© ® N O o A W N =

o

11

30

31
32
33

34
35
36

Practical Schemes for Finding Near-Stationary Points
of Convex Finite-Sums

Anonymous Author(s)
Affiliation
Address

email

Abstract

The problem of finding near-stationary points in convex optimization has not been
adequately studied yet, unlike other optimality measures such as the function
value. Even in the deterministic case, the optimal method (OGM-G, due to Kim
and Fessler [33]) has just been discovered recently. In this work, we conduct a
systematic study of algorithmic techniques for finding near-stationary points of
convex finite-sums. Our main contributions are several algorithmic discoveries:
(1) we discover a memory-saving variant of OGM-G based on the performance
estimation problem approach [19]; (2) we design a new accelerated SVRG variant
that can simultaneously achieve fast rates for minimizing both the gradient norm
and function value; (3) we propose an adaptively regularized accelerated SVRG
variant, which does not require the knowledge of some unknown initial constants
and achieves near-optimal complexities. We put an emphasis on the simplicity and
practicality of the new schemes, which could facilitate future developments.

1 Introduction

Classic convex optimization usually focuses on providing guarantees for minimizing function value.
For this task, the optimal (up to constant factors) Nesterov’s accelerated gradient method (NAG)
[40, 41] has been known for decades, and there are even methods that can exactly match the lower
complexity bounds [30, 17, 55, 18]. On the other hand, in general non-convex optimization, near-
stationarity is the typical optimality measure, and there has been a flurry of recent research devoted to
this topic [25, 26, 23, 28, 21, 60]. Recently, there has been growing interest on devising fast schemes
for finding near-stationary points in convex optimization [42, 2, 22, 7, 31, 32, 33, 27, 15, 14]. This
line of research is basically driven by the following facts.

* Nesterov [42] studied the problem with a linear constraint: f(z*) = mingeq {f(z) : Az = b},
where @) is a convex set and f is strongly convex. Assuming that () and f are simple, we can focus
on the dual problem ¢(y*) = max,{¢(y) = mingeq {f(z) + (y,b — Az)}}. Clearly, the dual
objective —¢(y) is smooth convex. Letting ,, be the unique solution to the inner problem, we have
Vo(y) = b — Az, Note that f(z,) — f(z%) = 6(y) — (5, Vo) — d(y*) < Iyl V)]
Thus, in this problem, the quantity ||[Vé(y)|| serves as a measure of both primal optimality
f(zy)— f(x*) and feasibility |b— Az, ||, which is better than just measuring the function value.

* Matrix scaling [50] is a convex problem and its goal is to find near-stationary points [4, 9].

* Gradient norm is readily available, unlike other optimality measures (f(z)— f(z*) and ||z — z*||),
and is thus usable as a stopping criterion. This fact motivates the design of several parameter-free
algorithms [43, 39, 27], and their guarantees are established on the gradient norm.

* Designing schemes for minimizing the gradient norm can inspire new non-convex optimization
methods. For example, SARAH [46] was designed for convex finite-sums with gradient-norm mea-
sure, but was later discovered to be the near-optimal method for non-convex finite-sums [21, 47].

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

37
38

39
40
41
42
43
44
45

47
48

49

50

51
52

54
55
56

Table 1: Finding near-stationary points ||V f(x)|| < € of convex finite-sums.

Algorithm Complexity Remark
GD [33] O(&)
Regularized NAG* [7] O(Zlog 1)
| | OGM-G [33] o(%) O(2 + d) memory, optimal in €
('_:“, M-OGM-G [Section 3.1] o(%) O(d) memory, optimal in €
L2S [37] O(n+ g) Loopless variant of SARAH [46]
Regularized Katyusha* [2] O((n+ @) log 1) Requires the knowledge of Ag
R-Acc-SVRG-G* [Section 5] | O((nlog i + @) log 1) Without the knowledge of Ag
GD [42, 54] o)
NAG/NAG +GD [32]/[42] O(2)
Regularized NAG* [42,27] O(Zlog 1)
NAG + OGM-G [45] O(%) O(ﬁ + d) memory, optimal in €
[I) NAG + M-OGM-G [Section 3.1] O(%) O(d) memory, optimal in €
C | Katyusha+L2S [Appendix E] O(nlogt + 6‘,_,//72’)
MeSRGO seions] | Ofalogh 4 52) | QUL b fmton
Regularized Katyusha* [2] O((n+ /%) log 1) Requires the knowledge of Ry
R-Acc-SVRG-G* [Section 5] | O((nlogt + /%)log 1) Without the knowledge of Ry

* Indirect methods (using regularization).

Moreover, finding near-stationary points is a harder task than minimizing function value, because
NAG has the optimal guarantee for f(x) — f(z*) but is only suboptimal for minimizing |V f(z)]|.

In this work, we consider the problem min, cga f(z) = + 37" | f;(z), where each f; is L-smooth
and convex. We focus on finding an e-stationary point of this objective, i.e., a point with |V f(z)|| < e.
We use A'* to denote the set of optimal solutions, which is assumed to be nonempty. There are two
different assumptions on the initial point x, namely, the Initial bounded-Function Condition (IFC):
f(xo) — f(x*) < Ay, and the Initial bounded-Distance Condition (IDC): ||zo — 2*|| < Rg for some
x* € X*. This subtlety results in drastically different best achievable rates as studied in [7, 22].

Below we categorize existing algorithmic techniques into three classes (relating to Table 1).

(i) “IDC + IFC”. Nesterov [42] showed that we can combine the guarantees of a method
minimizing function value under IDC and a method finding near-stationary points under IFC

to produce a faster one for minimizing gradient norm under IDC. For example, NAG produces
flax) = f(2%) = O(55) 1401 and GD produces ||V f(we,)||* = O (KL =12 133)
under IFC. Letting ¢y = rx, and K = K; + K>, by balancing the ratio of K; and K>, we
obtain the guarantee |V f (zx)||* = O(L;fg) for “NAG + GD”. We point out that we can use
this technique to combine the guarantees of Katyusha [1] and SARAH? [46]; see Appendix E.

(ii) Regularization. Nesterov [42] used NAG (strongly convex variant) to solve the regularized
objective, and showed that it achieves near-optimal complexity (optimal up to logarithmic
factors). Inspired by this technique, Allen-Zhu [2] proposed recursive regularization for
stochastic approximation algorithms, which also achieves near-optimal complexities [22].

!Table 1 shows that Katyusha+L2S has a slightly better dependence on n than Acc-SVRG-G. It is due to the
adoption of n-dependent step size in L2S. As studied in [37], despite having a better complexity, n-dependent
step size boosts numerical performance only when n is extremely large. If the practically fast n-independent
step size is used for L2S, Katyusha+L2S and Acc-SVRG-G have the same complexity. See also Appendix A.

>We adopt the loopless variant of SARAH in [37], which has a refined analysis for general convex objectives.

58
59
60
61

62
63

64
65
66

67
68
69

70
71

72
73

74
75

76
7

78

79
80
81
82

83

84
85

86

87
88

89

90
91

92

93
94

(iii) Direct methods. Due to the lack of insight, existing direct methods are mostly derived or
analyzed with the help of computer-aided tools [31, 32, 54, 33]. The computer-aided approach
was pioneered by Drori and Teboulle [19], who introduced the performance estimation
problem (PEP). The only known optimal method OGM-G [33] was designed based on the
PEP approach.

Observe that since f(x) — f(z*) < ||V f(2)| ||z — =*]|, the lower bound for finding near-stationary
points must be of the same order as for minimizing function value [44]. Thus, under IDC, the lower
bound is ©(n + /=) due to [58]. Under IFC, we can establish an Q(n + @) lower bound using
the techniques in [7, 58]. The main contributions of this work are three new algorithmic schemes that
improve the practicalities of existing methods as summarized below (highlighted in Table 1).

* (Section 3) We propose a memory-saving variant of OGM-G for the deterministic case (n = 1),
which does not require a pre-computed and stored parameter sequence. The derivation of the new
variant is inspired by the numerical solution to a PEP problem.

* (Section 4) We propose a new accelerated SVRG [29, 59] variant that can simultaneously
achieve fast convergence rates for minimizing both the gradient norm and function value, that is,

O(nlog L + %) complexity for gradient norm and O(nlog 1 + /%) complexity for function
value. Note that other stochastic approaches in Table 1 do not have this property.

* (Section 5) We propose an adaptively regularized accelerated SVRG variant, which does not
require the knowledge of Ry or A and achieves a near-optimal complexity under IDC or IFC.

We put in extra efforts to make the proposed schemes as simple and elegant as possible. We believe
that the simplicity makes the extensions of the new schemes easier.

2 Preliminaries

Throughout this paper, we use (-, -) and ||-|| to denote the inner product and the Euclidean norm,
respectively. We let [n] denote the set {1,2,...,n}, E denote the total expectation and E;, denote
the expectation with respect to a random sample ;. We say that a function f : R? — R is L-smooth
if it has L-Lipschitz continuous gradients, i.e.,

Va,y € R [IVf(x) = V()| < Lz -yl
A continuously differentiable f is called u-strongly convex if
v,y € RY, f(z) = f(y) = (Vf(y),x —y) >

Other equivalent definitions of these two assumptions can be found in the textbook [44]. The
following is an important consequence of a function f being L-smooth and convex:

2
e —ylI”

VRS

Va,y € RY, f(z) — f(y) = (Vf(y),z —y) = i IVf(@) = VIl (D

We call (1) the interpolation condition at (x,y) following [56]. If f is both L-smooth and p-strongly
convex, we can define a “shifted” function h(z) = f(z) — f(z*) = § ||z — 2*||? following [63]. It
can be easily verified that h is (L — p)-smooth and convex, and thus from (1),

Va,y € RY h(z) — h(y) — (Vh(y).z —y) > 5 IVh(z) = Vh(y)|*, 2

1
(L= n)
which is equivalent to the strongly convex interpolation condition discovered in [56].

