Published as a conference paper at ICLR 2025

UNVEILING THE MAGIC OF CODE REASONING
THROUGH REFLECTIVE HYPOTHESIS
DECOMPOSITION AND AMENDMENT

Yuze Zhao!, Tianyun Ji'*, Wenjun Feng'*, Zhenya Huang' >, Qi Liu' 2,
Zhiding Liu', Yixiao Ma', Kai Zhang', Enhong Chen'!

IState Key Laboratory of Cognitive Intelligence,

University of Science and Technology of China

2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
yuzezhao@mail.ustc.edu.cn huangzhy@ustc.edu.cn

ABSTRACT

The reasoning abilities are one of the most enigmatic and captivating aspects of
large language models (LLMs). Numerous studies are dedicated to exploring and
expanding the boundaries of this reasoning capability. However, tasks that em-
body both reasoning and recall characteristics are often overlooked. In this paper,
we introduce such a novel task, code reasoning, to provide a new perspective for
the reasoning abilities of LLMs. We summarize three meta-benchmarks based
on established forms of logical reasoning, and instantiate these into eight specific
benchmark tasks. Our testing on these benchmarks reveals that LLMs continue
to struggle with identifying satisfactory reasoning pathways. Additionally, we
present a new pathway exploration pipeline inspired by human intricate problem-
solving methods. This Reflective Hypothesis Decomposition and Amendment
(RHDA) pipeline consists of the following iterative steps: (1) Proposing potential
hypotheses based on observations and decomposing them; (2) Utilizing tools to
validate hypotheses and reflection outcomes; (3) Revising hypothesis in light of
observations. Our approach effectively mitigates logical chain collapses arising
from forgetting or hallucination issues in multi-step reasoning, resulting in per-
formance gains of up to 3x. Finally, we expand this pipeline by applying it to
simulate complex household tasks in real-world scenarios, specifically in Virtu-
alHome, enhancing the handling of failure cases. We release our code and all of
results at https://github.com/TnTWoW/code_reasoningl

1 INTRODUCTION

Large Language Models (LLMs), which are trained on billions of tokens, have demonstrated im-
pressive reasoning abilities in complex tasks (Brown et al., 2020; Wei et al., 2022; Kojima et al.,
2022; |OpenAll [2023). However, it is evident that as potential fuzzy retrieval systems or parame-
terized knowledge compression systems (Xie et al., |2021), LLMs perform better on System 1 tasks
than on System 2 tasks (Kahneman, 2011; Bengio, 2019; [Yao et al., [2023a; Weston & Sukhbaatar,
2023} Liu et al.| 2023a)). Specifically, LLMs excel in intuitive memory retrieval tasks, but continue
to face significant challenges with tasks requiring rational reasoning (Kambhampatil 2024)).

From the perspective of human cognitive psychology, reasoning can be viewed as a process of
memory retrieval, in which people retrieve relevant information from memory and use it to make
inferences (Kyllonen & Christall, [1990; Siif§ et al., 2002; Hayes et al.| 2014} |[Feeney & Thomp-
son, 2014 Hardman & Cowanl [2015)). For example, |Haidt (2001) proposed that when individuals
engage in moral reasoning, they typically draw on their prior knowledge from social and cultural
contexts. Similarly, studies involving animal lesions and human neuroimaging have confirmed that
the hippocampus, which is primarily associated with memory, also plays a crucial role in reasoning

“Equal contribution
"Corresponding author

https://github.com/TnTWoW/code_reasoning

Published as a conference paper at ICLR 2025

SYSTEM 1 SYSTEM 2

/—- EMOTIONAL

LOGICAL

FAST / AUTOMATIC SLOW / EFFORTFUL

Recall Reasomng
: mecl — @
X == def fn() szea — @
p— - Tl “Two groups of blocks fioct — @
—_ - .-E move tawards the szea bin - 00@®
— III

— :enter o mccl bin - 9 OO
*python fioct bin —

Symbolic

X

Translation \Arithméytic/

Figure 1: Code reasoning is a category of tasks that incorporates logical reasoning into code, aiming
to solve programming problems through logical reasoning. These tasks require a balance between
background knowledge and thinking span, placing greater emphasis on the collaborative functioning
of both System 1 and System 2 thinking.

abilities (Zeithamova et al., 2012). Therefore, memory and reasoning are interdependent, with con-
siderable overlap between the two, rendering the distinction between them somewhat arbitrary (Heit
et al.| [2012; |Liu et al., [2023b).

‘We believe that, similar to humans (Strachan et al.,|[2024; [Liu et al., [2024b; [Lin et al., 2024), LLMs
do not exhibit a clear boundary between memory and reasoning (Schaeffer et al.l 2024} Razeghi
et al) [2022). However, tasks that lie at this intersection are often overlooked in research. Here,
we propose a novel task to explore the capability boundaries of LLMs: Code Reasoning. Code
reasoning encompasses a category of tasks that demonstrate logical reasoning through code and
address problems in a systematic manner. As illustrated in Figure [I] we position some tasks along
an axis that reflects 1) the degree of reliance on prior knowledge (Recall) and 2) the extent to which
prior knowledge is applied to the current context (Reasoning). We position the code reasoning
task between memory and reasoning. On one hand, the highly structured nature of code requires the
model to learn syntax from pre-training data, enabling it to recall relevant information during solving
a problem. On the other hand, generating code solutions necessitates the model’s understanding of
the problem and context, involving reasoning to produce appropriate solutions.

In this paper, we introduce code reasoning, a task that formalizes reasoning steps into a programming
language and offloads the computation process to the compiler. To explore different aspects of
code reasoning, we summarize three meta-benchmarks based on existing forms of logical reasoning:
inductive code reasoning, deductive code reasoning, and abductive code reasoning.

Inductive code reasoning involves deriving broad generalizations from a series of observations,
demonstrating the ability to infer rules from examples and generate programs to meet input-output
mapping. Deductive code reasoning starts from premises and derives valid conclusions, focusing on
the model’s capacity to understand a program’s intermediate states and reasoning step by step. Ab-
ductive code reasoning seeks the simplest and most likely explanation based on a set of observations,
highlighting the model’s ability to abstractly understand a function’s purpose.

We concretize these three meta-benchmarks into eight specific benchmarks. Based on these eight
benchmarks, we evaluate the performance of existing models in code reasoning. Due to data sparsity,
we find that current state-of-the-art LLMs still struggle to achieve satisfactory results in solving such
problems. To enhance the reasoning process, we implement a Reflective Hypothesis Decomposition
and Amendment (RHDA) pipeline. This pipeline is iterative, encompassing hypothesis decomposi-
tion, execution verification, and amendment submission. Specifically, we first guide the LLM to for-
mulate initial hypotheses based on complex observations and decompose these into sub-hypotheses.
These sub-hypotheses are then compiled into executable functions through a translator, enabling di-
rect application to the observations, followed by validation using external tools. Subsequently, based
on the execution results and observations, the LLM submits amendments to reflect on and refine the
issues within the sub-hypotheses.

Published as a conference paper at ICLR 2025

Our experimental results indicate that RHDA methods effectively mitigate reasoning failures caused
by data sparsity. With the same or even lower overhead, this method achieved performance im-
provements of up to three times compared to baseline methods. Finally, we extend this pipeline to
complex, simulated real-world household tasks VirtualHome (Puig et al., |2018; 2020), guiding the
LLM to complete a series of intricate operations.

2 META-BENCHMARK

We describe the general process of code reasoning as the transformation from Input Z and Program P

to Output O, represented as 7 P, . Inductive code reasoning is concretized as the Programming
by Example (PBE) task. In this task, a neural program synthesis model M searches the execution
space to find a program that best satisfies all given input-output specifications. We donate this meta-
benchmark as M(Z, ©) — P. Deductive code reasoning is exemplified in tasks that simulate the
program execution process. In this task, a neural simulation compiler model M tracks the program’s
execution and records intermediate states, gradually deriving the final valid output. We denote this
meta-benchmark as M(Z,P) — O. Abductive code reasoning is concretized as input prediction
tasks. This task requires the neural understanding model M to form an abstract-level understanding
of function’s behavior and perform abductive inference based on the given program and output. We
represent this meta-benchmark as M (O, P) — Z. The details of the benchmarks are provided in
the Appendix [C]

2.1 INDUCTIVE CODE REASONING

Inductive code reasoning can be represented as M(Z, O) — P and is concretized as a PBE task (Qiu
et al} |2024; |Shi et al., [2024). PBE is a program synthesis task designed to help end-users, particu-
larly non-programmers, create scripts to automate repetitive tasks (Gulwani, [2016)). Based on input-
output specifications, PBE systems can synthesize a program in either a general-purpose language
(GPL) or a domain-specific language (DSL). Inductive code reasoning encompasses four challeng-
ing PBE tasks, two of which are GPL tasks: List Function (Rule, 2020) and MiniARC (Kim et al.,
2022), while the other two are DSL tasks: RobustFill (Devlin et al [2017) and DeepCoder (Balog
et al.,|2016)). GPL tasks are relatively complex, allowing the model to solve problems in a more flex-
ible manner. In contrast, DSL tasks require the model to quickly learn the syntax of DSL through
few-shot learning and address relatively simpler problems.

