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1 PROOFS OF THEORETICAL RESULTS

1.1 BOOLEAN ALGEBRA DEFINITION

Definition 1. A Boolean algebra is a set B equipped with the binary operators ∨ (disjunction) and ∧
(conjunction), and the unary operator ¬ (negation), which satisfies the following Boolean algebra
axioms for a, b, c in B:

(i) Idempotence: a ∧ a = a ∨ a = a.

(ii) Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a.

(iii) Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∧ (b ∨ c) = (a ∨ b) ∨ c.

(iv) Absorption: a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

(v) Distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(vi) Identity: there exists 0,1 in B such that
0 ∧ a = 0

0 ∨ a = a

1 ∧ a = a

1 ∨ a = 1

(vii) Complements: for every a in B, there exists an element a′ in B such that a ∧ a′ = 0 and
a ∨ a′ = 1.

1.2 PROOFS FOR PROPOSITION 2

Lemma 1. LetM be a set of tasks. Then (M,∨,∧,¬,MMAX ,MMIN ) is a Boolean algebra.

Proof. Let M1,M2 ∈M. We show that ¬,∨,∧ satisfy the Boolean properties (i) – (vii).

(i)–(v): These easily follow from the fact that the min and max functions satisfy the idempotent,
commutative, associative, absorption and distributive laws.

(vi): Let rMMAX∧M1
and rM1

be the reward functions forMMAX ∧M1 and M1 respectively.
Then for all (s, a) in S ×A,

rMMAX∧M1
(s, a) =

{
min{rMAX, rM1

(s, a)}, if s ∈ G
min{r0(s, a), r0(s, a)}, otherwise.

=

{
rM1

(s, a), if s ∈ G
r0(s, a), otherwise.

(rM1
(s, a) ∈ {rMIN, rMAX} for s ∈ G)

= rM1(s, a).

ThusMMAX ∧M1 = M1. SimilarlyMMAX ∨M1 =MMAX ,MMIN ∧M1 =MMIN ,
andMMIN ∨M1 = M1 . HenceMMIN andMMAX are the universal bounds ofM.

1



Under review as a conference paper at ICLR 2022

(vii): Let rM1∧¬M1
be the reward function for M1 ∧ ¬M1. Then for all (s, a) in S ×A,

rM1∧¬M1
(s, a) =

{
min{rM1

(s, a), (rMAX + rMIN)− rM1
(s, a)}, if s ∈ G

min{r0(s, a), (r0(s, a) + r0(s, a))− r0(s, a)}, otherwise.

=


rMIN, if s ∈ G and rM1(s, a) = rMAX

rMAX, if s ∈ G and rM1
(s, a) = rMIN

r0(s, a), otherwise.

= rMMIN
(s, a).

Thus M1 ∧ ¬M1 =MMIN , and similarly M1 ∨ ¬M1 =MMAX .

Lemma 2. Let Q̄∗ be the set of optimal Q̄-value functions for tasks in M. Then
(Q̄∗,∨,∧,¬, Q̄∗MAX , Q̄

∗
MIN ) is a Boolean Algebra.

Proof. Let Q̄∗M1
, Q̄∗M2

∈ Q̄∗ be the optimal Q̄-value functions for tasks M1,M2 ∈M with reward
functions rM1

and rM2
. We show that ¬,∨,∧ satisfy the Boolean properties (i) – (vii).

(i)–(v): These follow directly from the properties of the min and max functions.

(vi): For all (s, g, a) in S × G ×A,

(Q̄∗MAX ∧ Q̄∗M1
)(s, g, a) = min{Q̄∗MAX(s, g, a), Q̄∗M1

(s, g, a)}

=

{
min{Q̄∗MAX(s, g, a), Q̄∗MAX(s, g, a)}, if rM1

(g, a′) = rMAX ∀a′ ∈ A
min{Q̄∗MAX(s, g, a), Q̄∗MIN (s, g, a)}, otherwise.