Oracle complexity (or simply complexity) refers to the required number of stochastic gradient V f;
computations to find an e-accurate solution.

3 OGM-G: “Momentum” Reformulation and a Memory-Saving Variant

In this section, we focus on the IFC case, i.e., f(xo) — f(z*) < Ag. We use N to denote the total
iteration number to prevent confusion (in other sections, we use K'). Proofs in this section are given in

95
96

97

98
99
100
101

102
103

104
105

107

108

109

110
111
112
113
114

115
116

17
118
119

120

121
122

Algorithm 1 OGM-G: “Momentum” reformulation

Input: initial guess xy € R4, total iteration number N.
Initialize: vector UO = 0, scalars Oy = 1 and 07 — 0 = 07, fork=0...N — 1.
1: for k =0,. — 1 do

2: Vi1 = Uk + L9k92 Vf(l’k)
3 Tppr =Tk — *Vf(l‘k) (2071 — Oy 1) Ve
4: end for

QOutput: xy.

Appendix B. Recall that OGM-G has the following updates [33]. Let yg = x¢. Fork =0,..., N —1,

1
Ykt1 = Tk — ZVf(xk%

3)
B (O — 1)(20551 — 1) Wps1 — 1 (
Tht1 = Yk+1 T+ O (26, — 1) (Yrt+1 — Yr) + 20, — 1 (Yrt1 — Tx),

02— 0y =062, k=1...N—1,

where {6y} is recursively defined: 6y = 1 and { 62— 0y = 26° otherwise.

OGM-G was discovered from the numerical solution to an SDP problem and its analysis is to show
that the step coefficients in (3) specify a feasible solution to the SDP problem. While this analysis is
natural for the PEP approach, it is hard to understand how each coefficient affects the rate, especially
if one wants to generalize the scheme. Here we provide a simple algebraic analysis for OGM-G.

We start with a reformulation® of OGM-G in Algorithm 1, which aims to simplify the proof. We
adopt a consistent {0y, }: Oy = 1 and 67 — 6 = 607 |,k =0... N — 1, which only costs a constant
factor.* Interestingly, the reformulated scheme resembles the heavy-ball momentum method [49].

However, it can be shown that Algorithm 1 is not covered by the heavy-ball momentum scheme.
Defining 6% Nl = = 0% — On = 0, we provide the one-iteration analysis in the following proposition:

Proposition 3.1. In Algorithm 1, the following holds at any iteration k € {0,...,N — 1} :
Ap + Brg1 + Crq1 + Epg1 < Ak+1 + B+ Cr + Ex — 0401 (Vf(%h41), Vier1)

+ Z oo (V@) V@), @

with A £ e (F(@n)=f () =51 [V @n)I”), Br £ gz (f ()= F (@), Cu 2 575 IV f (i)

p 2 B <Vf<a:k> k-

Remark 3.1.1. A recent work [15] also conducted an algebraic analysis of OGM-G under a potential
function framework. Their potential function decrease can be directly obtained from Proposition 3.1
by summing up (4). By contrast, our “momentum” vector {vy } naturally merges into the analysis,
which significantly simplifies the analysis. Moreover, it provides a better interpretation on how
OGM-G utilizes the past gradients to achieve acceleration.

5

From (4), we see that only the last two terms do not telescope Note that the “momentum” vector is a

weighted sum of the past gradients, i.e., vgr; = Zf 0 I7, 02 Vf(mz) If we sum the terms up from

k=0,...,N — 1, it can be verified that they exactly sum up to 0. The presence of these special
terms prevents OGM-G to have a usual potential function (e.g., those in [6]). Then, by telescoping
the remaining terms, we obtain the final convergence guarantee.

Theorem 3.1. The output of Algorithm 1 satisfies |V f(zn)||* < (%LfQ‘;Q)

We observe two drawbacks of OGM-G (same as the algorithm description in [15]): (1) it requires
storing a pre-computed parameter sequence, which costs O(%) floats; (2) except for the last iterate,

31t can be verified that this scheme is equivalent to the original one (3) through v, = m (yr — xx).

*The original guarantee of OGM-G can be recovered if we set 03 — 0y = 267.

123
124

125

126
127
128
129

131

132
133
134
135
136

137
138
139
140

141
142

143
144

145
146
147

Algorithm 2 M-OGM-G: Memory-saving OGM-G

Input: initial guess xo € RY, total iteration number N.
Initialize: vector vy = O.
1: fork=0,..., N—1do
. _ 12
2: Vk+1 = Uk + TN T DNk 1 2) (N 73) V(@)
3 app =ak— $Vf(xR) — (N*'“)(N*’“J”(N*k”)v
4: end for
Output: zy orargminger, ..y [IVF(@)].

k+1-

all other iterates are not known to have guarantees. We resolve these issues by proposing another
parameterization of Algorithm 1 in the next subsection.

3.1 Memory-Saving OGM-G

A straightforward idea to resolve the aforementioned issues is to generalize Algorithm 1. However,
we find it rather difficult since the parameters in the analysis are rather strict (despite that the proof is
already simple). We choose to rely on computer-aided techniques [19]. The derivation of this variant
(Algorithm 2) is based on the following numerical experiment.

Numerical experiment. OGM-G was discovered when considering the relaxed PEP problem [33]:

2
max [[Vf(aw)]
V#(x0),...,Vf(zn)ER
f(@o),....f(zn),f(z")ER
interpolation condition (1) at (zx, zx+1), k=0,...,N —1, (P)
subject to ¢ interpolation condition (1) at (zn,zr), k=0,...,N —1,
interpolation condition (1) at (zx,2*), f(zo) — f(z*) < Ay,

where the sequence {zy} is defined as ;11 =z — % Zf:o hit1.:Vf(x;),k=0,...,N —1for
some step coefficients b € RVN(V+1/2 Given N, the step coefficients of OGM-G correspond to
a numerical solution to the problem: arg min, {Lagrangian dual of (P)}, which is denoted as (HD).
Conceptually, solving problem (HD) would give us the fastest possible step coefficients under the
constraints.” We expect there to be some constant-time slower schemes, which are neglected when
solving (HD). To identify such schemes, we relax a set of interpolation conditions in problem (P):

flan) = f(ar) = (Vf(zr), 28 —) = % IV f(an) = V@)l = plIVf)],

for k =0,..., N — 1 and some p > 0. After this relaxation, solving (HD) will no longer give us the

step coefficients of OGM-G. By trying different p and checking the dependence on N, we discover
Algorithm 2 when p = ﬁ Similar to our analysis of OGM-G, we provide a simple algebraic analysis

for the new variant in the following theorem.
Theorem 3.2. Define ;1= (

N7k+1)(N7113+2)(N7k:+3) ,k=20,...,N. In Algorithm 2, it holds that

N

Ok 2 12LA;
,;o 7 Vi@l < o T a (5)

Remark 3.2.1. Algorithm 2 converges optimally on the last iterate (note that §y11 = 2) and the
minimum gradient since

1 N5 8LA
. 2< k+1 2< 0)
pednin [VF@IP < SV I;) 3 VI < w2

Clearly, the parameters of this variant can be computed on the fly and from (5), each iterate has a
guarantee (although the guarantee degenerates quickly as k — 0 since 1/6;+1 = Q((N — k)3)).
Moreover, we can extend the benefits into the IDC case using the ideas in [42] as summarized below.

SHowever, since problem (HD) is non-convex, we can only obtain approximate solutions.

148
149

150

151
152
153
154
155
156
157
158

159
160
161

162
163
164
165

166

167
168
169
170

Algorithm 3 Acc-SVRG-G: Accelerated SVRG for Gradient minimization

Input: parameters {73}, {p}, initial guess zo € RY, total iteration number K.
Initialize: vectors zo = Zo = x(and scalars o, = f_—i’“k, Vk and T = 25;01 T 2,
1. fork=0,..., K —1do

2 yk:'rkzk+(lf7'k) (jk, %Vf(:fk))
3: Zk+1 = arg min, {(gk,m> + (ag/2) ||z — z;.c||2}.
4 NG =V, (yx) — Vi, (Zr) + V£(Z1), where iy, is sampled uniformly in [n).
s, Frps = {yk with probability py,
Z), with probability 1 — py.
6: end for B
Output (for gradient): x,, is sampled from {Prob{xnm =T} = T’“T ke{0,...,K — 1}}

Output (for function value): 7.

Corollary 3.2.1 (IDC case). If we first run N/2 iterations of NAG and then continue with N/2

iterations of Algorithm 2, we obtain an output satisfying ||V f(zy)|| = O(5E0).

4 Accelerated SVRG: Fast Rates for Both Gradient Norm and Objective

In this section, we focus on the IDC case, i.e., ||xg — 2*| < Rp for some z* € X*. From the
development in the previous section, it is natural to ask whether we can use the PEP approach to
motivate new stochastic schemes. However, due to the exponential growth of the number of possible
states (g, 41, - - .), we cannot directly adopt this approach. A feasible alternative is to first fix an
algorithmic framework and a family of potential functions, and then use the potential-based PEP
approach in [54]. However, this approach is much more restrictive. For example, it cannot identify
special constructions like (4) in OGM-G. Fortunately, as we will see, we can get some inspiration
from the recent development of deterministic methods. Proofs in this section are given in Appendix C.

Our proposed scheme is given in Algorithm 3. We adopt the elegant loopless design of SVRG in
[34]. Note that the full gradient V f(Zy) is computed and stored only when Zj11 = y; at Step 5. We
summarize our main technical novelty as follows.

