
A Relationship to other SBI methods

Sampling in SBI All NRE (and SBI) algorithms require samples from the joint distribution p(θ,x).
NRE additionally requires samples from the product of marginals p(θ)p(x). Sampling the joint with
a simulator requires drawing from the prior θ ∼ p(θ) then passing that parameter into the simulator
to produce x ∼ p(x |θ). Sampling the product of marginals is simple, just take another sample from
the prior θ′ ∼ p(θ) and pair it with our simulation from before. Then we have (θ,x) ∼ p(θ,x) and
(θ′,x) ∼ p(θ)p(x). In practice, we refer to this operation as a bootstrap within a mini-batch where
we take θ′ from other parameter-simulation pairs and reuse them to create samples drawn from the
product of marginals p(θ)p(x). NRE-C sometimes requires more θ samples, often represented as Θ.
These can be generated by merely concatenating several samples from p(θ). Some SBI methods, e.g.,
sequential methods, sometimes replace the prior with a proposal distribution p̃(θ).

Amortized and sequential SBI Recently, significant progress has been made in SBI, especially
with so-called sequential methods that use active learning to draw samples from the posterior for a
fixed observation-of-interest xo [16, 18, 20, 21, 24, 35, 42, 53, 56, 59, 60, 61, 63, 69]. Amortized
SBI algorithms, that can draw samples from the posterior for arbitrary observation x, have also
enjoyed attentive development [8, 9, 30, 36, 47, 48]. Hermans et al. [31] and Miller et al. [48]
argue that their intrinsic empirical testability makes amortized methods better applicable to the
scientific use-case despite their inherently higher training expense. The last pillar of development
has been into assessment methods that determine the reliability of approximate inference results. In
the machine learning community, the focus has been on evaluating the exactness of estimates for
tractable problems [44]. Evaluation methods which apply in the practical case where no tractable
posterior is available are under development [7, 12, 14, 29, 67]. We make a contribution to this effort
in Appendix D.

Contrastive learning, NRE-B, and NPE We call our method Contrastive Neural Ratio Estimation
because it the classifier is trained to identify which pairs of θ and x should be paired together.
Gutmann et al. [25] created an overview of contrastive learning for statistical problems generally.
Specific connections are in the loss functions with NRE-A closely corresponding to noise-contrastive
estimation (NCE) [22, 23] and NRE-B with RankingNCE, InfoNCE, and related [45, 46, 49, 71].

A core aspect of our paper focus on the effects of the NRE-B ratio estimate biased by cw(x) at
optimum. Ma and Collins [45] also investigate the effects on the partition function when applying
a binary or multi-class loss variant for estimating conditional energy-based models. Due to the
similarity in the loss functions, they exhibit a similar bias in their partition function. In order to
correct this bias they estimate cw(x) directly. We did not attempt to do this for our problem, so we
do not have intuition about the effectiveness of such an approach to the likelihood-based diagnostic
in NRE. Although, since cw(x) is completely unconstrained, it may be quite difficult to estimate. We
believe that this would be an alternative direction for future work.

Durkan et al. [16] emphasize the connection between NRE and contrastive learning in their paper
which created a framework such that Neural Posterior Estimation (NPE) and NRE-B can be trained
using the same loss function. The addition of an independently drawn (Θ,x) set means that the NRE-
C framework is not trivially applicable for computing the normalizing constant on atoms necessary
for their sequential version of NPE.

Software Our experiments used sbi [68], which is released under an AGPL-3.0 license, and sbibm
[44], which is released under an MIT license. They implement various neural SBI algorithms and
benchmark problems respectively.
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A.1 Full derivation of other NRE methods using our framework

Here we present a derivation of the previous works NRE-A [30] and NRE-B [30] in our framwork.