=

{
Q̄∗MAX(s, g, a), if rM1

(g, a) = rMAX ∀a′ ∈ A
Q̄∗MIN (s, g, a), otherwise.

= Q̄∗M1
(s, g, a) (since rM1

(g, a′) ∈ {rMIN, rMAX} ∀a′ ∈ A).

Similarly, Q̄∗MAX ∨ Q̄∗M1
= Q̄∗MAX , Q̄

∗
MIN ∧ Q̄∗M1

= Q̄∗MIN , and Q̄∗MIN ∨ Q̄∗M1
= Q̄∗M1

.

(vii): For all (.) in S × G ×A,

(Q̄∗M1
∧ ¬Q̄∗M1

)(.) = min{Q̄∗M1
(.),¬Q̄∗M1

(.)}

=

{
min{Q̄∗MIN (.), Q̄∗MAX(.)} if |Q̄∗(.)− Q̄∗MIN (.)| ≤ |Q̄∗(.)− Q̄∗MAX(.)|
min{Q̄∗MAX(.), Q̄∗MIN (.)} otherwise,

= Q̄∗MIN (.).

Similarly, Q̄∗M1
∨ ¬Q̄∗M1

= Q̄∗MAX .

Lemma 3. Let Q̄∗ be the set of optimal extended Q̄-value functions for tasks in M. Then
for all M1,M2 ∈ M, we have (i) Q̄∗¬M1

= ¬Q̄∗M1
, (ii) Q̄∗M1∨M2

= Q̄∗M1
∨ Q̄∗M2

, and
(iii) Q̄∗M1∧M2

= Q̄∗M1
∧ Q̄∗M2

.

Proof. Let M1,M2 ∈M. Then for all (s, g, a) in S × G ×A,
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(i):
Q̄∗¬M1

(s, g, a)

=

{
Q̄∗MAX(s, g, a), if r¬M1

(g, a′) = rMAX ∀a′ ∈ A
Q̄∗MIN (s, g, a), otherwise.

=

{
Q̄∗MAX(s, g, a), if rM1

(g, a′) = rMIN ∀a′ ∈ A
Q̄∗MIN (s, g, a), otherwise.

=

{
Q̄∗MAX(s, g, a), if Q̄∗M1

(s, g, a) = Q̄∗MIN (s, g, a)

Q̄∗MIN (s, g, a), otherwise.

=

{
Q̄∗MAX(s, g, a), if |Q̄∗M1

(s, g, a)− Q̄∗MIN (s, g, a)| ≤ |Q̄∗M1
(s, g, a)− Q̄∗MAX(s, g, a)|

Q̄∗MIN (s, g, a), otherwise.

= ¬Q̄∗M1
(s, g, a).

(ii):

Q̄∗M1∨M2
(s, g, a) =

{
Q̄∗MAX(s, g, a), if rM1∨M2

(g, a′) = rMAX ∀a′ ∈ A
Q̄∗MIN (s, g, a), otherwise.

=

{
Q̄∗MAX(s, g, a), if max{rM1

(g, a′), rM2
(g, a′)} = rMAX ∀a′ ∈ A

Q̄∗MIN (s, g, a), otherwise.

=

{
Q̄∗MAX(s, g, a), if max{Q̄∗M1

(s, g, a), Q̄∗M2
(s, g, a)} = Q̄∗MAX(s, g, a)

Q̄∗MIN (s, g, a), otherwise.

= max{Q̄∗M1
(s, g, a), Q̄∗M2

(s, g, a)}
= (Q̄∗M1

∨ Q̄∗M2
)(s, g, a).

(iii): Follows similarly to (ii).