Main algorithmic novelty. The design of stochastic accelerated methods is largely inspired by
NAG. To make it clear, by setting n = 1, we see that Katyusha [1], MiG [61], SSNM [62], Varag [36],
VRADA [52], ANITA [38], the acceleration framework in [16] and AC-SA [35, 24] all reduce to one
of the following variants of NAG. We say that these methods are under the NAG framework.

xp = T2k + (1 — 7)Y, rp = T2k + (1 —)y,
Zer1 = 2k — oV f(2p), Zhg1 = 2 — oV f (1),
Ykt1 = Tw2ks1 + (1 — 7o) Yr- Yrt1 = T — MV f(T).
Auslender and Teboulle [5] Linear Coupling [64]

See [57, 12] for other variants of NAG. When n = 1, Algorithm 3 reduces to the following scheme:

Yo = Thzk + (1 — 7%) (yh—1 — VS (We-1)) ,
Zhi1 = 2k — 2= VI (Y)-

Optimized Gradient Method (OGM) [19, 30]

Algorithm 3 reduces to the scheme of OGM when n = 1 (this point is clearer in the formulation of
ITEM in [55]). OGM has a constant-time faster worst-case rate than NAG, which exactly matches
the lower complexity bound established in [17]. In the following proposition, we show that the OGM
framework helps us conduct a tight one-iteration analysis, which gives room for achieving our goal.

171

172

173
174

175

176
177

178

179

180
181
182
183
184
185

186

187

188
189

191
192

193

194

196
197
198
199

Proposition 4.1. In Algorithm 3, the following holds at any iteration k > 0 and Vx* € X* :

(2B @) - 1)+ 32 [l —]) + 2 e 1w sl

< ((1 — Tpr) (1 — 73)

2
TPk

(6)

BL(@) - £+ 5E [l - 1])

The terms inside the parentheses form the commonly used potential function of SVRG variants. The

additional E[||V f(Z)] term is created by adopting the OGM framework. In other words, we use
the following potential function for Algorithm 3 (ag, by, cx > 0):

Ty = B [f (@) - (@ >1+bkE[||zk—x*||}+Zcq IV 7@IP)-

We first provide a simple parameter choice, which leads to a simple and clean analysis.

Theorem 4.1 (Single-stage parameter choice). In Algorithm 3, if we choose pj, = %, TR = ﬁ,
then the following holds at the outputs:
— f(z*)) + n2L?*R2
|:||Vf($out || (K3))
n?(f(wo) — f(a¥)) + nLRY v
~ 130 — T n
E[f(#x)] - f(z*) = O < o~) .

In other words, to guarantee that E [||V f(Zou) H] <egand E[f(Tx)| — f(a*) < €y, the oracle com-

n(L(f(IO) f(ﬂv*)))l/3 (nLRo)*/) (f@o)—f(=*) | VnLR
(e and O = + ﬁo

plexities are O), respectively.

€g

From (7), we see that Algorithm 3 achieves fast O(+++) and O(4>) rates for minimizing the
gradient norm and function value at the same time. However, despite being a simple choice, the oracle
complexities are not better than the deterministic methods in Table 1. Below we provide a two-stage
parameter choice, which is inspired by the idea of including a “warm-up phase” in [3, 36, 52, 38].
This theorem corresponds to the reported result in Table 1.

Theorem 4.2 (Two-stage parameter choice). In Algorithm 3, let py, = max{,%_87 %}, T = m.

The oracle complexities needed to guarantee E [||V f(xou)||] < €g and E [f(Z k)] — f(z*) < ef are

2/3 2
0 nmin{logm}’logn}+mlj/03) and O nmin{logLRo,logn}Jr\/m 7
N o ‘s NG

respectively.

If e is large or n is very large, the recently proposed ANITA [38] achieves an O(n) complexity, which
matches the lower complexity bound €2(n) in this case [58]. Since ANITA uses the NAG framework,
we show that similar results can be derived under the OGM framework in the following theorem:

Theorem 4.3 (Low accuracy parameter choice). In Algorithm 3, let iteration N be the first time
Step 5 updates T = yy. If we choosep, = +, 7, = 1 — \/%-H and terminate Algorithm 3 at

n’

iteration N, then the following holds at Ty :
8L2R?2 LR?
v | < d E[f(ine1)] - fa") € ——md
BI9f@n)] < 5=y and BIf Gy - S6") < ==

2 5 8L2R2
In pamcular if the required accuracies are low (or n is very large), i.e., €, > S(WH) and

€ > \/m+1’ then Algorithm 3 only has an O(n) oracle complexity.

In the low accuracy region (specified above), the choice in Theorem 4.3 removes the O(log %) factor
in the complexity of Theorem 4.2. We include some numerical justifications of Algorithm 3 in
Appendix A. We believe that the potential-based PEP approach in [54] can help us identify better
parameter choices of Algorithm 3, which we leave for future work.

201
202
203
204

205
206
207

209

210
211
212
213
214
215
216

217
218
219
220
221
222
223
224

225

226

227

228

Algorithm 4 R-Acc-SVRG-G

Input: accuracy e > 0, parameters 6o = L, 3 > 1, initial guess 2o € R%.
1: fort =0,1,2,...do
Define f (x) = (1/n) Y7, f{* («), where f" (z) = fi(z) + (8¢/2) & — wo|*.
3 Initialize vectors zg = g = x¢ and set 7, 7., &, p, Cipc, Circ according to Proposition 5.1.
4 for k=0,1,2,...do
5: Yk :szk—k(l—Tx)i’k—FTz (5t(§7k—zk)—Vf5"(i‘k)).
6
7

21 = argming { (61 2) + (a/2) llz = 2ull* + (61/2) 2 = wall* }.
NGy &V [(yr) — V[(&) + V% (&x), where iy, is sampled uniformly in [r].

- yr with probability p,
8: Tht1 =4 = . o
T, with probability 1 — p.

9: if °||V f(21)|| < e then output #;, and terminate the algorithm.
10: if under IDC and (1 + %’)k > +/Cipc/d; then break the inner loop.
11: if under IFC and (1 + %’)k > /Circ/26; then break the inner loop.
12: end for

13: 6t+1 = (St/ﬁ
14: end for

5 Near-Optimal Accelerated SVRG with Adaptive Regularization

Currently, there is no known stochastic method that directly achieves the optimal rate in €. To get near-
optimal rates, the existing strategy is to use a carefully designed regularization technique [42, 2] with
a method that solves strongly convex problems; see, e.g., [42, 2, 22, 11]. However, the regularization
parameter requires the knowledge of Ry or Ay, which significantly limits its practicality.

Inspired by the recently proposed adaptive regularization technique [27], we develop a near-optimal
accelerated SVRG variant (Algorithm 4) that does not require the knowledge of Ry or Ag. Note
that this technique was originally proposed for NAG under the IDC assumption. Our development
extends this technique to the stochastic setting, which brings an O(1/n) rate improvement. Moreover,
we consider both IFC and IDC cases. Proofs in this section are provided in Appendix D.

Detailed design. Algorithm 4 has a “guess-and-check” framework. In the outer loop, we first
define the regularized objective f°¢ using the current estimate of regularization parameter ¢;, and
then we initialize an accelerated SVRG method (the inner loop) to solve the d;-strongly convex f%.
If the inner loop breaks at Step 10 or 11, indicating the poor quality of the current estimate d;, &; will
be divided by a fixed . Thus, conceptually, we can adopt any method that solves strongly convex
finite-sums at the optimal rate as the inner loop. However, since the constructions of Step 10 or 11
require some algorithm-dependent constants, we have to fix one method as the inner loop.

The inner loop we adopted is a loopless variant of BS-SVRG [63]. This is because (i) BS-SVRG is
the fastest known accelerated SVRG variant (for ill-conditioned problems) and (ii) it has a simple
scheme, especially after using the loopless construction [34]. However, its original guarantee is built
upon {zy }. Clearly, we cannot implement the stopping criterion (Step 9) on ||V f(z;)||. Interestingly,
we discover that its sequence {Z} works perfectly in our regularization framework, even if we can

neither establish convergence on f(Z;) — f(2*) nor on || — 2*|*.” Moreover, we find that the
loopless construction significantly simplifies the parameter constraints of BS-SVRG, which originally
involves ©(n)th-order inequality. We provide the detailed parameter choice as follows:

— 1w _ a(l-T)
T, = % 5L and

Proposition 5.1 (Parameter choice). In Algorithm 4, we set T, = -

a+d,
a+L+6:7

p= % We set o as the (unique) positive root of the cubic equation (1 — g(_ﬁ“;fg)t) (1 + Q)Q =1

and specify Cinc = L? + %7 Circ = 2L + @ngﬁ)%' Under these choices, we

have 5% = O(Tl + TL(L/(Sf + 1))aCIDC = O((L —+ 516)2), and Cigc = O(L)

SNote that we maintain the full gradient V f°¢ (1) and V f (Z) = V% (Z1) — 0¢(Zx — o).
"t is due to the special potential function of BS-SVRG (see (27)), which does not contain these two terms.

229
230

231
232

234

235

237
238

240

241
242

243
244

245
246

247
248

249

250
251
252
253
254

255
256
257

259
260
261

262

Under the choices of 7, and 7., the a above is the optimal choice in our analysis. Then, we can
characterize the progress of the inner loop in the following proposition:

Proposition 5.2 (The inner loop of Algorithm 4). Using the parameters specified in Proposition 5.1,
after running the inner loop (Step 4-12) of Algorithm 4 for k iterations, we can conclude that

(i) under IDC, i.e.,

xo — z*|| < Ry for some x* € X%,

5\ 7k
E[Vf(@)ll] < <5t + <1 + oi) 3V, ClDC) Ry,

(ii) under IFC, i.e., f(xg) — f(z*) < Ao,
—k
E([Vf(@)]] < < 26, + <1+‘Z) @) VAo

The above results motivate the design of Step 10 and 11. For example, in the IDC case, when the
inner loop breaks at Step 10, using (i) above, we obtain E [||V f(Z)]|] < 26:Ro. Then, by discussing
the relative size of §; and a certain constant, we can estimate the complexity of Algorithm 4. The
same methodology is used for the IFC case.