List Function. The List Function task was originally designed to investigate how humans learn
the concept of computable functions that map lists to lists. Given input and output specifications in
the form of lists, the model generates GPL rules that conform to these specifications. For example,
with an input specification of [2, 4, 8, 10] and an output specificationof [3, 5, 9, 11],
we expect the resulting rule to be lambda x : x + 1

MiniARC. MiniARC is a compressed 5x5 version of the Abstraction and Reasoning Cor-
pus (Chollet, 2019; [Moskvichev et al., 2023), designed to assess imaginative and reasoning abil-
ities. MiniARC balances the length of the input-output pairs with the difficulty of the problems.
The specifications are 5x5 2D grids, where the numbers represent blocks of specific colors. The
model must find valid problem-solving paths (such as color swapping, row flipping) to achieve the
transformation from input to output.

RobustFill. RobustFill is a string manipulation task where the model is expected to perform
a combination of atomic operations, such as extracting a substring from position k; to ko us-
ing SubString(ki, k1), to achieve generalization. As an example, a program ToCase (Lower,
SubStr (1, 3)) converts full month names (January, April) to their abbreviations (jan, apr).

DeepCoder. The DeepCoder task involves using DSL to perform operations on integer lists. In
DeepCoder, each line represents a subroutine that performs atomic operations on previous vari-
ables and assigns the results to new variables. The result of the final line is the program’s out-

"For conciseness while maintaining generality, we will use lambda expressions to represent a program.

Published as a conference paper at ICLR 2025

put. For example, program a < [int] | b < FILTER(<0) a | c ¢ MAP(%4) b |
d ¢ SORT ¢ | e < REVERSE b (where “|” denotes subroutine separator.) transforms the
input (-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11] into the output [-12,
-20, -32, -36, -68]. We provide detailed RobustFill and Deepcoder DSLs in Appendix [A]

2.2 DEDUCTIVE CODE REASONING

Deductive code reasoning refers to the process of deriving a sound inference O by reasoning from
the given premise Z, assuming the validity of the argument P. Deductive code reasoning can be
instantiated as an output prediction task (Gu et al.| 2024)). Based on the given premise, the out-
put prediction requires the LLM to simulate a compiler (Kim et al., |2024b), executing step by
step until it arrives at a valid conclusion. For example, given a program P = lambda text,
value: '’ .join(list (text) + [value]) and inputs text = ‘bcksrut’, b =
‘g’ , the output prediction from LLM should be ‘bcksrutqg’.

2.3 ABDUCTIVE CODE REASONING

Starting from existing facts P and O, deriving the most reasonable and optimal explanation 7
is referred to as abductive code reasoning. This meta-benchmark can be framed as an input
prediction task. Given the provided facts, the input prediction requires the LLM to backtrack
through the program’s execution process to recover the potential inputs. In cases where multi-
ple possible inputs exist, the model should apply Occam’s Razor and return the simplest input.
For example, given a program P = lambda nums: nums + [nums[i % 2] for i in
range (len (nums))] and outputs (-1, 0, O, 1, 1, -1, 0, -1, O, -117,theinput
prediction from LLM should be [-1, 0, 0, 1, 1].

Deductive code and abductive code reasoning can be regarded as opposite processes; therefore,
we selected two identical and representative datasets, CRUXEval (Gu et al., |2024) and Live-
CodeBench (Jain et al.| 2024)), as benchmarks to validate these two capabilities.

CRUXEval. CRUXEval is a benchmark designed to evaluate code understanding and execution.
Many models that achieve high scores on HumanEval (Chen et al., 2021)) do not show the same level
of improvement on the CRUXEval benchmark. This benchmark includes 800 functions along with
their corresponding inputs and outputs.

LiveCodeBench. LiveCodeBench is a dynamically updated benchmark sourced from competi-
tion platforms. Each problem is timestamped, and we selected data from October 2023 (later than
GPT-40 training) to March 2024 (the most recent), ensuring there is no data leakage and thereby
guaranteeing the model’s generalization performance.

3 CODE REASONING WITH HYPOTHESIS DECOMPOSITION AND
AMENDMENT

We aim to generate a reliable reasoning process for problem-solving by establishing a problem-
solving pathway f : X —). For a given task 7 and the seen specifications/observations X2, the
pathway f, should lead to a seen valid solution)7 through a chain of reasoning. We expect this
pathway f to have sufficient generalization capabilities to handle unseen specifications/observations
X}Y. To this aim, we employ a process involving hypothesis decomposition, execution verification,
and amendment submission to iteratively explore and refine the reasoning pathway. We first establish
an initial hypothesis h° € X* based on observations x5 € X, where ¥* is the closure form
of LLM’s vocabulary. This initial hypothesis h° serves as a preliminary solution pathway to the
problem. Given the complexity of many problems, we decompose the hypothesis 2° into simpler
sub-hypotheses h° <= {h9 ,hJ R ,..}. A translator function g : ¥* — X%, which maps
the hypothesis space X* into an executable function space X%, is then used to ‘compiled’ the sub-
hypotheses h° into an executable function €. This executable function is directly applicable to the

observations z£, allowing for the derivation of conclusions y?, that is:

ys = g(h%)(z%). (1)

Published as a conference paper at ICLR 2025

Task: Inductive (a) Hypothesis Decomposition

Example 1

(b) Execute & Verify

Example 1
EE BN

Hypothesis
Decomposition
[Step 1]: Identify the position # Step 3: Adjust the column count
Translator g
of '5' inthe input matrix. values
_— X
[Step 2]: Count the number adjusted_counts = []
of'5's in each column. :@ for count in column_counts:
[Step 3]: Adjust the column i @ = 28
countvalues adjusted_counts.append(4)
e elif count == 3:
[Step 4]: Fill each row of the m .
adjusted_counts.append(2
output grid with the adjusted ¢ I - (EaTek-)

Executable function e

L]
Example 2
]|

y—x

else: Actual Expected
n rvation column counts. adjusted_counts.append(2)

Seen Observatio Output Output
(c) Amendment Submission (d) Feedback * N (f) Validation

Polished Executable function e anm E’ﬁ"mple 1 Example 3
Hypothesis # Step 3: Adjust the column count values H

[Step 1]: Identify the position adjusted_counts = []]
of '5' inthe input matrix. for count in column_counts: | [|

Ly

[Step 2]: Count the number
of '5's in each column.
[Step 3]: Adjust the column
countvalues, possibly by
increasing or decreasing by
specific amounts.

if count == °:
adjusted_counts.append()

elif count == 3:
adjusted_counts.append(2)

10 count == :
adjusted_counts.append()

EEEEN ~ EEEEN
HEEEE NEEEER

1if == 2
[Step 4]: Fill each row of the o a;;::ted ctz)unts.append('W) L
output grid with the adjusted else: - Actual Expected Unseen Observation
column counts. adjusted_counts.append(9) Output Output

Figure 2: An overview of pipeline to solve code reasoning task. We decompose the hypothesis and
generate executable functions step by step. After comparing the results with the seen observations
and receiving feedback, we propose amendments, reflect on potential errors at each step, and gener-
ate revised hypotheses. This process is repeated until a valid problem-solving pathway is discovered.
For concise expression, we show partial code snippets.

Feedback F(y2,y?) is used to evaluate the conclusions drawn from the current hypothesis, guiding
the LLM to reflect on its sub-hypotheses. Through this iterative process of reflection, the model gen-
erates a new hypothesis h' for the next iteration. Finally, the problem-solving pathway f is applied
to unseen observations X, and the model’s generalization performance is assessed by measuring
its accuracy:

1
ace, =] Z 1[f(z¥) = y2]. (2)

T pucyu
TLEAY

The preceding section presents a unified framework for the hypothesis decomposition and amend-
ment method. However, the implementation specifics differ across various tasks. In the following
sections, we will introduce these task-specific variations in detail.

Hypothesis Decomposition. We recognize that complex logical reasoning problems are difficult
to encapsulate in a single reasonable hypothesis, which can adversely affect the performance of
LLMs. Therefore, we require the LLM to decompose its hypotheses. Specifically, given an obser-
vation z7, the LLM gradually presents corresponding hypotheses step by step. For inductive code
reasoning, hg represents the step-by-step hypothesis of the input-to-output transformation rules. For
deductive and abductive code reasoning, hg refers to the step-by-step hypothesis regarding the func-
tionality of the program.

Execution Verification. After obtaining the hypothesis, we need to apply it to the observations.
However, hypotheses are often not directly usable, so we need to convert the decomposed hypothesis
into an executable function e through a translator g. For inductive code reasoning, the executable
function is a program; for deductive and abductive code reasoning, the executable function is the
predicted output and input, respectively. These three types of task are then sent to a compiler to
obtain the actual execution results, and the feedback generated by the compiler is provided to the
LLM to help it further refine and adjust the sub-hypotheses.

Amendment Submission. During the amendment submission stage, there are no significant dif-
ferences in handling the three tasks. The LLM receives validation feedback from the tools and
generates amendments based on this feedback, reflecting on possible issues in the previous hypothe-

Published as a conference paper at ICLR 2025

Table 1: RHDA method on inductive code reasoning task. 7' refers to the maximum number of
iterations. [V refers to the number of candidates.