NRE-A To estimate r(x |θ), Hermans et al. [30] introduce an indicator variable y which switches
between dependently and independently drawn samples. We have conditional probability

pNRE-A(θ,x | y = k) =

{
p(θ)p(x) k = 0

p(θ,x) k = 1
. (17)

Each class’ marginal probability is set equally, p(y = 0) = p(y = 1). Dropping the NRE-A subscript,
the probability that (θ,x) was drawn jointly is encoded in the another conditional probability

p(y = 1 |θ,x) = p(θ,x | y = 1)p(y = 1)

p(θ,x | y = 1)p(y = 1) + p(θ,x | y = 0)p(y = 0)

=
p(θ,x)

p(θ,x) + p(θ)p(x)
=

r(x |θ)
1 + r(x |θ)

.

(18)

NRE-A estimates log r̂(x |θ) with neural network fw with weights w. Training is done by minimizing
the binary cross-entropy of qw(y = 1 |θ,x) := σ ◦ fw(θ,x) relative to p(y,θ,x). For B samples,

w = argmin
w

[
− 1

B

B∑
b=1

log
(
1− σ ◦ fw(θ(b),x(b))

)
− 1

B

B∑
b′=1

log
(
σ ◦ fw(θ(b′),x(b′))

)]
(19)

where θ(b),x(b) ∼ p(θ)p(x) and θ(b′),x(b′) ∼ p(θ,x). In practice, θ(b′) is bootstrapped from within
the mini-batch to produce θ(b). NRE-A’s ratio estimate converges to fw = log p(x | θ)

p(x) = log r(x |θ)
given unlimited model flexibility and data

NRE-B Durkan et al. [16] estimate r(x |θ) by training a classifier that selects from among K
parameters Θ := (θ1, . . . ,θK) which could have generated x. In contrast with NRE-A, one of these
parameters θk is always drawn jointly with x. Let y be a random variable which indicates which one
of K parameters simulated x. The marginal probability p(y = k) := 1/K is uniform. That means

pNRE-B(Θ,x | y = k) := p(θ1) · · · p(θK)p(x |θk) (20)

defines our conditional probability for parameters and data. Bayes’ rule reveals a conditional
distribution over y, dropping the NRE-B subscript, therefore

p(y = k |Θ,x) =
p(Θ,x | y = k)p(y = k)

p(Θ,x)
=

p(Θ,x | y = k)p(y = k)∑
i p(Θ,x | y = i)p(y = i)

=
p(θ1) · · · p(θk,x) · · · p(θK)∑
i p(θ1) · · · p(θi,x) · · · p(θK)

=
p(θk |x)/p(θk)∑
i p(θi |x)/p(θi)

=
r(x |θk)∑
i r(x |θi)

. (21)

NRE-B estimates log r̂(x |θ) with a neural network gw. Training is done by minimizing the cross
entropy of qw(y = k |Θ,x) := exp ◦gw(θk,x)/

∑
i exp ◦gw(θi,x) relative to p(y,x,θ);

w = argmin
w

Ep(y,Θ,x) [−qw(y |Θ,x)] ≈ argmin
w

[
− 1

B

B∑
b′=1

log
exp ◦gw(θ

(b′)
k ,x(b′))∑

i exp ◦gw(θ
(b′)
i ,x(b′))

]
(22)

where θ
(b′)
1 , . . . ,θ

(b′)
K ∼ p(θ), k(b

′) ∼ p(y), and x(b′) ∼ p(x |θ(b′)
k ) over B samples. In our param-

eterization and given unlimited flexibility and data, gw(θ,x) = log p(θ |x)
p(θ) + cw(x) at convergence.

The extra term enters because the optimal classifier for (22) need not be normalized.
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B Theoretical Arguments

We present first the proof of convergence for NRE-C. Afterwards, we discuss the properties of
estimated importance weights in NRE-B.

B.1 Proof of convergence of NRE-C

Lemma 1. Consider for k = 0, . . . ,K the following probability distributions for z:

p(z | y = k). (23)

and p(y) > 0 a probability distribution for y. Put pk := p(y = k) for k = 1, . . . ,K. For functions
fk : Z → R, k = 1, . . . ,K, let:

q(y = k | f, z) :=


1

1+
∑K

j=1

pj
p0

exp(fj(z))
, k = 0,

pk
p0

exp(fk(z))

1+
∑K

j=1

pj
p0

exp(fj(z))
, k = 1, . . . ,K.

