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This document provides supplementary materials omitted from the main paper owing to space constraints. In Section
1 details the model architecture. In Section 2 we describe the analysis of models with respect to STE and ETE and
a details analysis of the ablation study, we included additional visualizations in Section 3. Section 4 consists of a
discussion on limitations.

1 DETAILS OF MODEL ARCHITECTURE

The following table summarises the parameters of our transformer encoder. Both the Transformer Encoders have
the same architecture just the input shapes are different. For the Shared Transformer Encoder Model, the number of
parameters hence is half the number of parameters of the Explicit Transformer Encoder.

Table 1: Layer details and parameters

Layer (type) Output Shape Param # Tr. Param #

LayerNorm-1 [3136, 512] 1,024 1,024

MultiheadAttention-2 [3136, 512], [3136, 5610] 1,048,576 1,048,576

LayerNorm-3 [3136, 512] 1,024 1,024

Linear-4 [3136, 512] 262,144 262,144

LayerNorm-5 [3136, 512] 1,024 1,024

Linear-6 [3136, 512] 262,144 262,144

Total params: 1,575,936 1,575,936

2 ABLATION STUDY ON STE AND ETE

Table 2 represents a comparison of two versions of our model, one with a shared transformer encoder (STE) and the
other separately (ETE). The former uses the same weights in both the video and audio transformers for the respective
query, key, and value matrices, while also sharing the same weights for the fully connected layer. The latter has separate
query, key, and value matrices for the audio and video parts, thus allowing for controlled independence in learning the
audio and video representations. The Shared Weights model also enforces the sharing weights of the subsequent fully
connected layers, enforcing a reduction in the number of learning parameters.

Evidently, in almost all of the parameters the Explicit Transformer Encoder Model(ETE), which is our final proposal,
performs better than the Shared Transformer Encoder Model(STE), as it allows for deeper learning representations of
the Audio and Video Pipeline, while still maintaining a certain coherence between the generations.

The primary goal of the model is to generate the audio as per the input audio profile and the video as per the source
image along with the audio-visual synchronization. Hence, the model aims to learn the personal characteristics that are
provided as inputs via the source image and reference audio profile. The cross-attention mechanism enables the audio
and video models to synchronize their outputs, ensuring that the generated audio and video components are temporally
aligned.

To ensure that the proposed cross-attention does not add a bias to audio or video generation, specific feature engineering
by multi-latent entanglement is performed. As we can see in Fig 2, the encoded features from the prompt text and audio
samples i.e. the output of the word2vec, HiFiGAN encoder and BPE are passed along with the cross attention from
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Table 2: Ablation results on STE and ETE for different datasets.

Dataset Weights FAD (↓) MCD (↓) STOI (↑) FID (↓) FVD (↓) FVMD (↓)

VoxCeleb Shared TE 193.42 67.06 0.124 34.21 39.97 2720.41

Explicit TE 241.75 75.39 0.17 42.88 49.78 4192.07

FakeAVCeleb Shared TE 174.68 56.47 0.10 47.25 49.65 2284.69

Explicit TE 171.52 55.12 0.19 47.24 49.15 2263.54

CelebV-HQ Shared TE 246.53 87.29 0.11 35.05 44.30 2658.90

Explicit TE 244.83 85.76 0.18 34.01 43.67 2743.29

HDTF Shared TE 108.36 49.72 0.12 11.56 15.94 1785.62

Explicit TE 106.43 44.05 0.15 11.72 15.58 1784.16

prompt guided transfer to the GPT2 decoder and then to HiFi generator to generate the voice profile specific audio
output. Similarly, for video pipeline output latent embedding on audio-visual features along with the visual tokens is
passed to the reference net that can serve as a compact and compressed representation of facial animation sequences in
the high-dimensional space which can be further decoded to get the source-image specific video.

From the ablation, we can also find that biases are handled by the proposed model, Shared transformer encoders (STE)
perform worse than the explicit transformer encoders (ETE). Also, ablation with no video tokens in the Prompt Guided
transformer the temporal comprehensiveness of the audio and synchronization matrix is worse. We can also observe
that the synchronization matrix gets worse w/o attention.

3 ADDITIONAL QUALITATIVE OUTPUTS

The following section presents additional outputs that prove our model’s versatility and quality of data generation.
Figures 1 show that we are able to generate very high-definition output videos, provided that the input driving frame is
a high-resolution image. Our model maintains the resolution and doesn’t add noise to the image over the duration of the
video, as evidenced by the outputs: Frame-1, Frame-25, Frame-50, and Frame-100 of our generated video.

4 LIMITATIONS

4.1 DRIVING IMAGE

While we have been able to solve issues that most video-generative models face, like lip-sync, and audio-video
coherence, there are still some problems to tackle.

4.2 INPUT AUDIO PROFILE

We have observed that any case of corrupt input audio profile(feeble, unclear, or noisy) results in an output with very
little audio. While the frames are generated correctly still, the model requires an adequately intelligible audio profile
input.
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Figure 1: The outputs of high definition quality.

Figure 2: Driving Images like this example with closed eyes result in a lot of generated frames having closed eyes, for it
is difficult to assume the eye characteristics for a particular source image.

Figure 3: In rare cases of generated videos, the eyes always point to a single direction, which is slightly un-human-like.
Although this is rare, it can be pointed out as a limitation to the model in a few cases which doesn’t involve the driving
image subject posing directly at the camera.
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Figure 4: Feeble output audio generation when input audio profile is very noisy or blank.
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