Method Accuracy Task Accuracy
List Func MiniARC RobustFill Deepcoder List Func MiniARC RobustFill Deepcoder

10 64.85 28.21 61.74 23.78 38.00 13.08 21.74 10.42
PoT 44.90 10.90 37.39 30.90 33.60 8.46 21.74 19.79
CoC 42.45 10.90 31.30 26.39 34.40 4.62 13.04 13.54
SC (N=3) 52.95 12.31 46.09 37.85 41.20 9.23 26.09 26.04
SR (1=2) 51.10 10.26 41.74 36.81 41.60 8.46 21.74 25.00
w/o Sub-Hyp 4245 7.95 40.87 18.05 33.20 4.62 21.74 9.37
w/o Amend 47.10 8.46 35.65 30.21 36.40 6.92 17.39 19.79
T=2, N=1 51.05 12.56 43.48 38.89 41.20 10.77 30.43 23.96
T=3, N=1 53.20 14.10 47.83 38.19 44.00 11.54 30.43 26.04
T=2, N=3 58.35 19.74 54.78 43.06 48.80 13.85 34.78 29.17

ses. The reflection process involves revising each sub-hypothesis individually, forming an updated
hypothesis by <= {h} o hl . hl ,» -}~ This process ensures that each sub-hypothesis is adjusted
to better align with the observations and validation results, gradually improving the reasoning path-

way’s coherence and accuracy.

4 EXPERIMENTS

Experimental Setup. We utilize the latest and most advanced model, gpt-40-2024-08-06, as the
backbone LLM for all our experiments. We report the results using Llama-3.1-70B-Instruct, Qwen-
max (qwen-max-2024-09-19) (Bai et al., [2023)), Claude 3.5 (claude-3-5-sonnet-20240620) in Ap-
pendix [B] Following the methodology of [Qiu et al.| (2024), we set the temperature to 0.7. We report
results using several methods: input-output (I0) prompting, standard prompting, Chain of Thought
(CoT) (Wei et al. [2023)), Program of Thought (PoT) (Chen et al.l [2023)), Chain of Code (CoC) (L1
et al.,2024])), Self-Consistency (SC) (Wang et al.,|2023c) and Self-Refine (SR) (Madaan et al.,|2024),
all implemented with 2-shot learning For our proposed process, we employ 0-shot prompts, allow-
ing the LLM to explore problem-solving pathways in a more flexible manner. We provide detailed
prompt templates in Appendix

4.1 INDUCTIVE CODE REASONING

For inductive code reasoning, we establish four baseline methods. The Input-Output (I0) prompt-
ing requires the LLM to predict outputs based on all seen observations and an unseen input. The
Program of Thought (PoT) method generates and executes programs to derive outputs. The CoC
method prompts the LLM to utilize pseudocode for reasoning in output prediction. The SC method
builds upon PoT by sampling multiple programs and selecting the one that demonstrates optimal
performance on seen observations. Furthermore, since each example may contain multiple unseen
observations, we adopt the approach from (Qiu et al., 2024) to define task accuracy externally. An
example is deemed passed only when all unseen observations within it pass; thus, the proportion of
passed examples reflects the task accuracy. The experimental results are presented in Table

The results demonstrate that the RHDA method achieves optimal performance across four bench-
marks, with task accuracy exceeding that of the second-best methods by 18.45%, 5.89%, 33.31%,
and 12.02%, respectively. However, we observe that RHDA appears to underperform compared to
IO prompting. This is because the IO prompt does not generate a hypothesis that satisfies all ob-
servations but instead predicts the output for a single input. A successful prediction for a single
instance does not generate a hypothesis that satisfies all observations, resulting in a high prediction
accuracy but a relatively low task accuracy.

Ablation Study. We introduce two variants to separately validate the effectiveness of hypothesis
decomposition and amendment submission. The first variant does not require the LLM to decompose

2Not all methods are suitable for these three meta-benchmarks, thus we selected the most appropriate meth-
ods for each benchmark.

Published as a conference paper at ICLR 2025

hypotheses, referred to as w/o Sub-Hyp. The second variant, termed w/o Amend, indicates that the
model no longer modifies its hypotheses through reflection. The experimental results presented in
Table[T] show that the performance of these two variants declined by 25.39% to 67.88% and 19.28%
to 57.14%, respectively. This finding suggests that the introduction of sub-hypotheses is a critical
step, as it simplifies complex problems, reducing the workload for the subsequent translator g while
also enabling individual amendments to each sub-hypothesis. Nonetheless, the reflection process is
equally important. Our results align with previous research (Zhao et al., 2024} [Olausson et al.} 2024}

Peng et al.| [2023) indicating that rational reflection can significantly enhance performance.

4.2 DEDUCTIVE CODE REASONING

For deductive code reasoning, we select standard Typle 2: RHDA method on deductive code rea-
prompting, CoT, SC, SR and CoC as benchmark soning task. 7T refers to the maximum number

methods. The experimental results are presented of jterations. NV refers to the number of candi-
in Table[2] These results indicate that the CoT and gates.

CoC methods significantly enhanced the accuracy CRUXEval LiveCodeBench
of reasoning outcomes by guiding the model to

think step-by-step about function capabilities. Our gm;dard ggz; géii
proposed method advances this further, achiev- Sg N=3) 71.12 36.27
ing optimal performance with a single round of SR (T;Z) 80,38 63.73
amendments, resulting in an improvement of up CoC 85.62 81.37
to 104.37% comp.ared with baseline method. A /o Amend 26,62 7129
horizontal comparison of the two datasets revealed T=2. N=1 90.62 84.16

that, due to the absence of LiveCodeBench data
in internet corpora, the performance with standard
prompts showed a marked advantage, with the SC method amplifying this gap. Notably, the com-
bination of CoT, CoC, and hypothesis decomposition and amendment enabled the LLM to exhibit a
substantial degree of reasoning and generalization ability, nearly solving all presented problems.

4.3 ABDUCTIVE CODE REASONING

For abductive code reasoning, we employ the
same baseline methods as those used for de- | o Rk
ductive reasoning. The experimental results are 700
presented in Figure 3] Compared to deduc- :
tive reasoning, abductive reasoning involves a
reverse thinking process, which presents sig-
nificant challenges. The LLM cannot derive
the program’s intermediate states through de-
duction and must first establish an abstract-
level understanding of the function’s behav-
ior before proceeding with abduction. On the
CRUXEval dataset, the performance decline
for abductive reasoning ranged from 8.20% to ol
25.52%. However, the hypothesis decomposi- Standard CoT SC(N=3) SR(T=2) ~ CoC Sublyp T=2,N=1
tion and amendment approach demonstrate ro-

bustness, as the change in reasoning modes re- Figure 3: RHDA method on abductive code rea-
sulted in only minimal performance degrada- soning task. 7" refers to the maximum number of
tion (8.20%) while still outperforming baseline iterations. [V refers to the number of candidates.
methods by 10.02% to 31.89% on the CRUX-

Eval dataset and 7.35% to 40.39% on the LiveCodeBench dataset. A horizontal comparison of the
two datasets revealed a trend similar to that observed in deductive reasoning, with an overall perfor-
mance decline on the LiveCodeBench dataset, suggesting a complex relationship between reasoning
and recall.

83.75

Accuracy (%)

4.4 QUALITATIVE ANALYZE

We select some cases to conduct an in-depth exploration of the quality of RHDA.

Published as a conference paper at ICLR 2025

Table 3: We compare the results obtained using the sub-hypothesis decomposition method with those
obtained without it. The results without hypothesis decomposition are presented at the top of the
table, while those with hypothesis decomposition are shown below. Benchmark: MiniARC-1ID26.

Observations Hypothesis Executable Function
No Sub Hypothesis: def fn(matrix):

For a given 5x5 matrix input, if len(matrix) != 5 or any(len(row) != 5 for row in matrix):
S‘hlft the ﬁl_gt row to the las‘t TOW. raise ValueError ("Input mu b 5 matrix")
the second row to the fourth row, result = [[0]+5 for _ Oy

the third row to the third row re;;;t[o

(unchanged), the fourth row to the result[1]
second row, and the fifth IESU%Z %}
. resu
row to the first row. Thls‘ rotates result (4]
the rows up by two positions. return result
def fn(grid):
Sub Hypothesis‘ ;;o;x;;éx;;x;;ws if any(row)]

Step 1: Identify the non-zero rows.
Step 2: Move non-zero rows to the bottom.
Step 3: Shift all rows down to fill the grid.

Step 4: Repeat steps for next input.

return new_grid

Hypothesis Decomposition Reduces Task Complexity. In Table[3] we present a qualitative anal-
ysis of the MiniARC benchmark, comparing the effects of using hypothesis decomposition versus
not using it. As illustrated in the examples above, without hypothesis decomposition, the descrip-
tions require a substantial amount of language, which ultimately leads to severe hallucinations in
the program and results in failure. In contrast, the examples below, which utilize hypothesis decom-
position, present clear and executable objectives, enabling the translator to easily write executable
functions and achieve successful solutions as instructed.