Proposition 1. Let Q̄∗ be the set of optimal Q̄-value functions for tasks inM. Let A :M→ Q̄∗
be any map fromM to Q̄∗ such that A (M) = Q̄∗M for all M inM. Then,

(i) M and Q̄∗ respectively form a Boolean task algebra (M,∨,∧,¬,MMAX ,MMIN ) and
a Boolean EVF algebra (Q̄∗,∨,∧,¬, Q̄∗MAX , Q̄

∗
MIN ),

(ii) A is a homomorphism betweenM and Q̄∗.

Proof. (i): Follows from Lemma 1 and 2.

(ii): Follows from Lemma 3.

1.3 PROOFS FOR THEOREM 1

Lemma 4. Let Q̄∗ be the set of optimal Q̄-value functions for tasks inM. Denote M as the ε-optimal
Q̄-value function for a task M ∈M such that

|Q̄∗M (s, g, a)−M (s, g, a)| ≤ ε for all (s, g, a) ∈ S × G ×A.

Then for all M1,M2 inM and (s, g, a) in S × G ×A,

(i)
∣∣[Q̄∗M1

∨ Q̄∗M2
](s, g, a)− [M1

∨M2
](s, g, a)

∣∣ ≤ ε
(ii)

∣∣[Q̄∗M1
∧ Q̄∗M2

](s, g, a)− [M1
∧M2

](s, g, a)
∣∣ ≤ ε

(iii)
∣∣¬Q̄∗M1

(s, g, a)− ¬M1(s, g, a)
∣∣ ≤ ε
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Proof. (i): ∣∣[Q̄∗M1
∨ Q̄∗M2

](s, g, a)− [M1
∨M2

](s, g, a)
∣∣

=

∣∣∣∣ max
M∈{M1,M2}

Q̄∗M (s, g, a)− max
M∈{M1,M2}

M (s, g, a)

∣∣∣∣
≤ max
M∈{M1,M2}

∣∣Q̄∗M (s, g, a)−M (s, g, a)
∣∣

≤ ε.

(ii): ∣∣[Q̄∗M1
∧ Q̄∗M2

](s, g, a)− [M1
∧M2

](s, g, a)
∣∣

=

∣∣∣∣ min
M∈{M1,M2}

Q̄∗M (s, g, a)− min
M∈{M1,M2}

M (s, g, a)

∣∣∣∣
≤ min
M∈{M1,M2}

∣∣Q̄∗M (s, g, a)−M (s, g, a)
∣∣

≤ ε.

(iii): ∣∣¬Q̄∗M1
(s, g, a)− ¬M1

(s, g, a)
∣∣

=

{
|Q̄∗MAX(s, g, a)− ¬(s, g, a)|, if Q̄∗M1

= Q̄∗MIN (s, g, a)

|Q̄∗MIN (s, g, a)− ¬(s, g, a)|, otherwise.

=

{
|Q̄∗MAX(s, g, a)− (s, g, a)|, if Q̄∗M1

= Q̄∗MIN (s, g, a)

|Q̄∗MIN (s, g, a)− (s, g, a)|, otherwise.

≤ ε.

Lemma 5. Let M ∈ M be a task with binary specification T and optimal extended action-value
function Q̄∗. Given ε-approximations of the binary specifications T̃n = {T̃1, ..., T̃n} and optimal
Q̄-functions ˜̄Q∗n = { ˜̄Q∗1, ...,

˜̄Q∗n} for n tasks M̂ = {M1, ...,Mn} ⊆ M, let

TSOP = BEXP (T̃n) and Q̄SOP = BEXP ( ˜̄Q∗n) where BEXP = SOP (T̃n, T̃ ).

Define,
π(s) ∈ arg max

a∈A
QSOP where QSOP := max

g∈G
Q̄SOP (s, g, a).

Then,
‖Q̄∗ − Q̄SOP ‖∞ ≤ (1T 6=TSOP

)r∆ + ε,

where 1 is the indicator function, r∆ := rMAX − rMIN, and ‖f − h‖∞ := maxs,g,a |f(s, g, a) −
h(s, g, a)|.