(24)

Note that q(y = k | f, z) > 0 for all k = 0, . . . ,K and that
∑K

k=0 q(y = k | f, z) = 1 for every
K-tuple f = (fk)k=1,...,K and z ∈ Z . Consider a minimizer:

f∗ ∈ argmin
f

Ep(z | y)p(y) [− log q(y | f, z)] . (25)

Then we have for p(z)-almost-all z and all k = 1, . . . ,K:

f∗
k (z) = log

p(z|y = k)

p(z|y = 0)
. (26)

Proof. We have:

f∗ ∈ argmin
f

Ep(z | y)p(y) [− log q(y | f, z)] (27)

= argmin
f

Ep(z,y)

[
log

p(y | z)
q(y | f, z)

]
(28)

= argmin
f

Ep(z) [KLD(p(y | z)∥q(y | f, z))] , (29)

which is minimized, when KLD = 0, thus:

0 = KLD(p(y | z)∥q(y | f∗, z)), (30)

which implies that for p(z)-almost-all z:

q(y | f∗, z) = p(y | z) = p(z|y)
p(z)

p(y). (31)

So we get with the definition of q(y | f∗, z):

p(z|y = 0)

p(z)
p0 =

1

1 +
∑K

j=1
pj

p0
exp(f∗

j (z))
, k = 0, (32)

p(z|y = k)

p(z)
pk =

pk

p0
exp(f∗

k (z))

1 +
∑K

j=1
pj

p0
exp(f∗

j (z))
, k = 1, . . . ,K. (33)

Dividing the latter by the former gives for k = 1, . . . ,K:

p(z|y = k)

p(z|y = 0)

pk
p0

=
pk
p0

exp(f∗
k (z)), (34)

implying for k = 1, . . . ,K and p(z)-almost-all z:

f∗
k (z) = log

p(z|y = k)

p(z|y = 0)
. (35)

This shows the claim.
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We used the symbol KLD to imply the Kullback-Leibler Divergence. The proof in Lemma 1 is
slightly more general than necessary for our typical case. All our functions fk are typically the same,
namely the evaluation of a neural network with weights w. Rather than searching for the function f
which minimizes the objective, we search for the weights, but these are equivalent. Finally to make
everything fit, we set z := (θ,x).

B.2 Properties of the importance sampling diagnostic on biased ratio estimates

In Section 2.2 we discuss the importance sampling diagnostic, in which the estimated ratio is tested
by comparing weighted samples from x ∼ p(x) to unweighted samples from x ∼ p(x |θ). The
estimated ratio from NRE-C is merely exp(hw(θ,x)) and is therefore not restricted to have the
properties of a ratio of probability distributions, except at optimum with unlimited flexibility and
data. The importance sampling diagnostic is designed to test whether the estimated ratio is close to
having these properties for a fixed θ. One way to improve ratios estimated by NRE-C is to compute
the normalizing constant Zw(x), which should be close to one, and replace the ratio with this
“normalized” version.

The unrestricted nature of the NRE-B-specific cw(x) bias means that the normalization constant
Zw(x) does not have to be close to one. Further, we show that the unrestricted bias means that the
normalizing constant for two NRE-B ratio estimators, which are equivalent in terms of their loss
function (22), is not unique, i.e., the estimate is ill-posed. This property means that normalizing
NRE-B will not, in general, produce an estimator which passes the diagnostic.