Table 4: We present the additional improvements resulting from the use of amendments. The results
shown above are those obtained after the initial hypotheses, while the results displayed below reflect
the outcomes following the submission of amendments and subsequent reflections. Benchmark: List
Function-1D29.

Observations Rounds Executable Function
Round 1: def fn(lst):
. # Check if the list has fewer than two elements
Step 1: Remove elements from the end if len(ls

return

t)<2
[

of the input list until a ’9’ is encountered.

Step 2: If ’9’ is present, remove all
0, 8, 3, 9] — [0, 8] clements after the last occurrence of 9’
16, 11 — [1 Step 3: If ’9” is not present, remove the
4, 8, 7] — (4] last two elements of the list. :
Step 4: If the list has fewer than two $ 1

elements, return an empty list. # re
return lst[:-2]

Round 2: def fn(input_list)
Step 1: Remove the last two elements A !
from the input list. # Check if the 1

Step 2: If the resulting list has fewer than if len(modified lis

return []

two elements, return an empty list. return modified list

Amendments Guide LLM Towards Correct Pathway. We present a qualitative analysis of the
use of amendments in the List Function benchmark in Table d The upper section displays the ini-
tialization of the hypothesis, where the LLM generates a potential guess based on the observations
and translates it into an executable program. After offloading the execution to the tool (e.g., Python
executor) and receiving feedback, amendments are proposed to modify the initial hypothesis. Fol-
lowing this reflection, the LLM re-optimizes the rules, ultimately yielding the correct execution
results. More qualitative analyse examples please refer to Appendix [E. T}

Failure Analyse. We also conduct an in-depth analysis of the reasons behind process failures in
RHDA, detailed in Appendix [E.2] Our findings reveal that the primary limitation arises from the re-
stricted intrinsic reasoning capabilities of LLMs, which continue to face challenges in understanding
and addressing complex problems. These limitations are primarily reflected in two aspects:

Published as a conference paper at ICLR 2025

Task Initial decomposed hypothesis hy: g The Generated Scripts Executor
- . >
Store 1. I need to take the pie. — [grab the? pie] . — :} x
the 2. I need to store the pie in fridge. —— [go to fridge, open fridge, store the pie] IS
Pie ; .«
ha Updated hypoithesus hq: g _ _ 2
= 1. I need to get to the pie, and take the pie. — [walk to the pie, grab the pie] > g! O
MO%E. 5 | need to store the pie in fridge. — [go to fridge, open fridge, store the pie] >

Walk to the Pie ; Open Fridge

Figure 4: We demonstrate how RHDA can be extended to the VirtualHome framework to success-
fully complete the task of storing the pie in fridge.

* Difficulty in Generating Accurate Sub-Hypotheses: The generation of sub-hypotheses dur-
ing the reasoning process often proves inaccurate, leading to subsequent breakdowns in
reasoning chains.

* Sensitivity to Initial Hypotheses: The model exhibits a pronounced dependency on its ini-
tial hypotheses. Even when feedback is provided through amendment submissions, the
model struggles to break free from its original thought framework, constraining its reason-
ing capabilities.

4.5 RHDA 1S A FLEXIBLE AND SCALABLE PROBLEM-SOLVING PATHWAY

We consider extending the RHDA pipeline to more complex scenarios. To this end, we select Vir-
tualHome (Puig et al, 2018} 2020), a sophisticated multi-agent platform for simulating household
activities, as our new exploration subject. VirtualHome comprises a set of predefined atomic ac-
tions and objects that can be combined into high-level instructions. For example, ‘(charQ) [walk]
(salmon)’ describes character 0 walking to the salmon. Given a specific scenario, the LLM is tasked
with completing concrete housework using a series of high-level instructions. As depicted in Fig-
ure @] and guided by the RHDA process, we demonstrate how the LLM successfully accomplishes
the task of storing pie in the fridge through the methods of hypothesis decomposition, execution
verification (offloading to VirtualHome engine), and reflection. we show another example in App-
neidx

5 LIMITATION AND DISCUSSIONS

Benchmark Selection. This paper represents the first systematic exploration of the code reasoning
task, focusing on the analysis of three forms of logical reasoning: inductive, deductive, and abduc-
tive. Due to time and cognitive constraints, we were unable to collect all benchmarks for testing.
Our aim is to stimulate in-depth discussion on this topic and inspire meaningful follow-up research.
While several excellent studies utilize code to address logical reasoning tasks (Zelikman et al.,[2023}
Hu et al,[2023}; [Srivastava et al., 2024} [Liu et al.,[20244a)), we did not include them here due to their

differing starting points from this paper.

Hyperparameters. The goal of this paper is to explore the potential of LLMs in code reasoning,
rather than solely improving the performance of a specific code reasoning task. The RHDA frame-
work serves as a preliminary exploration process; therefore, we didn’t fully optimized the prompt
templates or specific hyperparameters (such as temperature, 7', and N) utilized. In the inductive
code reasoning task, we examined a broader range of hyperparameter settings to illustrate that ex-
ploring multiple pathways aids in more effectively solving problems.

Published as a conference paper at ICLR 2025

Task Assessment. We propose a novel code reasoning task, and experimental results indicate that
current state-of-the-art LLMs exhibit limitations in tackling this task. In the future, we aim to further
explore this challenging area and investigate the boundaries of human capabilities in similar tasks.

6 RELATED WORK

Reasoning with LLMs. LLMs such as GPT (OpenAll 2023), LLaMA (Touvron et al., |2023)),
and Claude (Anthropic, |2024), demonstrate impressive reasoning capabilities across various NLP
tasks (Zhang et al. [2024). However, due to the problems of direct reasoning with LLMs such as
hallucinations (J1 et al.,2023), researchers have proposed several methods to enhance the reasoning
power of LLMs. For example, (Zhou et al., [2023; Xue et al., 2025 decompose complex tasks into
sequential subproblems, while (Sun et al.| [2024) refine reasoning through environment feedback.
Moreover, intermediate representations, such as graphs (Jiang et al.| 2024), planning domain defini-
tion languages (PDDL) (Guan et al., 2023)), and triples (Wang et al.} 2023a), have been employed to
enhance LLM’s reasoning. Most recently, OpenAl ol (OpenAl, 2024) demonstrates strong reason-
ing capabilities and broad world knowledge. Upon further contemplation, it is capable of reasoning
through complex tasks and addressing challenges that exceed those faced by previous scientific,
coding, and mathematical models.

Simultaneously, domain-specific reasoning with LLMs has gained attention. (Kim et al., 2024a)
enhance reasoning outputs in computer tasks through recursive critique. In a case study using
Minecraft, (Wang et al. [2023d) introduce a Describe, Interpret, Plan, and Select framework for
open-world multitasking. In computer vision, (Gupta & Kembhavi, |2023) employ Python-like mod-
ular programs to tackle complex tasks. Nonetheless, reasoning in code remains an area yet to be
thoroughly explored.

Improvement with Reflection. Reflective ability is regarded as a crucial metric for evaluating
LLMs as agents. Reflection can be categorized into internal and external based on its feedback
source (Pan et al., |2024). Internal reflection relies feedback from the model’s own knowledge and
parameters (Huang et all 2022)), while external feedback comes from various sources, including
humans (Wang et al., |2023b), other models (Paul et al.,2024)), external tools (Gou et al., 2024} (Chen
et al.,2024), or knowledge bases (Yao et al., 2023bj |Asai et al., 2024). (Huang et al.,[2024) find that
LLMs struggle to self-correct their responses without external feedback, and in some cases, their
performance may even decline following self-correction. Our work focuses on leveraging external
tools, such as compilers, to generate feedback and enhance the performance of LLMs.

7 CONCLUSION

In this paper, we emphasized that the reasoning capabilities of LLMs still depend on recalling prior
knowledge and highlighted that code reasoning has not been sufficiently explored as a novel perspec-
tive for examining the boundaries of LLM capabilities. Based on this consideration, we designed
three meta-benchmarks—inductive code reasoning, deductive code reasoning, and abductive code
reasoning—drawing on established forms of logical reasoning, and instantiated these benchmarks
into eight specific tasks. Experimental results indicated that these benchmarks present significant
challenges for current state-of-the-art LLMs. To initially explore code reasoning tasks, we proposed
a method involving Reflective Hypothesis Decomposition and Amendment (RHDA). This method
was iterative: LLMs need to generate decomposed initial hypotheses based on observations and
employ a translator to interpret these into executable functions that can be directly applied to the
observations. After obtaining the executable functions, we performed execution verification and
submit amendments, allowing for reflection and refinement of the sub-hypotheses. Experimental
results demonstrated that this approach, which integrated the principles of divide-and-conquer and
reflection, can flexibly solve complex code reasoning problems, achieving performance improve-
ments of 2 to 3 times compared to baseline methods. Finally, we extended this process to simulate
household tasks in real-world complex scenarios to validate its scalability and transferability.

10

Published as a conference paper at ICLR 2025

8 ACKNOWLEDGMENT

This research was partially supported by the Key Technologies R&D Program of Anhui Province
(N0.202423k09020039), the National Natural Science Foundation of China (Grants N0.62477044,
62406303), Anhui Provincial Natural Science Foundation (No. 2308085QF229), the Fundamental
Research Funds for the Central Universities (No.WK2150110038, WK2150110034).