Proof.
|Q̄∗(s, g, a)− Q̄SOP (s, g, a)| = |Q̄∗(s, g, a)− Q̄∗SOP (s, g, a) + Q̄∗SOP (s, g, a)− Q̄SOP (s, g, a)|

≤ |Q̄∗(s, g, a)− Q̄∗SOP (s, g, a)|+ |Q̄∗SOP (s, g, a)− Q̄SOP (s, g, a)|
≤ |Q̄∗(s, g, a)− Q̄∗SOP (s, g, a)|+ ε. (Using Lemma 4)

If T = TSOP , then Q̄∗(s, g, a) = Q̄∗SOP (s, g, a), and we are done. Let T 6= TSOP . Without loss of
generality, let Q̄∗(s, g, a) = Q̄∗MAX(s, g, a) and Q̄∗SOP (s, g, a) = Q̄∗MIN (s, g, a). Then,

|Q̄∗(s, g, a)− Q̄∗SOP (s, g, a)| ≤ |Q̄∗MAX(s, g, a)− Q̄∗MIN (s, g, a)|
≤ r∆.
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Lemma 6. Let Q∗ and Q̄∗ be the optimal Q-value function and optimal extended Q-value function
respectively for a deterministic task inM. Then for all (s, a) in S ×A, we have

Q∗(s, a) = max
g∈G

Q̄∗(s, g, a).

Proof. We first note that

max
g∈G

r̄(s, g, a) =

{
max{rMIN, r(s, a)}, if s ∈ G
max
g∈G

r(s, a), otherwise. = r(s, a). (1)

Now define
Q̄∗max(s, a) := max

g∈G
Q̄∗(s, g, a).

Then it follows that[
Q̄∗max

]
(s, a) = r(s, a) + γ

∑
s′∈S

p(s′|s, a) max
a′∈A

Q̄∗max(s′, a′)

= r(s, a) + γ
∑
s′∈S

p(s′|s, a) max
a′∈A

[
max
g∈G

Q̄∗(s′, g, a′)

]
= r(s, a) + γ

∑
s′∈S

p(s′|s, a) max
g∈G

[
max
a′∈A

Q̄∗(s′, g, a′)

]

= r(s, a) + max
g∈G

[
γ
∑
s′∈S

p(s′|s, a) max
a′∈A

Q̄∗(s′, g, a′)

]
(Since p is deterministic)

= max
g∈G

r̄(s, g, a) + max
g∈G

[
γ
∑
s′∈S

p(s′|s, a) max
a′∈A

Q̄∗(s′, g, a′)

]
(Using Equation 1)

= max
g∈G

[
r̄(s, g, a) + γ

∑
s′∈S

p(s′|s, a) max
a′∈A

Q̄∗(s′, g, a′)

]
,

since r̄(s, g, a) = r0(s, a) ∀s /∈ G and p(s, a, ω) = 1 with Q̄∗(ω, g, a′) = 0 ∀s ∈ G.
= max

g∈G
Q̄∗(s, g, a)

= Q̄∗max(s, a).

Hence Q̄∗max is a fixed point of the Bellman optimality operator.

If s ∈ G, then

Q̄∗max(s, a) = max
g∈G

Q∗(s, g, a) = max
g∈G

r̄(s, g, a) = r(s, a) = Q∗(s, a).

Since Q̄∗max = Q∗ holds in G and Q̄∗max is a fixed point of the Bellman operator, then Q̄∗max = Q∗

holds everywhere.

Theorem 1. Let M ∈M be a task with binary specification T and optimal extended action-value
function Q̄∗. Given ε-approximations of the binary specifications T̃n = {T̃1, ..., T̃n} and optimal
Q̄-functions ˜̄Q∗n = { ˜̄Q∗1, ...,

˜̄Q∗n} for n tasks M̂ = {M1, ...,Mn} ⊆ M, let

TSOP = BEXP (T̃n) and Q̄SOP = BEXP ( ˜̄Q∗n) where BEXP = SOP (T̃n, T̃ ).