Consider two ratio estimates with the relationship r̂1(x |θ) = r̂2(x |θ)/C(x) where C is an positive
function of x resulting from the aggregation of the exponentiated bias. Given N samples xn ∼ p(x)
with weights w1(xn) = r̂1(xn |θ) and w2(xn) = r̂2(xn |θ), we can compute the importance-
normalized weights by

w̄1(xn) =
w1(xn)∑N
i=1 w1(xi)

, w̄2(xn) =
w2(xn)∑N
i=1 w2(xi)

. (36)

However, if we substitute this constant back into our expression, we find that the weights do not agree

w̄1(xn) =
w2(xn)/C(xn)∑N
i=1 w2(xi)/C(xi)

̸= w̄2(xn). (37)

Therefore, normalization does not “protect” against scaling bias introduced by a function in x. NRE-B
does not penalize functional biases like C(x), so even ratios considered optimal by NRE-B can easily
fail the diagnostic. Meanwhile, NRE-C encourages terms like C(x) towards one. That has the effect
of making the C(x) ≈ 1 drop out of the normalized importance weights, thus making performance
on the diagnostic indicative of a better ratio estimate, given enough classifier flexibility.

C Experimental Details

Computational costs Our experiments were performed on a cluster of Nvidia Titan V graphics
processing units. The primary expense was the hyperparameter search within Sections 3.1, 3.2, and
the first part of Section 3.3. The run of those experiments took about 50,000 gpu-minutes total
considering all of our current data. Since there were several iterations, we multiply this by three to
estimate total compute. The next expense was the computation of sbibm in Section 3.3 that took
about 24,000 gpu-minutes. Together these equal about 2880 gpu-hours. An estimate for the total
carbon contributions corresponds to 311.04 kgCO2. Luckily, our clusters run completely on wind
power offsetting the contribution. Estimations were conducted using the MachineLearning Impact
calculator presented in [39].

Architecture and training The centerpiece of our method is the neural network hw which is trained
as a classifier. The hyperparameter choices here were fairly constant throughout the experiments.
Any hyperparameters for training or architecture which were consistent across experiments are listed
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in Table 2. Hidden features and number of RESNET blocks depend on the architecture. Large NN
uses three resnet blocks with 128 features, while Small NN uses two resnet blocks and 50 features.

Table 2: Architecture
Hyperparameter Value

Activation Function RELU
AMSGRAD No
Architecture RESNET
Batch normalization Yes
Batch size 1024
Dropout No
Max epochs 1000
Learning rate 0.0005
Optimizer ADAM
Weight Decay 0.0
Standard-score Observations Using first batch
Standard-score Parameters Using first batch

C.1 Hyperparameter search measured with C2ST

In this section, we trained many neural networks with different hyperparameter settings on three
different tasks from Lueckmann et al. [44]. We trained both architectures, Large and Small NN,
on a grid of γ and K values with NRE-B and NRE-C. No matter whether we were training with
unlimited draws from the joint, prior, or fixed data we designed an epoch such that it has 20 training
mini-batches and 2 validation mini-batches. For fixed initial data and prior this corresponds to a
simulation budget of 22,528. The mean validation losses per-epoch for these networks is visible in
Figures 7, 8, and 9.

For one specific problem, we also computed validation loss at a fixed γ and K no matter the training
regime in an effort to produce comparable validation losses, specifically γ = 1 and K = 1 aka the
NRE-A regime. This training setting reverses some of the trends we’ve seen when validated on the
same loss as training data. We did not apply it further since this could bias results. See Figure 11. To
compare, we also plot the validation loss on the sample problem but using the γ and K each model
was trained with. See Figure 10, note that the bias depending on γ and K is clearly visible (just as in
the other validation loss plots).