9 REPRODUCIBILITY STATEMENT

Our code, datasets and experimental results are available at https://github.com/TnTWoW/
code_reasoningl Additionally, Appendix [H| contains details about pipeline and prompts used
in method.

REFERENCES

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
hSyW5go0v8.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Yoshua Bengio. From system 1 deep learning to system 2 deep learning., 2019. URL https:
//nips.cc/Conferences/2019/Schedule?showEvent=15488.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Mark Chen et al. Evaluating large language models trained on code, 2021. URL https://
arxiv.org/abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. In The Tielfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIgPidq.

Francois Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International conference
on machine learning, pp. 990-998. PMLR, 2017.

A. Feeney and V.A. Thompson. Reasoning as Memory. Current Issues in Thinking and Reasoning.
Taylor & Francis, 2014. ISBN 9781317820130. URL https://books.google.com.hk/
books?id=gEuvBAAAQBAJ.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing, 2024. URL
https://arxiv.org/abs/2305.11738.

11

https://github.com/TnTWoW/code_reasoning
https://github.com/TnTWoW/code_reasoning
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://nips.cc/Conferences/2019/Schedule?showEvent=15488
https://nips.cc/Conferences/2019/Schedule?showEvent=15488
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://books.google.com.hk/books?id=gEuvBAAAQBAJ
https://books.google.com.hk/books?id=gEuvBAAAQBAJ
https://arxiv.org/abs/2305.11738

Published as a conference paper at ICLR 2025

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida 1.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution, 2024. URL
https://arxiv.org/abs/2401.03065.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. Advances in Neural Information Processing Systems, 36:79081-79094, 2023.

Sumit Gulwani. Programming by examples-and its applications in data wrangling. In Dependable
Software Systems Engineering, pp. 137-158. 10S Press, 2016.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953-14962, 2023.

Jonathan Haidt. The emotional dog and its rational tail: a social intuitionist approach to moral
judgment. Psychological review, 108(4):814, 2001.

Kyle Hardman and Nelson Cowan. Reasoning and memory: People make varied use of the informa-
tion available in working memory. Journal of experimental psychology. Learning, memory, and
cognition, 42, 11 2015. doi: 10.1037/x1m0000197.

Brett K Hayes, Evan Heit, and Caren M Rotello. Memory, reasoning, and categorization: Parallels
and common mechanisms. Frontiers in psychology, 5:529, 2014.

Evan Heit, Caren M. Rotello, and Brett K. Hayes. Chapter two - relations between memory and
reasoning. In Brian H. Ross (ed.), The Psychology of Learning and Motivation, volume 57 of
Psychology of Learning and Motivation, pp. 57-101. Academic Press, 2012. doi: https://doi.
org/10.1016/B978-0-12-394293-7.00002-9. URL https://www.sciencedirect.com/
science/article/p11/B9780123942937000029.

Yi Hu, Haotong Yang, Zhouchen Lin, and Muhan Zhang. Code prompting: a neural symbolic
method for complex reasoning in large language models. arXiv preprint arXiv:2305.18507, 2023.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve, 2022. URL https://arxiv.org/abs/
2210.11610.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=IkmD3fKBPQ.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint, 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1-38, 2023.

Song Jiang, Zahra Shakeri, Aaron Chan, Maziar Sanjabi, Hamed Firooz, Yinglong Xia, Bugra Aky-
ildiz, Yizhou Sun, Jinchao Li, Qifan Wang, et al. Resprompt: Residual connection prompting
advances multi-step reasoning in large language models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 5784-5809, 2024.

D. Kahneman. Thinking, Fast and Slow. Penguin Books Limited, 2011. ISBN 9780141918921.
URLhttps://books.google.com.hk/books?1d=0oVI1tXT3HigoC.

Subbarao Kambhampati. Can large language models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15-18, 2024.

12

https://arxiv.org/abs/2401.03065
https://www.sciencedirect.com/science/article/pii/B9780123942937000029
https://www.sciencedirect.com/science/article/pii/B9780123942937000029
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2210.11610
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://books.google.com.hk/books?id=oV1tXT3HigoC

Published as a conference paper at ICLR 2025

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024a.

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, and
Amir Gholami. An llm compiler for parallel function calling, 2024b. URL https://arxiv.
org/abs/2312.04511.

Subin Kim, Prin Phunyaphibarn, Donghyun Ahn, and Sundong Kim. Playgrounds for abstraction
and reasoning. In NeurIPS 2022 Workshop on Neuro Causal and Symbolic Al (nCSI), 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Patrick C. Kyllonen and Raymond E. Christal. Reasoning ability is (little more than) working-
memory capacity?! Intelligence, 14(4):389-433, 1990. ISSN 0160-2896. doi: https://doi.org/10.
1016/S0160-2896(05)80012-1. URL https://www.sciencedirect.com/science/
article/pii/S0160289605800121.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
augmented code emulator, 2024. URL https://arxiv.org/abs/2312.04474|

Xin Lin, Zhenya Huang, Hongke Zhao, Enhong Chen, Qi Liu, Defu Lian, Xin Li, and Hao Wang.
Learning relation-enhanced hierarchical solver for math word problems. IEEE Transactions on
Neural Networks and Learning Systems, 35(10):13830-13844, 2024.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Code-
mind: A framework to challenge large language models for code reasoning. arXiv preprint
arXiv:2402.09664, 2024a.

Jiayu Liu, Zhenya Huang, Zhiyuan Ma, Qi Liu, Enhong Chen, Tianhuang Su, and Haifeng Liu.
Guiding mathematical reasoning via mastering commonsense formula knowledge. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp.
1477-1488. Association for Computing Machinery, 2023a. ISBN 9798400701030. doi: 10.1145/
3580305.3599375. URL https://doi.org/10.1145/3580305.3599375,

Jiayu Liu, Zhenya Huang, Chengxiang Zhai, and Qi Liu. Learning by applying: A general frame-
work for mathematical reasoning via enhancing explicit knowledge learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 44974506, 2023b.

Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze Wu, Qi Liu, Shijin Wang, and Enhong Chen.
SocraticLM: Exploring socratic personalized teaching with large language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024b. URL https:
//openreview.net/forum?id=gkoZzgJhxsAl

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The conceptarc benchmark:
Evaluating understanding and generalization in the arc domain, 2023. URL |https://arxiv.
org/abs/2305.07141.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In International Conference on
Learning Representations (ICLR), 2024.

OpenAl. Gpt-4 technical report, 2023.

OpenAl. Introducing openai o1, 2024. URL https://openai.com/ol/l

13

https://arxiv.org/abs/2312.04511
https://arxiv.org/abs/2312.04511
https://www.sciencedirect.com/science/article/pii/S0160289605800121
https://www.sciencedirect.com/science/article/pii/S0160289605800121
https://arxiv.org/abs/2312.04474
https://doi.org/10.1145/3580305.3599375
https://openreview.net/forum?id=qkoZgJhxsA
https://openreview.net/forum?id=qkoZgJhxsA
https://arxiv.org/abs/2305.07141
https://arxiv.org/abs/2305.07141
https://openai.com/o1/

Published as a conference paper at ICLR 2025

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484-506,
2024. doi: 10.1162/tacl_.a_00660. URL https://aclanthology.org/2024.tacl-1.
27,

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. REFINER: Reasoning feedback on intermediate representations. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chap-
ter of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1100-1126,
St. Julian’s, Malta, March 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-1long.67.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813,
2023.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8494-8502, 2018.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Joshua B. Tenenbaum, Sanja Fidler, and Antonio
Torralba. Watch-and-help: A challenge for social perception and human-ai collaboration, 2020.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xiang Ren. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models with hypothesis refinement, 2024. URL
https://arxiv.org/abs/2310.08559.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot numerical reasoning. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 840-854, 2022.

Joshua Stewart Rule. The child as hacker: building more human-like models of learning. PhD thesis,
Massachusetts Institute of Technology, 2020.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, and Charles Sutton. ExeDec:
Execution decomposition for compositional generalization in neural program synthesis. In The
Twelfth International Conference on Learning Representations, 2024.

Saurabh Srivastava, Annarose M B, Anto P V au2, Shashank Menon, Ajay Sukumar, Ad-
waith Samod T, Alan Philipose, Stevin Prince, and Sooraj Thomas. Functional benchmarks for
robust evaluation of reasoning performance, and the reasoning gap, 2024.

James WA Strachan, Dalila Albergo, Giulia Borghini, Oriana Pansardi, Eugenio Scaliti, Saurabh
Gupta, Krati Saxena, Alessandro Rufo, Stefano Panzeri, Guido Manzi, et al. Testing theory of
mind in large language models and humans. Nature Human Behaviour, pp. 1-11, 2024.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances in Neural Information Processing Systems,
36, 2024.

Heinz-Martin Sii}, Klaus Oberauer, Werner W Wittmann, Oliver Wilhelm, and Ralf Schulze.
Working-memory capacity explains reasoning ability—and a little bit more. Intelligence,
30(3):261-288, 2002. ISSN 0160-2896. doi: https://doi.org/10.1016/S0160-2896(01)
00100-3. URL https://www.sciencedirect.com/science/article/pii/
S0160289601001003.