Define,
π(s) ∈ arg max

a∈A
QSOP where QSOP := max

g∈G
Q̄SOP (s, g, a).

Then,
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(i) ‖Q∗ −Qπ‖∞ ≤ 2
1−γ ((1T 6=TSOP

+ 1r/∈{rg}|G|)r∆ + ε),

(ii) If the dynamics are deterministic,

‖Q∗ −QSOP ‖∞ ≤ (1T 6=TSOP
)r∆ + ε,

where 1 is the indicator function, rg(s, a) := r̄(s, g, a), r∆ := rMAX − rMIN, and ‖f − h‖∞ :=
maxs,g,a |f(s, g, a)− h(s, g, a)|.

Proof. (i): We first note that each g in G can be thought of as defining an MDP Mg :=
(S,A, p, rg, γ) with reward function rg(s, a) := r̄(s, g, a), optimal policy π∗g(s) = π̄∗(s, g)

and optimal Q-value function Qπ
∗
g (s, a) = Q̄∗(s, g, a). Then this proof follows similarly to that

of Barreto et al. (2017) Theorem 2,

Q∗(s, a)−Qπ(s, a)

≤ Q∗(s, a)−Qπ
∗
g (s, a) +

2

1− γ
((1T 6=TSOP

)r∆ + ε) (Barreto et al. (2017) Theorem 1)

≤ 2

1− γ
max
s,a
|r(s, a)− rg(s, a)|+ 2

1− γ
((1T 6=TSOP

)r∆ + ε) (Barreto et al. (2017) Lemma 1)

≤ 2

1− γ
(1r 6=rg )r∆ +

2

1− γ
((1T 6=TSOP

)r∆ + ε)

(Since rewards only differ in G where r(s, a), rg(s, a) ∈ {rMIN, rMAX} for s ∈ G)

≤ 2

1− γ
((1T 6=TSOP

+ 1r 6=rg )r∆ + ε).

Hence,

‖Q∗ −Qπ‖∞ ≤
2

1− γ
((1T 6=TSOP

+ min
g

1r 6=rg )r∆ + ε)

≤ 2

1− γ
((1T 6=TSOP

+ 1r/∈{rg}|G|)r∆ + ε)

(Since min
g

1r 6=rg = 0 only when r ∈ {rg}|G| ).

(ii):
|Q∗(s, a)−QSOP (s, a)| = |max

g
Q̄∗(s, g, a)−max

g
Q̄SOP (s, g, a)| (Lemma 6)

≤ max
g
|Q̄∗(s, g, a)− Q̄SOP (s, g, a)|

≤ (1T 6=TSOP
)r∆ + ε. (Lemma 5)

1.4 COMPARING THE BOUNDS OF THEOREM 1 WITH THAT OF GPI IN BARRETO ET AL. (2018)

We first restate Proposition 1 (Barreto et al., 2018) here.

Proposition 2 ((Barreto et al., 2018)). Let M ∈M and let Q
π∗j
i be the action value function of an

optimal policy of Mj ∈M when executed in Mi ∈M. Given approximations {Q̃π1
i , ..., Q̃

πn
i } such

that |Qπj

i − Q̃
πj

i | ≤ ε for all s, a ∈ S ×A, and j ∈ {1, ..., n}, let

π(s) ∈ arg max
a

max
j
Q̃
πj

i (s, a).

then,

‖Q∗ −Qπ‖∞ ≤
2

1− γ
(‖r − ri‖∞ + min

j
‖ri − rj‖∞ + ε),

where Q∗ is the optimal value function of M , Qπ is the value function of π in M , and ‖f − h‖∞ :=
maxs,g,a |f(s, g, a)− h(s, g, a)|.
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We can simplify the bound in Proposition 2 as follows:

‖Q∗ −Qπ‖∞ ≤
2

1− γ
(‖r − ri‖∞ + min

j
‖ri − rj‖∞ + ε)

≤ 2

1− γ
((1r 6=ri)r∆ + min

j
‖ri − rj‖∞ + ε)

(Since rewards only differ in G where r(s, a), ri(s, a) ∈ {rMIN, rMAX} for s ∈ G)

≤ 2

1− γ
((1r 6=ri)r∆ + (min

j
1ri 6=rj )r∆ + ε)

≤ 2

1− γ
((1r 6=ri)r∆ + (1ri /∈{rj}n)r∆ + ε)

(Since min
j

1ri 6=rj = 0 only when ri ∈ {rj}n )

≤ 2

1− γ
((1r 6=ri + 1ri /∈{rj}n)r∆ + ε).

where 1 is the indicator function, and r∆ := rMAX − rMIN. We can see that this bound is similar to
that of Theorem 1(i) but weaker. This because:

(i) The first term of this bound requires that the current task be identical to the task being
approximated—1r 6=ri—while the first term of Theorem 1(i) only requires the current task
to be expressible as a Boolean composition of past tasks—1T 6=TSOP

.
(ii) The second term of this bound requires that the task being approximated is one of the past

tasks—1ri /∈{rj}n—while the second term of Theorem 1(i) only requires the current task to
have a single desirable goal—1r/∈{rg}|G| .

(iii) Barreto et al. (2018) assumes that the reward function of the current task is well approximated
by a linear function over a fixed set of rewards. Hence while a new task may be expressed as
the Boolean composition of past tasks—T = TSOP—, its rewards may not be expressible
as a linear combination of a fixed set of rewards—r 6= ri where ri := [r0, ..., rn] ∗ w.

This suggests that we can can think of the SOP composition approach as an efficient way of doing
GPI, one which leads to tight performance bounds on the transferred policy (Theorem 1(ii)).

1.5 PROOFS FOR THEOREM 2

Theorem 2. Let D be an unknown non-stationary distribution over a set of tasksM(S,A, p, γ, r0),
and let A :M→ Q̄∗ be any map fromM to Q̄∗ such that A (M) = Q̄∗M for all M inM. Let

T̃t+1,
˜̄Q∗t+1 = SOPGOL(A ,Mt, T̃t, ˜̄Q∗t ) where Mt ∼ D(t) and T̃0 = ˜̄Q∗0 = ∅ ∀t ∈ N.

Then,
dlog |G|e ≤ lim

t→∞
|T̃t| = lim

t→∞
| ˜̄Q∗t | ≤ |G|.

Proof. Let T̃t be the approximate binary specification of task Mt learned by SOPGOL. We first note
that SOPGOL returns T̃t ∪ {T̃t} only if T̃t is not in the span of T̃t. That is,

T̃t+1 = T̃t ∪ {T̃t} iff T̃t 6= BEXP (T̃t) where BEXP = SOP (T̃t, T̃t).
Hence, it is sufficient to show that the number, N , of linearly independent binary vectors, T̃ ∈
{0, 1}|G|, that span the Boolean vector space (Subrahmanyam, 1964), GF (2)|G|,1 is bounded by

dlog |G|e ≤ N ≤ |G|.

This follows from the fact that dlog |G|e is the size of a minimal basis of GF (2)|G| (as can easily be
seen with a Boolean table), and |G| is its dimensionality.

1GF(2) is the Galois field with two elements, ({0, 1},+, .), where + := XOR and . := AND.
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2 SUM OF PRODUCTS WITH GOAL ORIENTED LEARNING

Algorithm 1: SOPGOL
Input :off-policy RL algorithm A , /* e.g DQN */

task MDP M ,
set of ε-optimal task binary specifications T̃ ,
set of ε-optimal Q̄-value functions ˜̄Q.