Theorem 5.1 (IDC case). Denote 0jj,c = % for some q € (0,1) and let the outer iteration t = ¢

be the first time® 5, < 8jyc. The following assertions hold:

(i) At outer iteration {, Algorithm 4 terminates with probability at least 1 — ¢.°
(ii) The total expected oracle complexity of the £ + 1 outer loops is

LR, [nLR LR
O<<nlog 0 4 n 0>log O).
€q €q €q

Theorem 5.2 (IFC case). Denote djpc = % for some q € (0,1) and let the outer iteration t = { be
the first time 6 < Ojpc. The following assertions hold:

(i) At outer iteration {, Algorithm 4 terminates with probability at least 1 — q.
(ii) The total expected oracle complexity of the £ + 1 outer loops is

LA LA LA
O((nlog\/ 0—}—\/” 0)log\/ 0).
€q €q €q

Compared with regularized Katyusha in Table 1, the adaptive regularization approach drops the need
to estimate R or A at the cost of a mere log % factor in the non-dominant term (if € is small).

6 Discussion

In this work, we proposed several simple and practical schemes that complement existing works
(Table 1). Admittedly, the new schemes are currently only limited to the unconstrained Euclidean
setting, because our techniques heavily rely on the interpolation conditions (1) and (2). On the other
hand, methods such as OGM [30], TM [51] and ITEM [55, 10], which also rely on these conditions,
are still not known to have their proximal variants. We list a few future directions as follows.

(1) It is not clear how to naturally connect the parameters of M-OGM-G (Algorithm 2) to OGM-G
(Algorithm 1). The parameters of both algorithms seem to be quite restrictive and hardly generalizable
due to the special construction in (4). Does there exist an optimal method for minimizing the gradient
norm that has a proper potential function (at each iteration)?

(2) Is this new “momentum” in OGM-G beneficial for training neural nets? Other classic momentum
schemes such as NAG [40] or heavy-ball momentum method [49] are extremely effective for this
task [53], and they were also originally proposed for convex objectives.

(3) Can we directly accelerate SARAH (L2S)? By extending OGM-G? It seems that existing stochastic
acceleration techniques fail to accelerate SARAH (or result in poor dependence on 7 as in [16]).

8We assume that e is small such that max {dfc, dfic} < do = L for simplicity. In this case, £ > 0.
°If Algorithm 4 does not terminate at outer iteration £, it terminates at the next outer iteration with probability
at least 1 — ¢/S. That is, it terminates with higher and higher probability. The same goes for the IFC case.

264

265
266

267
268
269

270
271
272

273
274
275

276
277

278
279

280
281

282
283
284

285
286
287

288

290
291

292
293

294
295

297
298
299

300
301

302
303

305

306
307

308
309

310
311

312
313
314

References

[1] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. Journal of
Machine Learning Research, 18(1):8194-8244, 2017. 2, 6, 26

[2] Z. Allen-Zhu. How to make the gradients small stochastically: Even faster convex and noncon-
vex sgd. In Advances in Neural Information Processing Systems, pages 1157-1167,2018. 1, 2,
8

[3] Z. Allen-Zhu and Y. Yuan. Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex
Objectives. In Proceedings of The 33rd International Conference on Machine Learning, pages
1080-1089, 2016. 7

[4] Z. Allen-Zhu, Y. Li, R. M. de Oliveira, and A. Wigderson. Much Faster Algorithms for Matrix
Scaling. In C. Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer
Science, pages 890-901, 2017. 1

[5] A. Auslender and M. Teboulle. Interior gradient and proximal methods for convex and conic
optimization. SIAM Journal on Optimization, 16(3):697-725, 2006. 6

[6] N.Bansal and A. Gupta. Potential-Function Proofs for Gradient Methods. Theory of Computing,
15(4):1-32, 2019. 4

[7] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points
ii: first-order methods. Mathematical Programming, 185(1-2), 2021. 1,2, 3

[8] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http:
//www.csie.ntu.edu.tw/“cjlin/libsvm. 13, 14

[9] M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu. Matrix Scaling and Balancing via Box
Constrained Newton’s Method and Interior Point Methods. In IEEE 58th Annual Symposium on
Foundations of Computer Science, pages 902-913. IEEE, 2017. 1

[10] A. d’Aspremont, D. Scieur, and A. Taylor. Acceleration methods. arXiv preprint
arXiv:2101.09545,2021. 9

[11] D. Davis and D. Drusvyatskiy. Complexity of finding near-stationary points of convex functions
stochastically. arXiv preprint arXiv:1802.08556, 2018. 8

[12] A. Defazio. On the Curved Geometry of Accelerated Optimization. In Advances in Neural
Information Processing Systems, volume 32, pages 1764-1773, 2019. 6

[13] A.Defazio, F. R. Bach, and S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With
Support for Non-Strongly Convex Composite Objectives. In Advances in Neural Information
Processing Systems, pages 1646—1654, 2014. 14

[14] J. Diakonikolas and C. Guzman. Complementary Composite Minimization, Small Gradients in
General Norms, and Applications to Regression Problems. arXiv preprint arXiv:2101.11041,
2021. 1

[15] J. Diakonikolas and P. Wang. Potential Function-based Framework for Making the Gradients
Small in Convex and Min-Max Optimization. arXiv preprint arXiv:2101.12101,2021. 1,4

[16] D. Driggs, M. J. Ehrhardt, and C.-B. Schonlieb. Accelerating variance-reduced stochastic
gradient methods. Mathematical Programming, 2020. doi: 10.1007/s10107-020-01566-2. 6, 9

[17] Y. Drori. The exact information-based complexity of smooth convex minimization. Journal of
Complexity, 39:1-16, 2017. 1,6

[18] Y. Drori and A. Taylor. On the oracle complexity of smooth strongly convex minimization.
arXiv preprint arXiv:2101.09740, 2021. 1

[19] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex minimization:
a novel approach. Mathematical Programming, 145(1-2):451-482,2014. 1, 3,5, 6

[20] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.
uci.edu/ml. 13, 14

[21] C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-Optimal Non-Convex Optimization via
Stochastic Path-Integrated Differential Estimator. In Advances in Neural Information Processing
Systems, pages 687-697, 2018. 1

10

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

315
316
317

318
319
320

321
322
323

324
325

326
327

328
329
330

331
332
333

334
335

336
337

338
339

340
341

344

353
354
355

356
357

358
359
360

361
362

363
364

365
366

[22] D.J. Foster, A. Sekhari, O. Shamir, N. Srebro, K. Sridharan, and B. Woodworth. The Complexity
of Making the Gradient Small in Stochastic Convex Optimization. In Proceedings of the Thirty-
Second Conference on Learning Theory, pages 1319-1345, 2019. 1, 2, 8

[23] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping From Saddle Points — Online Stochastic
Gradient for Tensor Decomposition. In Proceedings of The 28th Conference on Learning
Theory, pages 797-842, 2015. 1

[24] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization i: A generic algorithmic framework. SIAM Journal on
Optimization, 22(4):1469-1492, 2012. 6

[25] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013. 1

[26] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic
programming. Mathematical Programming, 156(1-2):59-99, 2016. 1

[27] M. Ito and M. Fukuda. Nearly optimal first-order methods for convex optimization under
gradient norm measure: An adaptive regularization approach. Journal of Optimization Theory
and Applications, 188(3):770-804, 2021. 1,2, 8

[28] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. 1. Jordan. How to Escape Saddle Points
Efficiently. In Proceedings of the 34th International Conference on Machine Learning, pages
1724-1732, 2017. 1

[29] R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance
Reduction. In Advances in Neural Information Processing Systems, pages 315-323, 2013. 3, 14

[30] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization.
Mathematical Programming, 159(1):81-107, 2016. 1, 6,9

[31] D. Kim and J. A. Fessler. Another Look at the Fast Iterative Shrinkage/Thresholding Algorithm
(FISTA). SIAM Journal on Optimization, 28(1):223-250, 2018. 1,3

[32] D. Kim and J. A. Fessler. Generalizing the optimized gradient method for smooth convex
minimization. SIAM Journal on Optimization, 28(2):1920-1950, 2018. 1,2, 3

[33] D. Kim and J. A. Fessler. Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions. Journal of Optimization Theory and Applications, 188(1):
192-219,2021. 1,2, 3,4, 5

[34] D. Kovalev, S. Horvéth, and P. Richtarik. Don’t jump through hoops and remove those loops:
SVRG and Katyusha are better without the outer loop. In Algorithmic Learning Theory, pages
451-467. PMLR, 2020. 6, 8

[35] G.Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
133(1-2):365-397, 2012. 6

[36] G. Lan, Z. Li, and Y. Zhou. A unified variance-reduced accelerated gradient method for
convex optimization. In Advances in Neural Information Processing Systems, volume 32, pages
10462-10472, 2019. 6, 7

[37] B.Li, M. Ma, and G. B. Giannakis. On the Convergence of SARAH and Beyond. In Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, pages
223-233, 2020. 2, 14, 27

[38] Z. Li. ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method. arXiv
preprint arXiv:2103.11333,2021. 6,7

[39] Q. Lin and L. Xiao. An Adaptive Accelerated Proximal Gradient Method and its Homotopy
Continuation for Sparse Optimization. In Proceedings of the 31th International Conference on
Machine Learning, pages 73-81, 2014. 1

[40] Y. Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k?). In Dokl. akad. nauk Sssr, volume 269, pages 543-547, 1983. 1, 2,9

[41] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003. 1

[42] Y. Nesterov. How to make the gradients small. Optima. Mathematical Optimization Society
Newsletter, (88):10-11, 2012. 1, 2,5, 8, 22, 27

11

367
368

369

370
371
372

373
374
375

376
377
378

379
380

381
382

383
384

385
386
387

388
389
390

391
392
393

394
395
396

397
398

399

401

402
403

404

411

414
415
416

417
418
419

[43] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125-161, 2013. 1

[44] Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018. 3, 18

[45] Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky. Primal—dual accelerated gradient
methods with small-dimensional relaxation oracle. Optimization Methods and Software, pages
1-38, 2020. 2

[46] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takd¢. SARAH: A Novel Method for Ma-
chine Learning Problems Using Stochastic Recursive Gradient. In Proceedings of the 34th
International Conference on Machine Learning, pages 2613-2621, 2017. 1,2