14

https://aclanthology.org/2024.tacl-1.27
https://aclanthology.org/2024.tacl-1.27
https://aclanthology.org/2024.eacl-long.67
https://aclanthology.org/2024.eacl-long.67
https://arxiv.org/abs/2310.08559
https://www.sciencedirect.com/science/article/pii/S0160289601001003
https://www.sciencedirect.com/science/article/pii/S0160289601001003

Published as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jianing Wang, Qiushi Sun, Xiang Li, and Ming Gao. Boosting language models reasoning with
chain-of-knowledge prompting. arXiv preprint arXiv:2306.06427, 2023a.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-Zarandi, and Asli Celikyilmaz. Shepherd: A
critic for language model generation, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023c. URL https://arxiv.org/abs/2203.11171.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team Craft-
Jarvis. Describe, explain, plan and select: interactive planning with large language models enables
open-world multi-task agents. In Proceedings of the 37th International Conference on Neural In-
formation Processing Systems, pp. 34153-34189, 2023d.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too),
2023. URL https://arxiv.org/abs/2311.11829.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, and Qi Liu.
Decompose, analyze and rethink: Solving intricate problems with human-like reasoning cycle.
Advances in Neural Information Processing Systems, 37:357-385, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Dagmar Zeithamova, Margaret L Schlichting, and Alison R Preston. The hippocampus and inferen-
tial reasoning: building memories to navigate future decisions. Frontiers in human neuroscience,
6:70, 2012.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
1id=gd9gcbVAwQ.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu,
Ting Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with
large language models. arXiv preprint arXiv:2404.01230, 2024.

Yuze Zhao, Zhenya Huang, Yixiao Ma, Rui Li, Kai Zhang, Hao Jiang, Qi Liu, Linbo Zhu, and
Yu Su. RePair: Automated program repair with process-based feedback. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Lin-
guistics ACL 2024, pp. 16415-16429, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.973. URL
https://aclanthology.org/2024.findings—-acl.973.

15

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2311.11829
https://openreview.net/forum?id=qd9qcbVAwQ
https://openreview.net/forum?id=qd9qcbVAwQ
https://aclanthology.org/2024.findings-acl.973

Published as a conference paper at ICLR 2025

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning Rep-
resentations, 2023.

16

Published as a conference paper at ICLR 2025

A DSL GRAMMARS

RobustFill is a string manipulation task using the DSL. Figure [3] illustrates the DSL syntax for
RobustFill. Our implementation is based on the works of ExeDec (Shi et al., |2024) and Robust-
Fill (Devlin et al.,[2017).

Deepcoder is a list transformation task using the DSL. Figure [f] This implementation is based on
the works of ExeDec (Shi et al.}2024) and DeepCoder (Balog et al., 2016)).

Program P := Concat(e,e2,...)
Expressione := s|m|o|ConstStr(c)
Compose o = mi(mz) | m(s)
Substring s := SubStr(ki,k2) | GetSpan(ri, i1, b1, 72,42,b2) | GetToken(r, 1)
| GetUpto(r) | GetFrom(r)
Modification m := ToCase(a) | Replace(di,d2) | Trim() | GetFirst(r,i) | GetAll(r)
| substitute(r,i,c) | SubstituteAll(r,c) | Remove(r,i) | RemoveAll(r)
Regex r := NUMBER | WORD | ALPHANUM | ALL_CAPS | PROPER.CASE | LOWER | DIGIT | CHAR | §
Casea := ALL_CAPS |PROPER.CASE | LOWER
Positionk = —100] —99| ... | —1|0|1]2]...|100
Indexi := —5| —4|...] =1|1]2]|...]5
Boundary b := START | END
Characterc = A|...|Z]a]|...|2]0]...]9]¢
Delimiter 6 := &, .2!Q@() [1%{}/:;S#% "’

Figure 5: The DSL syntax for string manipulation tasks in the RobustFill domain.

Program P := dy;i2;...;a150a2;...
Initialization ¢ := wv <= INPUT
Assignmenta = v+ flv<h
First-Order Operation f := Head(l) | Last(l) | Access(n,!) | Minimum(l) | Maximum(l) | Sum(l)
| Take(n, 1) | Drop(n,l) | Reverse(l) | Sort(l)
Higher-Order Operation h := Map(A,l) |Filter(B,!) | Count(B,1) | zipWith(X,,1) | Scanll(X,1)

int — int Lambda A
int — bool Lambda 3
(int, int) — int Lambda X

(+1) | (=1) | (=2) [(/2) | ((=1)) | (+2) | (3) | (/3) | (+4) | (/)
(>0) | (<0)| (%2 ==0) | (%2 ==1)

() [(=) [(+) | (min) | (max)

Integer Variablen = wv
List Variable | := wv
Variable Name v := z1 |22 | ...

Figure 6: The DSL for integer and list manipulation tasks in the DeepCoder domain.

B EXPERIMENTAL RESULTS USING MORE LLMS

We report the performance of Llama3.1-70B-Instruct, Qwen-max (qwen-max-2024-09-19), Claude
3.5 (claude-3-5-sonnet-20240620) using the RHDA method and compare them with GPT-40 (gpt-
40-2024-0806). The results for inductive code reasoning are shown in Table[5] The experimental
results indicate that GPT-4o performs better in solving DSL problems, while Claude 3.5 excels in
General Propose Language (GPL) tasks. Compared to closed-source models, the open-source model
Llama still exhibits relatively limited reasoning capabilities. However, in list manipulation tasks
(List Function and Deepcoder), Llama demonstrates stronger programming abilities. In Table [6] we

17

Published as a conference paper at ICLR 2025

Table 5: Performance comparison of Llama3.1-70B-Instruct, Qwen-max, Claude 3.5 and GPT-40
on the PoT and RHDA methods in inductive code reasoning task. 7" refers to the maximum number
of iterations. /N refers to the number of candidates.

Accuracy Task Accuracy
Model Method MiniARC List Func RobustFill DeepCoder MiniARC List Func RobustFill DeepCoder
PoT 3.08 35.25 14.78 22.92 1.54 26.80 8.70 11.46
Llama3.1 Sub-Hyp 3.33 26.45 13.04 18.06 3.08 20.40 435 6.25
T=2,N=1 3.85 32.35 20.87 11.46 3.85 26.40 13.04 7.29
PoT 6.41 41.75 36.52 25.35 3.85 30.00 21.74 14.58
Qwen-max Sub-Hyp 5.90 46.25 26.09 17.36 3.08 36.40 8.70 5.21
T=2,N=1 6.41 46.60 33.91 24.64 3.08 41.60 13.04 10.42
PoT 11.79 51.30 30.43 25.69 8.46 39.20 27.14 13.54
Claude-3.5 Sub-Hyp 12.56 53.55 22.61 33.33 9.23 42.40 8.70 16.67
T=2,N=1 18.21 57.95 3391 29.86 13.85 48.40 17.39 20.83
PoT 10.90 44.90 37.39 30.90 8.46 33.60 26.09 19.79
GPT-40 Sub-Hyp 8.46 47.10 35.65 24.65 6.92 36.40 17.39 12.50
T=2, N=1 12.56 51.05 43.48 38.89 10.77 41.20 40.43 23.96

Table 6: Performance comparison of Llama3.1-70B-Instruct, Qwen-max, Claude 3.5 and GPT-40
on the CoT and RHDA methods in deductive and abductive code reasoning tasks. 7' refers to the
maximum number of iterations. /N refers to the number of candidates.

Deductive Abductive
Model Method CRUXEval LiveCodeBench CRUXEval LiveCodeBench
CoT 40.25 7.84 53.12 38.24
Llama3.1 Sub-Hyp 30.75 6.86 50.88 8.82
T=2, N=1 45.62 10.78 59.62 40.20
CoT 81.12 86.27 75.12 58.82
Qwen-max Sub-Hyp 78.25 81.37 72.25 59.80
T=2, N=1 81.62 88.24 79.38 66.67
CoT 82.75 77.45 73.62 61.76
Claude-3.5 Sub-Hyp 717.75 65.69 74.75 53.92
T=2, N=1 86.88 80.39 83.38 61.76
CoT 89.12 83.14 71.00 66.67
GPT-40 Sub-Hyp 86.62 71.29 77.12 60.78
T=2, N=1 90.62 84.16 83.75 71.57

report the performance of the models in deductive and abductive code reasoning together. The ex-
perimental results show that GPT-40 outperforms Claude 3.5 in terms of program understanding and
execution capabilities. These results suggest that RHDA is a framework-agnostic general process
that can achieve optimal performance through a single reflection, applicable to both Llama, Qwen,
Claude and GPT series models.