Once the networks were trained, we drew samples from ten per-task posteriors based on ten predefined
observations xi with i ∈ 1, 2, . . . , 10. This leveraged the amortized property of NRE-C. Samples
were drawn on these problems using rejection sampling. Once the samples were drawn, they were
compared to ground truth posterior samples from the benchmark with the C2ST. The detailed plot
which shows per-task behavior is available in Figure 6.
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Figure 6: A measure of exactness comparing to the ground truth to the samples from a surrogate
posterior, the C2ST, is plotted as a function of number of contrastive parameters. Each row corre-
sponds to a different task: SLCP, Two Moons, Gaussian Mixture, and an average of the results across
tasks. Both NRE-C and NRE-B are shown along with various γ values, and architectures are shown.
Recall that C2ST assigns 1.0 to inaccurate and 0.5 to accurate approximations. (a) Corresponds to
Section 3.1 where unlimited draws from the joint are allowed. (b) Corresponds to Section 3.2 where
unlimited draws from the prior are allowed but the x data is fixed. (c) Corresponds to Section 3.3
where both the initial draws of θ and x are the only data available.
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Figure 7: The validation loss from NRE-C is reported versus epochs on various tasks, γ, K, and
architectures trained using unlimited draws from the joint distribution. The rows correspond to
different tasks, columns to different γ, colors to different K, and dashed or solid lines to Small and
Large NN respectively. These plots correspond with the technique discussed in Section 3.1.
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Figure 8: The validation loss from NRE-C is reported versus epochs on various tasks, γ, K, and
architectures trained using a simulation budget of 22,528 but unlimited draws from the prior during
training. The rows correspond to different tasks, columns to different γ, colors to different K, and
dashed or solid lines to Small and Large NN respectively. These plots correspond with the technique
discussed in Section 3.2.
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Figure 9: The validation loss from NRE-C is reported versus epochs on various tasks, γ, K, and
architectures trained using a fixed simulation budget of 22,528. The rows correspond to different
tasks, columns to different γ, colors to different K, and dashed or solid lines to Small and Large NN
respectively. These plots correspond with the technique discussed in Section 3.3.
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Figure 10: The validation loss from NRE-C is reported versus epochs on SLCP with the Large NN
where colors indicate different contrastive parameter counts. The plot shows the convergence rates of
each model. Since validation loss is a function of K and γ, the relative performance of models is not
comparable. A grid search of K and γ indicates that increasing K leads to earlier convergence at
fixed γ. With K fixed, γ < 1 has a negative effect on convergence rate and γ > 1 is ambiguous.
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Figure 11: The validation loss from NRE-C is reported versus epochs on SLCP with the Large NN
where colors indicate different contrastive parameter counts, i.e, K + 1. A fixed validation loss was
used, namely ℓ1,1. Although the validation loss is now comparable so that we can see the performance
of the different classifiers on the same task, some of the convergence rate trends disagreed with SLCP
in Figure 10. Naturally, the classifier trained to distinguish two samples often performed best on this
task.
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C.2 Simulation-based inference benchmark

We trained NRE-C with γ = 1.0 and K = 100 using Large NN for 1000 epochs on all of the tasks
from the simulation-based inference benchmark [44]. In contrast with our previous hyperparameter
search experiments, we used their Markov-chain Monte Carlo sampling scheme which applies slice
sampling [51]. The details results are presented in Table 3 and Table 4. There were three tasks which
did not succeed with this sampling procedure, there we used rejection sampling.

Our training slightly diverged from the benchmark. We enumerate the ways below.

• Large NN is a bigger architecture than the one which produced their reported NRE-B values.
In fact, the NRE-B version has the same settings as Small NN; however, we found that larger
networks performed better in our search and chose the bigger one for that reason.

• In the benchmark, networks are trained with early stopping but we always trained for 1000
epochs. We selected the network which performed best on the validation loss, using the
same values for K and γ in the validation loss as in the training.

• Even though NRE-B is an amortized method, the benchmark trained a network for every
observation. Instead, we leveraged the amortization properties of NRE-C and trained a single
network which drew samples from each approximate posterior given by each of the ten
observations.

Task details We provide a short summary of all of the inference tasks in the SBI benchmark by
Lueckmann et al. [44].

Bernoulli GLM This task is a generalized linear model. The likelihood is Bernoulli distributed.
The data is a 10-dimensional summary statistic from an 100-dimensional raw vector. The
posterior is 10-dimensional and it only has one mode.

Bernoulli GLM Raw This is the same task as above, but instead the entire 100-dimensional
observation is shown to the inference method rather than the summary statistic.