[47] N. H. Pham, L. M. Nguyen, D. T. Phan, and Q. Tran-Dinh. ProxSARAH: An efficient algorith-
mic framework for stochastic composite nonconvex optimization. Journal of Machine Learning
Research, 21(110):1-48, 2020. 1

[48] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.
1998. 14

[49] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1-17, 1964. 4,9

[50] U. G. Rothblum and H. Schneider. Scalings of matrices which have prespecified row sums and
column sums via optimization. Linear Algebra and its Applications, 114:737-764, 1989. 1

[51] B. V. Scoy, R. A. Freeman, and K. M. Lynch. The Fastest Known Globally Convergent First-
Order Method for Minimizing Strongly Convex Functions. IEEE Control Systems Letters, 2(1):
49-54,2017. 9

[52] C. Song, Y. Jiang, and Y. Ma. Variance Reduction via Accelerated Dual Averaging for Finite-
Sum Optimization. In Advances in Neural Information Processing Systems, volume 33, pages
833-844, 2020. 6,7

[53] L. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In Proceedings of the 30th International Conference on Machine
Learning, pages 1139-1147, 2013. 9

[54] A. Taylor and F. Bach. Stochastic first-order methods: non-asymptotic and computer-aided
analyses via potential functions. In Conference on Learning Theory, pages 2934-2992, 2019. 2,
3,6,7

[55] A. Taylor and Y. Drori. An optimal gradient method for smooth strongly convex minimization.
arXiv preprint arXiv:2101.09741, 2021. 1, 6,9

[56] A.B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods. Mathematical Programming, 161(1-2):307-345,
2017. 3

[57] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. https:
//www.mit.edu/"dimitrib/PTseng/papers/apgm.pdf, 2008. Accessed May 1, 2020. 6

[58] B. E. Woodworth and N. Srebro. Tight Complexity Bounds for Optimizing Composite Ob-
jectives. In Advances in Neural Information Processing Systems, pages 3639-3647, 2016. 3,
7

[59] L. Xiao and T. Zhang. A Proximal Stochastic Gradient Method with Progressive Variance
Reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014. 3, 14

[60] D.Zhou, P. Xu, and Q. Gu. Stochastic Nested Variance Reduction for Nonconvex Optimization.
Journal of Machine Learning Research, 21:103:1-103:63, 2020. 1

[61] K. Zhou, F. Shang, and J. Cheng. A Simple Stochastic Variance Reduced Algorithm with Fast
Convergence Rates. In Proceedings of the 35th International Conference on Machine Learning,
pages 5980-5989, 2018. 6

[62] K.Zhou, Q. Ding, F. Shang, J. Cheng, D. Li, and Z.-Q. Luo. Direct Acceleration of SAGA using
Sampled Negative Momentum. In Proceedings of the Twenty Second International Conference
on Artificial Intelligence and Statistics, pages 1602-1610, 2019. 6

[63] K. Zhou, A. M.-C. So, and J. Cheng. Boosting First-Order Methods by Shifting Objective: New
Schemes with Faster Worst-Case Rates. In Advances in Neural Information Processing Systems,
pages 15405-15416, 2020. 3, 8, 22

12

https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

420 [64] Z. A.Zhu and L. Orecchia. Linear Coupling: An Ultimate Unification of Gradient and Mirror
421 Descent. In 8th Innovations in Theoretical Computer Science Conference, volume 67 of LIPIcs,
422 pages 3:1-3:22,2017. 6

a3 Checklist

424 1. For all authors...

425 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
426 contributions and scope? [Yes]

427 (b) Did you describe the limitations of your work? [Yes] See Section 6.

428 (c) Did you discuss any potential negative societal impacts of your work? [N/A] We are
429 not aware of clear negative societal impacts since we focus on developing generic
430 algorithms for convex optimization.

431 (d) Have you read the ethics review guidelines and ensured that your paper conforms to
432 them? [Yes]

433 2. If you are including theoretical results...

434 (a) Did you state the full set of assumptions of all theoretical results? [Yes] See the
435 introduction.

436 (b) Did you include complete proofs of all theoretical results? [Yes]

437 3. If you ran experiments...

438 (a) Did you include the code, data, and instructions needed to reproduce the main experi-
439 mental results (either in the supplemental material or as a URL)? [Yes]

440 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
441 were chosen)? [Yes] See Appendix A.

442 (c) Did you report error bars (e.g., with respect to the random seed after running experi-
443 ments multiple times)? [Yes] See Figure 1.

444 (d) Did you include the total amount of compute and the type of resources used (e.g., type
445 of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.

446 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
447 (a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix A.
448 (b) Did you mention the license of the assets? [Yes] LIBSVM [8] is under the BSD license.
449 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
450 (d) Did you discuss whether and how consent was obtained from people whose data you’re
451 using/curating? [Yes] Details can be found in the online dataset repositories [8, 20].
452 (e) Did you discuss whether the data you are using/curating contains personally identifiable
453 information or offensive content? [Yes] Details can be found in the online dataset
454 repositories [8, 20].

455 5. If you used crowdsourcing or conducted research with human subjects...

456 (a) Did you include the full text of instructions given to participants and screenshots, if
457 applicable? [N/A]

458 (b) Did you describe any potential participant risks, with links to Institutional Review
459 Board (IRB) approvals, if applicable? [IN/A]

460 (c) Did you include the estimated hourly wage paid to participants and the total amount
461 spent on participant compensation? [N/A]

13

462

463

464

465

466
467
468
469
470
471
472

473
474
475
476
477
478
479
480

481

482

Supplementary Materials for
“Practical Schemes for Finding Near-Stationary
Points of Convex Finite-Sums”

A Numerical results of Acc-SVRG-G (Algorithm 3)

— — 12S (n-independent) \ — — L2S (n-independent)

2 [\ —-—-L2S (n-dependent) |1 Y, —-—-1.28 (n-dependent)
0T Acc-SVRG-G w7 Acc-SVRG-G 3
A S Qo
= 104 Ry I L = 04b TS
2 = g
L == P
10° 10°
100 ‘ ‘ ‘ ‘ ‘ 109 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of effective passes Number of effective passes
(a) a9a dataset. Measuring gradient norm. (b) w8a dataset. Measuring gradient norm.
— — SAGA — — SAGA
1 —-.—-SVRG i\ —-—-SVRG
102 Ace-SVRG-G | § \ Acc-SVRG-G
TR 02l]
R ETOhL
FEY T\~
2104 \:‘-\\ o E S [N
£ - Bt £ 10 TN T
g e S
10
10° ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of effective passes Number of effective passes
(c) a9a dataset. Measuring function value. (d) w8a dataset. Measuring function value.

Figure 1: Performance evaluations. Run 20 seeds. Shaded bands indicate +1 standard deviation.

We did some experiments to justified the theoretical results (Theorem 4.2) of Acc-SVRG-G. We
compared it to non-accelerated methods including L2S [37], SVRG [29, 59] and SAGA [13] under
their original optimality measures. Note that other stochastic approaches in Table 1 require fixing
the accuracy e in advance, and thus are not convenient to be compared in the form of Figure 1. For
measuring gradient norm, we simply tracked the smallest norm of all the full gradient computed to
reduce complexity. Since the figures are in logarithmic scale, the deviation bands are asymmetric,
and will emphasize the passes that have large deviations.

Setups. We ran the experiments on a Macbook Pro with a quad-core Intel Core i7-4870HQ with
2.50GHz cores, 16GB RAM, macOS Big Sur with Clang 12.0.5 and MATLAB R2020b. We were
optimizing the binary logistic regression problem f(z) = }L > log (1 + exp (—b; (a;,2))) with
dataset a; € RY, b; € {—1,+1}, i € [n]. We used datasets from the LIBSVM website [8], including
a9a [20] (32,561 samples, 123 features) and w8a [48] (49,749 samples, 300 features). We added one
dimension as bias to all the datasets. We normalized the datasets and thus for this problem, L = 0.25.
For Acc-SVRG-G, we chose the parameters according to Theorem 4.2. For L2S, we set m = n and

for its n-independent step size, we chose 7 = + and tuned c using the same grid specified in [37]; for
the n-dependent step size, we set n = L%/ﬁ according to Corollary 3 in [37]. For SAGA [13], we
1

chose n = ?%L following its theory. For SVRG [59], we setn = ;7.

14

w3 B Proofs of Section 3

a4 To simplify the proof, we denote Dy, = f(x3) — f(z*). And we use the following reformulation of
ss5 interpolation condition (1) (at (z,y)) to facilitate our proof.

vr,y € RY - (IVF@)IE + IVF)IE) + <Vf<y>,x—y - in(w)> < J(@) = fw)- ®)

486 B.1 Proof to Proposition 3.1

487 We define 0%, | = 63 — O = 0. Atiteration k, we are going to combine the reformulated interpola-
ass tion conditions (8) at (x, k1) and (x n,) with multipliers ﬁ and ﬁ, respectively.