C BENCHMARK DETAILS

List Function. We use the original dataset Table 7: The number of tasks per dataset, the
(Rule, 2020), which consists of a total of 250 tasks. numbers of seen examples per task, and unseen
Due to the limited context lengths of LMs, we only examples per task.

use the first 16 examples from BIG-Bench (bench ™y, ot #Tasks #Seen # Unseen

authors, 2023): 8 for seen examples and 8 for un- - -

seen examples. We manually examined the exem- Il\‘/}?t ,illr{lg‘on %gg g g

plars and found 8 examples are generally sufficient MAR

t d be th t RobustFill 22 5 5

o describe the pattern. Deepcoder 9% 3 3
CRUXEval 800 1 1

MiniARC. We use the data from (Qiu et al, LiveCodeBench 102 1 1

2024). Such tasks are typically difficult to describe
in natural language at an abstract level. Therefore,

18

Published as a conference paper at ICLR 2025

we did not consider them for our evaluations. As we only evaluate textonly models, we use textual
representations of the original visual grids by mapping each cell to a corresponding integer.

RobustFill. RobustFill is a string manipulation task where the model is expected to perform
a combination of atomic operations, such as extracting a substring from position k; to ks us-
ing SubString(ki, k1), to achieve generalization. As an example, a program ToCase (Lower,
SubStr (1, 3)) converts full month names (January, April) to their abbreviations (jan, apr).

DeepCoder. The DeepCoder task involves using DSL to perform operations on integer lists. In
DeepCoder, each line represents a subroutine that performs atomic operations on previous vari-
ables and assigns the results to new variables. The result of the final line is the program’s out-
put. For example, program a < [int] | b < FILTER(<0) a | ¢ < MAP (x4) b |
d ¢ SORT ¢ | e < REVERSE b (where “|” denotes subroutine separator.) transforms the
input (-17, -3, 4, 11, o0, -5, -9, 13, 6, 6, -8, 11] into the output [-12,
-20, -32, -36, -68]

D RHDA ACTING AS AN AGENT IN VIRTUALHOME

Task Initial decomposed hypothesis hy: The Generated Scripts Executor
1. I need to get the towel. i [open the cabinet, grab towel] >
2. | need to open the faucet for water. [walk to facuet, open facuet] — g! x
Clean 3 | need to get shampoo. " [walk to shampoo, grab shampoo] >
the ; - ¢
Bathr Updated hypothesis hy: <

— 1. | need to get the towel. 9 [open the cabinet, grab towel] >
2. | need to switch on the faucet for water. — [walk to facuet, switch on facuet] l:{>-’.> O
3. I need to get shampoo. [walk to shampoo, grab shampoo] >

.

e
Open Bathroom Cabinet Grab Towel

Switch on Faucet Get Shampoo

Figure 7: We illustrate how the RHDA framework can be extended to the VirtualHome environment
to effectively accomplish the task of cleaning the bathroom.

We utilized the RHDA framework to drive agent actions in the VirtualHome environment powered
by LLMs. Figure|/|illustrates a task of cleaning the bathroom.

Table 8: Execution Error Rate on VirtualHome
native GPT-40 w/o Sub-Hyp w/o Amend RHDA

Error Action | 92 84 84 52
Avg. Err per Step | 0.84 0.35 0.20 0.16
Avg. Err per Task | 2.09 1.83 1.75 1.08

We also provided some quantitative metrics to validate the potential of RHDA as a agent in Vir-
tualHome. Specifically, we selected a total of 52 tasks across two scenarios in VirtualHome and
manually tested their execution error rates. The test results are shown in Table [which indicate that
native GPT-4o struggles to handle simulated real-world scenarios effectively. The primary cause of
failure lies in generating scripts that, while semantically similar to correct actions, are not executable
within the environment (e.g., ‘open the tap’ is invalid action, whereas ‘touch the tap’ is valid action).
By employing the RHDA method, which incorporates step-by-step solutions and effective feedback
mechanisms, the error rate was significantly reduced.

19

Published as a conference paper at ICLR 2025

E EXAMPLES ANALYSES

E.1

EFFECTIVE CASE STUDY

Table 9: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of

the table, while those with hypothesis decomposition are shown below. Benchmark ARC-ID37.

Observations

Rounds

Executable Function

Round 1:

Step 1: Identify the third row
Step 2: Check for a non-zero
numbers in the third row.

Step 3: Replace the number at
the center position of the sequence.
Step 4: Change all numbers
in rows 4 and 5 to zero.

def fn(grid)

if third_row[i]
Find the en
start = 1
while i < n and third_row[i]
i+=1

length = i - start

seq
if length >=

4 Step th

ce the sequence wit
start + length // 2

center_index =

replacement_number = grid[1] [center_index
[0] » n # Set the e

third_row([start:i] =
third_row[center_index] = repla
break # only one sequ

grid(3]
grid(4]
return grid

1

== third_row[start]:

Round 2:

Step 1: Identify the third row
Step 2: Check for a non-zero
numbers in the third row.
Step 3: Replace identical numbers
in the third row with the
corresponding non-zero number
from the first row.

def fn(grid):

ep 1: Identify the third row
grid([2]
2 k for a sequ

(third_row)

n = len

while i < n:
if third_row[i

1=

star

while i < n and third _row([i] == third row[start]:

i4=1
length = i - start

if length >= 3

[start]

acement_number
Replace the sec

third_row[start:i]

grid[0]
wi

h the rep

for row in
grid[row] = [0]
return grid

[replacement_number]

(0]

(length - 1)

Table 10: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark List Function-

ID2.
Observations Hypothesis Executable Function
No Sub Hypothesis‘ def fn(input_list):
The output is the element if len(input_list) <= ‘
0-0 from the input list that § catoslate the middie index
6, 91 = [is exactly in the middle middle_index = (len(input_list) - 1) // 2
f the list. # Return the middle element as a list
11, 5,0, 6 2,9, of the list return [input_list [middle_index]]
(e, 3, 4, 1, 7, 2, 9, 0] — [4] .
Sub Hypothesis:

Step 1: If the list has fewer
than three elements,
the output is an empty list.
Step 2:If the list has three
or more elements,

the output is a list containing

only the integer at the third
position.

def fn(input_list):
if len(input_list) < 3:
return []

else:

return [input_list[

ewer than three e

We validated the effectiveness of the proposed method using examples from various benchmarks.
For instance, as shown in Table[9] the MiniARC task example with ID 37 highlights how the LLM,

after receiving feedback, successfully reflects on its errors and submits a revised solution.

20

Published as a conference paper at ICLR 2025

Table 11: We compare the results obtained using the sub-hypothesis decomposition method with
those obtained without it. The results without hypothesis decomposition are presented at the top of
the table, while those with hypothesis decomposition are shown below. Benchmark Livecodebench
Input-ID37.

Observations Hypothesis Executable Function

No Sub Hypothesis:
The function ‘minOperations’ attempts
to determine the minimum number

of swaps needed o ensure assert minOperations([3, 1, 21, [1, 3, 2]) ==

def minOperations(a, b): that for each indeX ‘i”
def f(): . . .
et Lo neither ‘a[i]’ nor ‘b[i]’
aa, bb = al:], bl:] are greater than the last
for & in range(len(a)): elements of their respective lists
if a(i] > al-1] or bli] > b(-1]: p -
alil, bli] = blil, ali] .
ret += 1 Sub Hypothesis:
if alil > al-1] ex bIA] > bl-1]: Step 1: Function Purpose
return inf .. Lo
al:] - aa The goal of ‘minOperations® is to ...
b(:] = bb Step 2: Inner Function
e It attempts to ensure assert minOperations([2, 3], [3, 2]) ==
ans = £0) that for each ‘i’, ... P P o b s
a[-1], b[-1] = b[-1], a[-1] . 3 3
ans = min(ans, f£() + 1) Step % NIf““ L"g“ o
return -1 if ans > len(a) else ans It calculates ‘ans‘ by calling ‘f, ...
assert f£(??) == 1 Step 4: Objective

To find an input such that...

Table 12: We present the additional improvements resulting from the use of amendments. The results
shown above are those obtained after the initial hypotheses, while the results displayed below reflect
the outcomes following the submission of amendments and subsequent reflections. Benchmark
CruxEval Output-ID328.

Observations Rounds Executable Function

Round 1:

Step 1 Base Case Check:
The function checks if ‘L’ is
less than or equal to 0.

If true, it simply returns
the array as is
Step 2 Recursive Extension:

et £larray, 1) If the length ofA‘array’ assert f([1, 2, 3],4) ==1, 2, 3, 1]
if L <= 0: is less than L, it then
return array calls itself recursively
if len(array) < L:
array.extend (f (array, L - len(array))) Step 3 Return Array:
return array - . If the array is already of

assert f(2, 3], 4) ==

length ‘L* or longer, the
function simply returns the
array without any modifications.

Round 2:

Step 1 Base Case Check: ...
Step 2 Recursive Extension: ...
Step 3 Return Array: ...
Step 4 Example Check:
The original call then extends
[1,2,3] by ‘1, 2,371,
resulting in ‘[1, 2, 3, 1, 2, 3]".

assert f([1, 2, 3],4)==[1,2,3,1,2,3]

In Table[I0] hypothesis decomposition reveals that the output number is determined not only by its
position at the middle of the input array but also by being the third character.

In Table [TT} compared to models without hypothesis decomposition, those utilizing this approach
progressively analyze the function’s behavior, ultimately achieving an abstract understanding of the
program and making accurate assertions. In Table[I2] for a complex recursive function, while the
LLM accurately grasped the overall functionality of the function through hypothesis decomposi-
tion, it encountered difficulties during the detailed analysis of specific instances. Following the
submission of a revised solution, the LLM reflected on its errors and successfully resolved the is-
sue, addressing the collapse of the overall logical chain caused by a failure in a single step during
multi-step reasoning.