Gaussian Linear A simple task with a Gaussian distributed prior and a Gaussian likelihood over
the mean. Both have a Σ = 0.1 · I covariance matrix. The posterior is also Gaussian. It is
performed in 10-dimensions for the observations and parameters.

Gaussian Linear Uniform This is the same as the task above, but instead the prior over the mean
is a 10-dimensional uniform distribution from -1 to 1 in every dimension.

Gaussian Mixture This task occurs in the ABC literature often. Infer the common mean of a
mixture of Gaussians where one has covariance matrix Σ = 1.0·I and the other Σ = 0.01·I .
It occurs in two dimensions.

Lotka Volterra This is an ecological predator-prey model where the simulations are generated
from randomly drawn initial conditions by solving a parameterized differential equation.
There are four parameters that control the coupling between the generation and destruction
of both prey and predators. The priors are log normal. The data is a twenty dimensional
summary statistic.

SIR An epidemiological model simulating the progress of an contagious disease outbreak through
a population. Simulations are generated from randomly drawn initial conditions with a
parameterized differential equation defining the dynamics. There are two parameters with a
log normal prior. The data is a ten dimensional summary statistic.

SLCP A task which has a very simple non-spherical Gaussian likelihood, but a complex posterior
over the five parameters which, via a non-linear function, define the mean and covariance of
the likelihood. There are five parameters each with a uniform prior from -3 to 3. The data is
four-dimensional but we take two samples from it. It was introduced in [56].

SLCP with Distractors This is the same task as above but instead the data is concatenated with
92 dimensions of Gaussian noise.

Two Moons This task exhibits a crescent shape posterior with bi-modality–two of the attributes
often used to stump MCMC samplers. Both the data and parameters are two dimensional.
The prior is uniform from -1 to 1.
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Table 3: Simulation-based inference benchmark results.
C2ST

Simulation budget 103 104 105

Task Algorithm

Bernoulli GLM

NRE-C (ours) 0.829 0.688 0.617
REJ-ABC 0.994 0.976 0.941
NLE 0.740 0.605 0.545
NPE 0.863 0.678 0.559
NRE (NRE-B) 0.899 0.812 0.751
SMC-ABC 0.991 0.981 0.818
SNLE 0.634 0.553 0.522
SNPE 0.855 0.614 0.525
SNRE (SNRE-B) 0.718 0.584 0.529

Bernoulli GLM Raw

NRE-C (ours) 0.952 0.761 0.627
REJ-ABC 0.995 0.984 0.966
NLE 0.870 0.939 0.951
NPE 0.900 0.765 0.607
NRE (NRE-B) 0.915 0.834 0.777
SMC-ABC 0.990 0.959 0.943
SNLE 0.990 0.973 0.987
SNPE 0.906 0.658 0.607
SNRE (SNRE-B) 0.880 0.675 0.552

Gaussian Linear

NRE-C (ours) 0.684 0.583 0.547
REJ-ABC 0.913 0.858 0.802
NLE 0.650 0.555 0.515
NPE 0.694 0.552 0.506
NRE (NRE-B) 0.672 0.560 0.536
SMC-ABC 0.922 0.829 0.726
SNLE 0.628 0.548 0.519
SNPE 0.652 0.544 0.507
SNRE (SNRE-B) 0.670 0.536 0.515

Gaussian Linear Uniform

NRE-C (ours) 0.751 0.677 0.553
REJ-ABC 0.977 0.948 0.909
NLE 0.723 0.548 0.506
NPE 0.696 0.553 0.509
NRE (NRE-B) 0.788 0.706 0.631
SMC-ABC 0.968 0.928 0.794
SNLE 0.657 0.552 0.509
SNPE 0.631 0.527 0.507
SNRE (SNRE-B) 0.681 0.606 0.536