1 1
sz, (IVS@I 4 19 @) + g = V@) on = o = 7S (@)
2L9k+1 9 L ©
1
< —5—(Dg — Diy1),
9k+1
e (V@) + V£ @)) + 5 (V). on — 2~ TV (ew)
206,67, N ¥ 007, RO EN TR T VAN 10
1
< Dy — Dy).
< gz Py = Do)
489 Using the construction: z — x4 = %Vf(a:k) + (202+1 — Qﬁﬂ)vk“, we can write (9) as
1
st (I @I + 1V @es)) + (201 = 1) (T (@), ves1)
2067, |
. (11)
—_ 92 (Dk Dk+1)'
k+1

490 Note that using 07 — 6, = 07 ,, we have 263 ., — 07| = 6., — 0 ,. Then,

N— | V-1 N-1
Tp— TN = Z —zip1) =7 Vzi)+ (071 = O 2)vies
i= i=k i=k
| V-1 N-2
=72 Vi@)+ Oirvher + Y Otia(vivs —vig1)
i=k i=k
w1 ¥ N-2 go
== V(@) + 01 V641 + 2V f (i
L (i) + Oy 1vk+s ; m (Zit1)
(b) plagy
+1Uk + Z Vf xz

491 where (a) and (b) use the construction: vx41 = vk + 75, 02 Vf(xk)
492 Thus, (10) can be written as

1 1 02+ 62,

2
91@9%“ (Dny — Dy) > m IV f(zw)| W@i“ IV f(z)l
02
Z+1 (V (@), Z La (Vf(xr), V().

imkt1 "k k+1

15

se3 Summing this inequality and (11), and using the relation 67 — 6, = 03 41, We obtain

11) 1 1
Dy — D ——D
(G%H 92) (N L IV f(zn)l) + (eg k— 01%+1 k+1>

1 1
> (s 19wl = 5 190l

0 2
(2 (s v - 52 @1) 12
k+1 k
N
O (VFni) o) = D0 5o (V). V)
i=kt1 L7
R

494 B.2 Proof to Theorem 3.1

a95 It is clear that except for R4, all terms in (12) telescope Since vp4+1 = Zf 0 7, 92 Vf(xl)

496 defining a matrix P € RWHDX(N+1D) with Py, = 7. 92 (V f(xy), Vf(x;)), we can write R1 as
+1

w1 SN Py — ZfV:kH P;.. Summing these terms from k = 0 to N — 1, we obtain

N-1 &k N-1 N N k-1 N-1
DD Purni— D Y Pu=)_) Pu-) ZP;“—O
k=0 =0 k=0 i=k+1 k=1 i=0 i=0 k=i+1

498 Both of the summations are equal to the sum of the lower triangular entries of P.

499 Then, telescoping (12) from k = 0 to N — 1 (note that vy = 0) we obtain

(1=) (P = 55 I9FGNIP) 2 Dy = Do+ 57 IV F o)1 = 51 IV a0

92
soo Using Dy > 5 IV f(x0)]|> and Dy > = IV f(zn)]||°. we obtain
2LD,
Vsl < 22
0

1+\/1+40
501 Since 0, = — Ykl > 1 +0k+1:>9k>N k11=6, >N+2 we have

8L(f(x0) — f(z*))
2
< .
||Vf(IN)H = (N+2)2
s02 B.3 Proof to Theorem 3.2
503 Define fork =0,..., N
A (N—k+2)(N—-k+3) A 12 1 1

= 6 ’ 5’““:(N—k+1)(N—k+2)(N—k+3):Tkﬂ_ﬁ'

s04 At iteration k, we are going to combine the reformulated interpolation conditions (8) at (zx, Tx+1)
so5 and (zy, 25) with multipliers ﬁ and dy1, respectively.

1 1 1
(IVF@OIP + 1V f @) IP) + — <Vf<xk+1>,xk ~pi1 - Vf<xk>>
2LTk+1 Tk+1 L (13)
1
< (Dk — Dg41),
Trk+1

YL (19)P + 19 @) + S <Vf<xk>,m — oy — ;Vf<xN>>
< 5k+1(DN — Dy,).

(14)

16

s06 Note that from the construction of Algorithm 2,
1 N—-EkE)(N—-k+1)(N—-k+2
i~ it~ L0 (o = TR k1))
e (N (N =i+ 1)(N—i+2)

:vk—xN—Z Vf)+ 5 Vit
i=k

Vk+1,

507 Thus, (13) can be written as
1

s (IVF @I + IV 7 @e)2) + (N) (9 f (), ve2) € —— (DD (15)
Tk+1 Tk+1

Defining Q(j) £ (j +3)(j +2)(j + 1)j. we have Q(j) — Q(j — 1) = 4j(j + 1)(j +2). Then,

508

N-1 L V=1
xk_xNzgfvf()‘*‘ﬂ;(Q(N—i)—Q(N—i—l))UiH
—1 1 N—-1
= Z fvf 24 (Q(N k)vgg1 + Z QN —i)(vig1 — Ui))
i=k i=k+1
N1 .
O U o+ Vs + 3 1 (TG 1) Vi@
1=k+1

(b)Q(UIH-Z _H'Q V()

s0e where (a) and (b) use the construction vy1 = vy + ’“L“ Vf(xg).

o

o Thus, (14) can be written as
Sk+1(Dn — D)

5

=

> 5k+1 (va(NI+ ||Vf(xk)||2) - N; i (Vf(zk), vi)
N .
_ % IV f(ze)|)* = i:;H % (Vf(xk), Vf(z)).

511 Summing the above inequality and (15) we obtain

(1 _ le> (DN 57 IV fn)]) (Die = WDk+1>

Tk+1

0
> (5 197G Hl)n?—MWf(xk)n?) L f ()

+ (N‘k‘ (3 @), vean) - 2 <Vf(xk>,vk>)

(16)

2
N .
+ N%]Hl (Vf(xg+1), Vkt1) — Z w (V f(zp), V(i)
i=k+1

512 Since vpy1 = Zz 0 lL“ V f(x;), the last two terms above have a similar structure as R; at (12).

s13 Define a matrix P € RVTUX(N+1) with Py, = % (Vf(zk), Vf(x;)). The last two terms

512 above can be written as Zf:o Poy1yi — Z —pr1 Pik- If we sum these terms fromk = 0,..., N —1,
515 they sum up to O (see Section B.2). Then, by telescopmg (16) fromk =0,...,N — 1, we obtain
1 1- 5k-+1
57 [V F@w)l? —7||Vf(o)I? + = IV F () +Z IV f () ®

= o

1 1
< <1—> Dy + —Dy — Dy.
70

17

516

517

518

520
521

522

523

524

525

526

527
528

529

530

Finally, using Do > o |V f(z0)||” and Dy > 5% [V f(zn)]|?, we obtain

Sk 2L 12L(f (wo) — f(x*))'

+1 2 —
5 IV/@)I” < =Do = (N +2)(N +3)

N-1
IVf@n)*+ (17)
k=0

B.4 Proof to Corollary 3.2.1

We assume N is divisible by 2 for simplicity. After running N/2 iterations of NAG, we obtain an
output x /o satisfying (cf. Theorem 2.2.2 in [44])

f(ang) - f(@*) =0 (LRE‘?) |

N2
Then, let z /o be the input of Algorithm 2. Using (17), after running another NV /2 iterations of
Algorithm 2, we obtain

LzRg)

N4

IV Fan)l? = 0(

C Proofs of Section 4

C.1 Proof to Proposition 4.1

Using the interpolation condition (1) at (z*, yx), we obtain

Flow) = F*) < (Y Fdowe — 2 — o 195 o)l

S0 2w~ S TG 9
Tk Tk

V), - 2) — 5 VTl

where () follows from the construction y, = Tj,2, + (1 — 7%) (Zx — £V f(Zx)).

From the optimality condition of Step 3, we can conclude that

Ok + ap(zk41 —21) =0

—~

a

1
= (G, 2 — ") = 2ar I1Gk]® +

Z

A

2 2
= (2 =217 = lzwsa = 2*?)

1 2 (673
L, [l + 2

where (a) uses (u,v) = %(Hu”2 + [|lvl]* = |lu — v||*) and (b) follows from taking the expectation
wrt sample 7.

L (VF), 2 =) = (I = a1 = Euy [llzne = *I?)) . 19)

Using the interpolation condition (1) at (Z, yx), we can bound E;, {Hgk ||2] as

Ei, [19:1°] = i, (I (0e) = Vi @0)I] +2(VF (i), V@) = 195 @)
<2L(f (@) = f(yr) — (VF(Wr)s T — yk)) +2(V f(yr), V(@) (20)
— IV f@l*.
Combine (18), (19) and (20).

Flye) = f(27) < a%(f(fck)—f(yk)) + (1_Tk L

Tk Qf

) (VF(yr) Tk — yr)
aik _ 1;;%) (Vf (), V£ (Ex))
+ 5 (N = 2" = By, [ansa — 217

1 1
~ 37 IV £ ()1 — 2 IV £ @@l

18

531 Substitute the choice o, = L

1— g (1;Tk)2) - f(a* L oo — 212 — B [lzens — 2|2
= (Fl) = @) < 3 (10 = F@0) + 5 (o =21 = B [l =]
]. — Tk (1 —Tk)2

2 ~ 2
s VI = S5 9@l e

sz Note that by construction, E [f(Zr+1)] = prE [f(yr)] + (1 — pr)E [f(Zx)], and thus

1—7

E(f(@n) — f)] < Lo g ey pim)

2 2
TPk TPk

N g ([ll2x = 1] = E [llzns1 — 2*1?])

e IV s] - S e [ivsaor].

533 C.2 Proof to Theorem 4.1

s34 It can be easily verified that under this choice (py = %, Tk = m750g) forany k > 0,n > 1,

k/n+
(1 = Trp1Prt1) (1 — Thg1) <17
TR 1Ph+1 T TPk

535 Then, using Proposition 4.1, after summing (6) from £ =0, ..., K — 1, we obtain

n(l_TKfl) ~ * L %12 71 2
M T g (i) — fa) + [k — 7]+ 30 & 2“ “E[IVs@oI]

Tk-1 k=0
* L * 2
< (2n = 1)(f(wo) — f(z¥)) +5||$0*$ I
sss Note that 73, < %, Vk. We have the following two consequences of the above inequality.

E[f(ix)] - f(e*) < 72, (4(f<xo> £ + o - x*||2) ,
K—-1

E IV)] = <oz . B [IVF@)I]

k 0 Tk k=0 'k
_ 16nL(f(x0) — f(x)) +A4L2 |lzg — 2*|
a Zk 0 TkQ

537 Substituting the parameter choice, we obtain

_ 3607 (f(x0) = f(a*)) +9nL |lzo — a*[* _

E[f(@x)] - (") o1 =<,
144nL(f(zo) — f(2*)) + 36L% |lzo — 2*||°
E IV f(ou)l?| < :
(191 o)] ST
538 Note that
=k 2K po1 2 (K +6n—1)3 — (6n —1)3
k=0 <n+6> Z/o (n +6> = 3n? .