21

Published as a conference paper at ICLR 2025

Table 13: Failure case study. The observations indicate that the hypotheses proposed by the LLM
are overly simplistic, rendering it difficult to account for all possible cases. Additionally, manual
inspection and efforts to summarize these hypotheses proved challenging. This limitation is one of
the primary factors contributing to the LLM’s failure in this task. Benchmark: List Function-ID9.

Observations Rounds Executable Function
(input_list):
Round 1:
[2, 8] — [8] Remove the first element if not input_list:
7, s, L8, 41— (5, . 8 from the input list. return []
(8, 2, ..., 91 =102, ..., 9] # t excluding the
3, 2,1, 0, 7, 81 > (2, 1, 0] #

return input_list([1:

Round 2:

Remove the first and the last
elements from the input list.

def fn(input_list):

Table 14: Failure case study. The LLM make some redundant hypotheses, which led to failure. Even
after amendments, it was unable to break free from its original thought framework, resulting in a

failure to reflect effectively. Benchmark: ARC-IDS.

Observations Rounds

Executable Function

Round 1:
Step 1: Identify non-zero elements
in the input grid.
Step 2: Shift all non-zero elements
down one row.
Step 3: Repeat the process for each
input-output pair to verify

def fn(grid):
if not grid or not grid[0]:
return grid
num_rows
num_cols

len(grid)

len(grid([0])
new grid
[10] * num_cols for _
range (num_cols) :

initialized with zeros

in range (num_rows)]

new_grid =
for col in

n-zero s in the current column

_elements = [grid[row] [col] for row in range (num_rows) \\

[col]

row

t down by one row with
ed_elements = [0 num_:
for i, elem in enumerate (non_zero_elements):

. new_row = (i + 1) % num_rows
consistency. shifted_elements[new_row] = elem
Find the maximum value & he
max_value = max(shifted_elements
for row in range (num_rows) :
new_grid[row] [col] = max_value
return new_grid
def fn(grid):
if not grid or not grid[0]:
return grid
len (grid[0])
Step 1: Identif o elements positio
Round 2: non_zero_positions

Step 1:Identify non-zero elements
in the input grid.
Step 2: Shift all non-zero
elements down one row.

Step 3: In the resulting grid, fill each
row with the maximum value
from its respective column,
considering only the shifted
non-zero elements.

Step 4: Repeat the process for each
input-output pair to verify consistency.

for r in range (rows):
for c in range(cols):
if grid[r][c] != 0:
non_zero_positions.append((r, <))
Step 2: Shift non-zero
shifted_positions = [(
non_zero_positions]

elements

(r + 1)

down by one row

% rows, c) for r, c in \\

from the

max_values

for r, c in shifted_positions:
max_values[c] = max(max_values([c],

c

grid[r][c])
Step 4: Construct the ne id
new_grid = [[0] * cols for _ in range (rows)]
for r, c in shifted_positions:

new_grid([r] [c] = max_values|[c]

return new_grid

E.2 FAILURE ANALYZE

We analyze RHDA'’s performance in numerous failure cases and summarize the underlying causes
of these failures. Our findings suggest that the primary reason can be attributed to the insufficient

22

Published as a conference paper at ICLR 2025

intrinsic capability of LLMs in code reasoning tasks. This limitation is specifically reflected in two
aspects:

* Sub-hypotheses fail to address the problem: For tasks that are overly complex or abstract
(e.g., cases shown in Table[T3), even though hypothesis decomposition attempts to reduce
task complexity, LLMs still struggle to handle them effectively.

* Amendments fail to correct sub-hypotheses: While amendments leverage external feed-
back to help LLMs reflect on their mistakes, the models often remain confined to their
existing thought framework, even after recognizing errors (e.g., cases shown in Table [T4).
This results in the correction failing to resolve the issue.

These observations indicate that for tasks exceeding the intrinsic capabilities of LLMs, relying solely
on reflective hypothesis decomposition and amendment may not be sufficient to improve the model’s
performance.

F CosTs
Table 15: Avg. API calls and Total Cost using GPT-4o0.

Method Avg. API Calls Total Cost (cent)

List Func MiniARC RobustFill ~ Deepcoder List Func MiniARC RobustFill ~ Deepcoder
10 8.0 4.0 5.0 3.0 10.2 4.6 2.0 33
PoT 1.0 1.0 1.0 1.0 5.0 3.7 0.6 1.2
CoC 1.0 1.0 1.0 1.0 11.0 9.0 1.1 1.4
SC (N=3) 3.0 24.0 15.0 9.0 53 37 0.6 1.2
SR (T=2) 1.4 1.9 1.5 1.6 4.6 33 0.5 1.1
T=2,N=3 5.4 59 55 5.6 8.6 4.0 3.1 4.7
Method Deductive Abductive Deductive Abductive

CRUXEval LiveCodeBench CRUXEval LiveCodeBench CRUXEval LiveCodeBench CRUXEval LiveCodeBench
Standard 1.0 1.0 1.0 1.0 2.9 0.5 3.1 15
CoT 1.0 1.0 1.0 1.0 19.4 3.7 19.5 33
SC (N=3) 3.0 3.0 3.0 3.0 29 0.5 33 1.5
SR (T=2) 1.6 1.7 1.4 1.5 3.8 0.6 3.4 1.6
CoC 1.0 1.0 1.0 1.0 18.3 4.1 19.0 3.4
T=2,N=1 1.6 1.7 1.4 1.5 19.0 44 18.8 44

In Table we present the average number of API calls and the total cost for each task. We used
GPT-40, with an input cost of $0.0025/1K tokens and an output cost of $0.01/1K tokens. The results
indicate that our approach still demonstrates high cost-effectiveness for certain tasks.

G TRADE OFF BETWEEN NUMBER OF ITERATIONS AND PERFORMANCE GAIN

(a) List Function (b) MiniARC (c) RobustFill (d) DeepCoder
N a5 375
13|
35.0
12 40
5 325
35

—e— Accuracy 8 s
Task Accuracy

Accuracy(%)
S & 3 & 3 &

T 2 3 2 3 T 2 3 T 2 3
Iteration Iteration Iteration Iteration

Figure 8: In the inductive code reasoning tasks, as the number of iterations increased, the perfor-
mance continued to improve.

In this section, we investigate the impact of iteration count on the performance of three types of
reasoning tasks, with experimental results illustrated in Figure [§ and Figure 0] For inductive and
abductive code reasoning tasks, performance consistently improved as the number of iterations in-
creased. However, the rate of improvement diminished, with marginal gains becoming less sig-
nificant at higher iteration counts. Conversely, for deductive code reasoning tasks, performance
followed a rise-and-fall trend, initially improving but declining with excessive iterations. These
findings suggest that while increasing the number of iterations can enhance performance for general
code reasoning tasks, it is crucial to balance iterative gains against potential performance instability.

23

Published as a conference paper at ICLR 2025

(a) CRUXEval - (b) LiveCodeBench

-

75

® ©
s S

@
&

@
¥

70

Accuracy(%)
2

@
S

—— Deductive %

Abductive

<
®

3 1

2 2
Iteration Iteration

Figure 9: In the deductive code reasoning tasks, the performance slightly decreased as the number of

iterations increased. Conversely, in the abductive code reasoning tasks, the performance consistently
improved with an increasing number of iterations.

H PROMPTS

Table 16: Prompts used in our study. {} refers to a placeholder.
Type Prompt

Generate a rule that maps the following inputs to their
corresponding outputs step by steps. {Task description}

Sub Hypothesis

{Examples}
Generation

Please format your rule as follows:

{Rule format}

Your rule: {Rule}
This rule does not work for the following examples.

{Feedback}
égﬁgﬂgﬂg Please carefully reconsider each of your steps to ensure
that the rules are correct. Systematically
generate new rules, step by step.
{Feedback description} Please
format your rule as follows:

{Rule format}

You are an expert Python programmer. Write a Python
. function ‘fn‘ for the following rule. {Translation
Hypothesis S s
. Example description}
Translation

Rule: {Rule}

Generate an output corresponding to the given input based
on the rule. {Application Example description}
Rule
Application Rule: {Rule}

Input: {Test input}
Output:

24

	Introduction
	Meta-Benchmark
	Inductive Code Reasoning
	Deductive Code Reasoning
	Abductive Code Reasoning

	Code Reasoning with Hypothesis Decomposition and Amendment
	Experiments
	Inductive Code Reasoning
	Deductive Code Reasoning
	Abductive Code Reasoning
	Qualitative Analyze
	RHDA is a Flexible and Scalable Problem-solving Pathway

	Limitation and Discussions
	Related Work
	Conclusion
	Acknowledgment
	Reproducibility Statement
	DSL Grammars
	Experimental Results Using More LLMs
	Benchmark Details
	RHDA Acting as an Agent in VirtualHome
	Examples Analyses
	Effective Case Study
	Failure Analyze

	Costs
	Trade off between number of iterations and performance gain
	Prompts