Initialise T̃ : G → {0, 1}
Initialise ˜̄Q : S × G ×A → R according to A

Initialise goal buffer G̃ with terminal states observed from a random policy
while ˜̄Q is not converged do

Initialise state s from M

BEXP ← SOP (T̃ , T̃ )

TSOP , Q̄SOP ← BEXP (T̃ ),BEXP ( ˜̄Q∗)
Q̄← Q̄SOP if T̃ = TSOP else ˜̄Q ∨ Q̄SOP

g ← arg max
g′∈G̃

(
max
a∈A

Q̄(s, g′, a)

)
while s is not terminal do

Select action a using the behaviour policy from A : a← π̄(s, g) /* e.g ε-greedy
*/

Take action a, observe reward r and next state s′ in M
if T̃ 6= TSOP then

foreach g′ ∈ G̃ do
r̄ ← rMIN if g′ 6= s ∈ G̃ else r
Update ˜̄Q with (s, g′, a, r̄, s′) according to A

end
if s is terminal then

T̃ (s)← 1r=rMAX

G̃ ← G̃ ∪ {s}
else

s← s′

end
end

end
BEXP ← SOP (T̃ , T̃ )

T̃ , ˜̄Q ← (T̃ , ˜̄Q) if T̃ = BEXP (T̃ ) else (T̃ ∪ {T̃}, ˜̄Q∪ { ˜̄Q})
return T̃ , ˜̄Q
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3 FUNCTION APPROXIMATION EXPERIMENT DETAILS

3.1 ENVIRONMENT

The PickUpObj environment is fully observable, where each state observation is a 56 ∗ 56 ∗ 3 RGB
image (Figure 1). The agent has 7 actions it can take in this environment corresponding to: 1 - rotate
left, 2 - rotate right, 3 - move one step forward if there is no wall or object in front, 4 - pickup object
if there is an object in front and no object has been picked, 5 - drop the object in front if an object has
been picked and there is no wall or object in front, 6 - open the door in front if there is a closed-door
in front, and 7 - close the door in front if there is an opened door in front.

For each task, each episode starts with 1 desirable object and 4 other randomly chosen objects placed
randomly in the environment. The agent is also placed at a random position with a random orientation
at the start of each episode. The agent receives a reward of -0.1 at every timestep, and a reward
of 2 when it picks up a desirable object. The environment transitions to a terminal state once the
agent picks up any object and the agent observes the picked object. There are 15 types of objects
(illustrated in Table 1) resulting in 15 possible goal states. Hence, the dimension of the state space is
|S| = 56 ∗ 56 ∗ 3, the goal space is |G| = 15, and the action space is |A| = 7.

3.2 NETWORK ARCHITECTURE AND HYPERPARAMETERS

In our function approximation experiments, we represent each extended value function ˜̄Q∗ with a list
of |G| DQNs, such that the value function for each goal Q̃∗g(s, a) := ˜̄Q∗(s, g, a) is approximated with
a separate DQN. The DQNs used have the following architecture, with the CNN part being identical
to that used by Mnih et al. (2015):

1. Three convolutional layers:
(a) Layer 1 has 3 input channels, 32 output channels, a kernel size of 8 and a stride of 4.
(b) Layer 2 has 32 input channels, 64 output channels, a kernel size of 4 and a stride of 2.
(c) Layer 3 has 64 input channels, 64 output channels, a kernel size of 3 and a stride of 1.

2. Two fully-connected linear layers:
(a) Layer 1 has input size 3136 and output size 512 and uses a ReLU activation function.
(b) Layer 2 has input size 512 and output size 7 with no activation function.

We used the ADAM optimiser with batch size 256 and a learning rate of 10−3. We started training
after 1000 steps of random exploration and updated the target Q-network every 1000 steps. Finally,
we used ε-greedy exploration, annealing ε from 0.5 to 0.05 over 100000 timesteps.

Finally, we used the same DQN architecture and training hyperparameters for the baseline in all
experiments.
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