539 Thus,

43203 L(f(xo) — f(2*)) +108n2L? ||zo — 2*|*

E(IV/ (@) I < E [IVf(@o)l’] < K 6n 17— =1 =

19

540
541

542

543

544

548

549

550

551

552
553

554

555

556

557

Since the expected iteration cost of Algorithm 3 is E [#grad,] = pr(n + 2) + (1 — pg)2 = 3,
to guarantee E [||V f(zou)||]] < €5 and E[f(Zx)] — f(2*) < €y, the total oracle complexities are

@Y / prws o ,
O(”(L(f(x‘))g/{(x WY ("L};}Qz 3) and O(n f(”)eff(x) 4+ @0), respectively.

C.3 Proof to Theorem 4.2

First, it can be verified that for any k¥ > 0,n > 1, the following inequality holds.

(1 — 71t 1) (1 — Toy1) < L=

T;f+1pk+1 T Tipk
The verification can be done by considering the two cases: (i) kK + 8 < 6n, where py, = %, TR = %,
(i) k + 8 > 6n, in which p, = £, 7, = 2.
Then, using Proposition 4.1, after summing (6) from k = 0, ..., K — 1, we obtain
1-7 L =
— TK-1 - 2 2
T B0~ @) + 5B Ik = o] & [Iv 7]
B~ f@)] + 5B [l -] + g o 2 195Gl
5 L N 4
< S (F(@o) = f(@*) + 5 llwo — 2*|* < S LRg.
3 2 3
Note that 75, < %, Vk. We can conclude the following two consequences.
- N 8
E[f(#x)] = f(z") < 37k 1px-1 LRG, 22)
1 32L° R?
E[Vf o 2} E{Vf] e (23)
19 £ ou)| Kl_QZTg VH@EI] < S
Now we consider two stages.
. . 2 _ 8L?R? 8L2R2
Stage I (low accuracy stage): K48 < 6n. In this stage, let the accuracies be €9 = 3K 0 > 3(6717*%)

ALR? 4LR0

and ey = . By substituting the parameter choice, (22) and (23) can be written as

K+7 = 6n—
E[f(Ex0)] — f(o") < 8 — o,
2 P2
E IV) I < E 195)] < 2520 = &

Note that the expected iteration cost of Algorithm 3 is E [#grad,] = pr(n+2)+(1—px)2 = np, +2,
and thus the total complexity in this stage is

K-1 K-1
6
E [#grad,| =n Z — —|— 2K <6nlog (K +7)+ 12n = O(nlog K).
k=0

Thus, the expected oracle complexities in this stage are O(n log = L R”) and O(

2
LI:“), respectively.

Stage II (high accuracy stage): K + 8 > 6n. In this stage, Algorlthm 3 proceeds to find highly

2 p2 2
accurate solutions (i.e., 63 < % and € < éilj‘l’). Substituting the parameter choice, we can
write (22) and (23) as

_ . 24nL R?
E[f(Zk)] — f(z)SWZW, (24)
32L%R?) 288n2 L2 R?
E[IV/ ()] < g < g =, (29)

3(2an - 28+ I, o m?) (K T) 443207 = 75607

20

558

559

560

561

563
564

565
566
567
568

569

570

571

572

573

where () follows from

_ K— K 3
—-2 _ 2 (K+7)
(k+8)? 7 dr = ~—=—5— — 8n.
k:%L:—7Tk Z i 9n2 6n—7 (o + 7 do 27n? !

Then, we count the expected complexity in this stage.

K-1 6n—8

]E[#gradk—n<2k+8+ Z >+2K§6nlog(6n)+3K—6n+7.

=0 k=6n—17

Finally, combining with (24) and (25), we can conclude that the total expected oracle complexities in
2/3
this stage are O (n logn + %) and O (n logn + ¥ "\/@0> respectively.

C.4 Proof to Theorem 4.3

We start at inequality (21) in the proof of Proposition 4.1, which is the consequence of one iteration k
in Algorithm 3. Due to the constant choice of 7, = 7, we have

o) = 17) < (=) (100 = 1) + g (I =" =B [=277])

- 57 IV I? @)1

Since we fix px = p as a constant and terminate Algorithm 3 at the first time 2441 = vy (denoted
as the iteration V), it is clear that the random variable N follows the geometric distribution with
parameter p, that is, for k = 0,1,2,...,Prob{N = k} = (1 — p)*p. Moreover, since we have

iy =in_1 ==&y = o, using the above inequality at iteration N, we obtain
E[f(@n+1)] —F(z") < (1= 7)(f(ao) —f (")) + Q(f_) (E [lon = 2*1P = lans1 —2*1])
~ B[V En s)IP] — T IV F o)
E (1= 7)(flwo) — f(2) + Q(ﬁ_p) (ke — 21" — E [lzn41 — 2" |1*])
~ B[V n)] - S IV o),

where (%) follows from

E [l — o] = ; (i p)*pE [l — 2*17] = pllz0 - x*||2>

k=0
1
= — (E[llax == I?] = pllzo — ") -
-p

Thus, we can conclude that

E[f(Znt1)] = f(2¥) + iE {va(i'NJrl)”Q} < g <1 -7+ 17‘2}97> R3.

Note that E [N] = 1%7” and the total expected oracle complexity isn + 2(E[N]+ 1) =n + %. We
choose p = L, which leads to an O(n) expected complexity. And we choose 7 by minimizing the

ratio (177'+Tp)wrt7 This gives 7 = 1 — \/n%lz%and
- 1 LR
ELf (v)] = @)+ B (19 @va)l] < =5

21

574

575
576

577
578

580

582

583
584

585
586

587

588

589
590
591

592
593

594
595
596

598
599
600

601
602
603

604

605

D Proofs of Section 5

We analyze Algorithm 4 following the “shifting” methodology in [63], which explores the tight
interpolation condition (2) and leads to a simple and clean proof.

Note that after the regularization at Step 2, each fi‘s’* is (L + d;)-smooth and J;-strongly convex. We

denote z3, as the unique minimizer of min,, f % (). Following [63], we define a “shifted” version of
this problem: min,, h% (z) = L 327 h(x), where

n

0.
B (2) = £ (2) = £ (a3,) = (V2 @5) = w3,) = S ||lo — o

It can be easily verified that each h%* is L-smooth and convex. Note that /" (3,) = h*(x}5,) =0
and V10" (x35,) = Vhoe (z3,) = 0, which means that h% and f7¢ share the same minimizer Ty,

2 .
, V.

Then, conceptually, we attempts to solve the “shifted”” problem using an “shifted” SVRG gradient
estimator: Ho £ Vhf; (yx) — Vh?; (&) + VAo (&}). Clearly, the gradient of 1% is not accessible
due to the unknown z3,. Zhou et al. [63] proposed a technical lemma (Lemma 1 below) to bypass this

issue. Since the relation Hit = g,if — ¢ (yp — mgt) holds, we can use Lemma 1 as an instantiation of
the “shifted” gradient oracle, see [63] for details.

D.1 Technical Lemmas

Lemma 1 (Lemma 1 in [63], the “shifting” technique). Given a gradient estimator G, and vectors

_ . . 2 2
2t 27, y,2* € RY, fix the updating rule »* = argmin, { (Gy,z) + S ||z — 27"+ S lz —y|° }.
Suppose that we have a shifted gradient estimator H,, satisfying the relation H, = G, — 6(y — z*),
it holds that

_ N « _ N 5\° N 1
e =) = (I == (14 2) e =17+ o

Lemma 2 (The regularization technique [42]). For an L-smooth and convex function f and 6 > 0,
defining f°(z) = f(z) + $ ||z — zol|”, Yz and denoting % as the unique minimizer of f°, we have
(i) f0is (L 4 6)-smooth and §-strongly convex.
(ii) f*(wo) = f*(x3) < f(=0) = f(a").
(iii) ||xo — gc§||2 < wo — 2*||?, Var € &+,

(iv) |lzo — 23| < 2(f(wo) — f(z)).

Proof. (i) can be easily checked by the definition of L-smoothness and strong convexity. (ii) follows
from f°(z0) = f(xo) and f°(x%) > f(z}) > f(«*). For (iii), using the strong convexity of f° at
(x*, %), Va* € X*, we obtain
* * 4 * 2
Poat) = f2(a5) = 5 lla* = a5
* J * 2 * d * 2 J * 2
= @)+ 5 Nz = woll” - f(z5) - 5 llz — woll” 2 5 llo* — o3

6 . o) s 0 a2 S
= 5 llvo = 2*1” = (F(=5) = f(2") = 5 llwo — 25| + 5 o™ — 5]

Then (iii) follows from the non-negativeness of f(z%) — f(«*) and ||z* — x§||2. For (iv), using
the strong convexity of f% at (zo,2%) and (i), we have [lzg — %[> < 2(f*(z0) — fo(a%)) <

2(f(wo) — f(z*)). 0

D.2 Proof to Proposition 5.1

: . . 2
Denoting k; = L;;(St , we can write the equation (1 - g:‘_)‘;ﬁ}z) (1+2) =1as

s(g> S <Z>3—(2n—3) (;)2—(2mt+n—3) <g) — kg +1=0.

22

606

607

608

609
610

611

612

613
614

615

616

It can be verified that s(2n + 2y/nfy) > 0 forany n > 1,k > 1. Since s(0) < 0 and s(357) — oo
as 6% — 00, the unique positive root satisfies % < 2n+ 2y/nk; = O(n + /nkz).

To bound Cipc and Cigc, it suffices to note that

a2
57P @ (§+1)? i (2n + 2y/nk; + 1)?

T p)(et 1) <f%) S nEnt2ymm) SO

where (a) uses the cubic equation and (b) holds because ‘”’fl increases monotonically as x increases.
Then,

Cipc < L? +6L5; = O((L + 6,)?),
Cire < 14L = O(L).

