in all our examples.

For this, we draw 50 random ReLU (resp. linear) neural network architectures, with depth drawn
uniformly at random between 2 to 5 and i.i.d. layer widths drawn uniformly at random between 2 to
10 (resp. between 2 to 6). For ReLU architectures, the probability to include biases was 1/2.

Then we checked that all conservation laws can be explicitly computed using the algorithm presented
in Section 2.5 and looking for polynomial solutions of degree 2 (as conservation laws already known
by the literature are polynomials of degree 2). As expected we found back all known conservation
laws by choosing 10 random ReLU (resp. linear) neural network architectures with depth drawn
uniformly at random between 2 to 4 and i.i.d. layer widths drawn uniformly at random between 2 to
5.
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