D.3 Proof to Proposition 5.2

Using the interpolation condition (2) of A% at (3, Yk), we obtain

1
RO (ye) < (VR (yi), g — 5,) — 57 VR0 () ||
a) 1

@17, ~]) ~
= 777 (VR (yr), Tk — yr) + :— (VR (yr), 8, (&x — z1) — V2 (&)

+ <Vh5t (Yr), 2 — @5,) — i HVhét(yk)Hz
R N yk> = VR (), VR)

04T *
+ (1 - tT) (VR (yi), 2 — @5,) — ﬁ HVh&f’(yk)H ’

Tx

where (a) follows from the construction yi = 7,2; + (1 — 7)) T + 7> (5,:(5% — zp) — Vfo (i”k))
and (b) uses that §; (T — z) — V0 (F) = or (x5, — 2k) — Vho (Fy).

Using Lemma | with H, = H3', G, = G2*, 2+ = 211, 2% = xj, and taking the expectation (note
that E;, {Hit} = Vh% (y;)), we can conclude that

1 _
ho (yi) <

xr ~ 4 ~ 1
T (VRO (y), &k — yr) — ; (VR (yy), VA (k) — oL | VR (:%)HQ

]]
(1222 5 (-l (4 2) B [l - 521
1

5t7—z ¢ 2
-5 e

617 To bound the shifted moment, we use the interpolation condition (2) of h?; at (Zg, yx), that is

2
E; MHit

} —E, {HVhf;(yk) Vh: (i H } + 2 (VR (yi), VR (i)

o GED]
< 2L(R (&) — h* (y) — (VA* (yk), Tk — Ui
2 (VRS (i), VA (&) — || VA% (@) |

23

618 Re-arrange the terms.

ho (yi) < (1 -) g(hé‘(fk) — 1% (yx))

N (1 —Te (1 B (5th) i) (VR (i), Ex — yi)

Tx Tx

e (1-22) 8 (sl (1 2) B [l -]
T 2 k & o ik k+1 &

1 &7, T

e (L5 2 om0 @) - o [l

(0% ATy Tx

5t Tz

Tx

619 The choice of 7, in Proposition 5.1 ensures that Iore — (1 — 5;#) é, which leads to
. a2(1-1) o2 5\’ .02
RO (y) < (1 — m2)h% (Zy) + a7 (BRI <1 + a) Ei, {szﬂ — | }

+a—|—(5t—(a+L+5t)Tx
Ld;

[)

2
I

(VA (), VR* (@) = 3 ||V ()

1—7,
2L

|2
(26)
a+6;
at+ 10"

hét (.i‘k)

620 Substitute the choice 7, =

L

o? 2 5\ 2
t T 8 (”Zk — i = (14 %) B [l =i D -
621 Note that by construction, E [2% (Z41)] = pE [h% (yx)] + (1 — p)E [% (Z))], and thus

E [hat (Tr41)] < (1 - OM) E [hét ()]

+ Q(Qf% (]E 12 - =3, 1] - <1 + Z)QIE [z :cgt||2]> |

622 Since « is chosen as the positive root of (1 — g fjﬁgi) (1 + %)2 = 1, defining the potential

ho (yr,) <

623 function
a?p
2(L+ (1 —p)(a+d))

Tp 2 E [1%(3)] + E ||z — 3,1 @7)

624 we have Ty < (1 + %)_2 T.
625 Thus, at iteration k, the following holds,

~ 5t 2 Oéz *
E [h%(&1)] < (1 " a) (hét o)+ 2(L+ (1~ 5)(0& +01)) o= H2>

5t 2k A + * 042]) * |12
< (1—1— a) <f5 (o) — 9 (xF,) + 2(L+ a —p)(a—i—&g)) ||;v0 —:v(;t”)
*) 5\ N ap 2

24

626

627

628

629

630

631

632
633

634

635
636

638

639

640
641

where (x) uses Lemma 2 (ii).

Note that using the interpolation condition (2), we have

E [1% (&) = %E [IvA® (@[]
= B [[V55) — i@ a3
_ iE :||Vf(;ik) + 64(&1 — x0) — 04 (Tk — 933,,)||2}
_ iIE 11V (@x) = b0 - 23|I

S E (V) — o — 5]

Finally, we conclude that
E ||V (@) < 01 ||zo — 5,

La?p

s\ "
N <1+a) 2L(J o) = 1N + Ty aray o~ 7wl

Under IDC: Invoking Lemma 2 (iii) to upper bound (28), we obtain that for any z* € X*,

—k
E (V£ < (m (1+‘Z) %u e fc;?gﬁ @)) o — 2.

Under IFC: Invoking Lemma 2 (iv) to upper bound (28), we can conclude that

2La?p

—k
E[nvmk)ms(2+ (1+2) \/2L+(L+ e 5t))5t> Flea) = @)

D.4 Proof to Theorem 5.1

(i) At outer iteration ¢, if Algorithm 4 breaks the inner loop (Step 10) at iteration k, by construction,
we have (1 + %)"%/C’IDC < §y . Then, from Proposition 5.2 (i),

)
Ef[VF(Z)l] < 20¢Ro < eq,
where (x) uses d¢ < d{c. By Markov’s inequality, it holds that

Prob (V£ (3)] > ¢} < LT <

which means that with probability at least 1 — ¢, Algorithm 4 terminates at iteration k (Step 9) before
reaching Step 10.

(ii) Note that the expected gradient complexity of each inner iteration is p(n+2) + (1 —p)2 = np+2.
Then, for an inner loop that breaks at Step 10, its expected complexity is

E [#grad,] < (np + 2) (?t + 1) log ?tmc.

Substituting the choices in Proposition 5.1, we obtain

E [#grad,] = O <<n+\/nL> logL+6t> .
0t bt

Thus, the total expected complexity before Algorithm 4 terminates with high probability at outer
iteration £ is at most (note that §; = o //3%)

d 1 nLp L+6
;E [#grad,] = O <<€n + i1V s log 5 .

25

642
643

644

645
646

647

648
649

650
651

652

653
654

655
656

657

658

660

Since outer iteration £ > 0 is the first time ¢, < dfj,¢, we have d; < djp < 6¢3. Moreover, noting
that £ = O(log g—o) and 09 = L, we can conclude that (omitting 3)

¢
do InL L+ 6
ZE #grad,| ((n log — 6@ 6@) log 5,)

t=
=0 ((n log LRy + nLRO) log LRO) .
€q €q €q

D.5 Proof to Theorem 5.2

(i) At outer iteration ¢, if Algorithm 4 breaks the inner loop (Step 11) at iteration k, by construction,
we have (1 + %)_k\/CIFc < +/2d, . Then, from Proposition 5.2 (ii),

(%)
E[IVf(@r)] < V/8deAo < eq,
where (x) uses d¢ < dfc. By Markov’s inequality, it holds that

E[IV/ @] _

>~ 4,
€

Prob {[[Vf(&:)]| > ¢} <
which means that with probability at least 1 — ¢, Algorithm 4 terminates at iteration k (Step 9) before
reaching Step 11.

(ii) Note that the expected gradient complexity of each inner iteration is p(n+2) + (1 —p)2 = np+2.
Then, for an inner loop that breaks at Step 11, its expected complexity is

Circ
26

E [#grad,] < (np + 2) (gi + 1) log

Substituting the choices in Proposition 5.1, we obtain

E [#grad,] = O <<n+ E) log6[;>

Thus, the total expected complexity before Algorithm 4 terminates with high probability at outer
iteration ¢ is at most (note that §; = do/3%)

V4 1 T I
ZE[#gradt]:O<<£n+\/B1 "&ﬁ)legée)

t=0

Since outer iteration £ > 0 is the first time d; < §jyc, we have 6y < §f- < d¢5. Moreover, noting
that £ = O(log g—‘;) and 6y = L, we can conclude that (omitting /)

: s [nL L
ZE[#gradt] =0 ((nlogéo + 7;{) log 5()

t=0
=0 <<n log VLA + \/nLA()) log VLAO) .

€q €q €q

E Katyusha + L2S

By applying AdaptReg on Katyusha, Allen-Zhu [1] showed that the scheme outputs a point ,
satisfying E [f(z5,)] — f(2*) < e in

l;}%o \/711;}%0
O [nlog— ,
€1 \/ €1

oracle calls for any ¢; > 0 (cf. Corollary 3.5 in [1]).

26

661
662

663

664

665
666

For L2S, Li et al. [37] proved that when using an n-dependent step size, its output z, satisfies (cf.
Corollary 3 in [37])

B (/)| <E [I9f@)?] = 0 (ﬁL(f(xoT) - f<x*>)) |

after running 7T’ iterations.

We can combine these two rates following the ideas in [42]. Set e; = O(%) for some € > 0 and

let the input =y of L2S be the output =5, of Katyusha. By chaining the above two results, we obtain
the guarantee E [||V f(z,)]|] = O(€) in oracle complexity

nY4LR, N n3/4LRo>
VTe VTe)

O(n+T+nlog

Minimizing the complexity by choosing T' = O (‘/77(527%))2/5) , we get the total oracle complexity

LR LRy)?/3
o (”log i ﬁ(e2/30)) '

27

	Introduction
	Preliminaries
	OGM-G: ``Momentum'' Reformulation and a Memory-Saving Variant
	Memory-Saving OGM-G

	Accelerated SVRG: Fast Rates for Both Gradient Norm and Objective
	Near-Optimal Accelerated SVRG with Adaptive Regularization
	Discussion
	Numerical results of Acc-SVRG-G (Algorithm 3)
	Proofs of Section 3
	Proof to Proposition 3.1
	Proof to Theorem 3.1
	Proof to Theorem 3.2
	Proof to Corollary 3.2.1

	Proofs of Section 4
	Proof to Proposition 4.1
	Proof to Theorem 4.1
	Proof to Theorem 4.2
	Proof to Theorem 4.3

	Proofs of Section 5
	Technical Lemmas
	Proof to Proposition 5.1
	Proof to Proposition 5.2
	Proof to Theorem 5.1
	Proof to Theorem 5.2

	Katyusha + L2S