Gaussian Mixture

NRE-C (ours) 0.807 0.751 0.751
REJ-ABC 0.883 0.789 0.772
NLE 0.812 0.731 0.757
NPE 0.731 0.661 0.555
NRE (NRE-B) 0.784 0.752 0.734
SMC-ABC 0.799 0.746 0.664
SNLE 0.701 0.702 0.624
SNPE 0.697 0.583 0.533
SNRE (SNRE-B) 0.723 0.662 0.542
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Table 4: Simulation-based inference benchmark results continued.
C2ST

Simulation budget 103 104 105

Task Algorithm

Lotka-Volterra

NRE-C (ours) 1.000 0.977 0.983
REJ-ABC 1.000 1.000 0.998
NLE 0.994 0.956 0.952
NPE 0.999 0.997 0.981
NRE (NRE-B) 1.000 0.998 0.996
SMC-ABC 1.000 0.996 0.995
SNLE 0.909 0.738 0.695
SNPE 0.990 0.953 0.928
SNRE (SNRE-B) 0.971 0.848 0.831

SIR

NRE-C (ours) 0.780 0.673 0.578
REJ-ABC 0.964 0.838 0.713
NLE 0.761 0.748 0.730
NPE 0.815 0.680 0.585
NRE (NRE-B) 0.841 0.770 0.690
SMC-ABC 0.921 0.626 0.613
SNLE 0.745 0.745 0.650
SNPE 0.638 0.561 0.575
SNRE (SNRE-B) 0.637 0.646 0.547

SLCP

NRE-C (ours) 0.973 0.941 0.810
REJ-ABC 0.982 0.973 0.961
NLE 0.946 0.771 0.699
NPE 0.975 0.901 0.831
NRE (NRE-B) 0.972 0.947 0.919
SMC-ABC 0.982 0.969 0.963
SNLE 0.921 0.713 0.578
SNPE 0.965 0.845 0.666
SNRE (SNRE-B) 0.968 0.917 0.721

SLCP Distractors

NRE-C (ours) 0.982 0.976 0.811
REJ-ABC 0.988 0.987 0.987
NLE 0.987 0.961 0.905
NPE 0.982 0.970 0.863
NRE (NRE-B) 0.980 0.968 0.953
SMC-ABC 0.986 0.987 0.985
SNLE 0.992 0.949 0.883
SNPE 0.978 0.931 0.778
SNRE (SNRE-B) 0.981 0.974 0.766

Two Moons

NRE-C (ours) 0.777 0.594 0.526
REJ-ABC 0.960 0.847 0.664
NLE 0.773 0.713 0.668
NPE 0.725 0.606 0.542
NRE (NRE-B) 0.822 0.761 0.629
SMC-ABC 0.922 0.707 0.663
SNLE 0.657 0.571 0.582
SNPE 0.643 0.554 0.530
SNRE (SNRE-B) 0.651 0.582 0.563
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D Mutual Information

Estimating the mutual information is closely related to estimating the likelihood-to-evidence ratio.
We reference various bounds on the mutual information and show how NRE-C can estimate them
numerically. These bounds obey the variational principle and might be a practical candidate for
validating the performance of SBI methods for scientific purposes, i.e., when the ground truth posterior
is intractable. The approximation of the mutual information could synergize with other diagnostics
like empirical, expected coverage testing and the importance sampling diagnostic. See section 2.2.

Mutual information and expected Kullback-Leibler divergence If p(θ |x) denotes the true
posterior and pw(θ |x) an approximate posterior then the quality of that approximation can be
measured via the (forward) Kullback-Leibler divergence:

KLD(p(θ |x) ∥ pw(θ |x)). (38)

However, in the SBI-setting we have only access to the likelihood p(x |θ) via samples. Since we have
also access to the prior p(θ) (analytically and) via samples we can sample from the joint p(θ,x). So
using the expected Kullback-Leibler divergence is more tractable in the SBI setting to measure the
discrepancy between true and approximated prior:

Ep(x) [KLD(p(θ |x) ∥ pw(θ |x))] . (39)

In all considered cases in this paper the approximate posterior pw(θ |x) is given by:

pw(θ |x) = r̂w(x |θ)
Zw(x)

p(θ), Zw(x) :=

∫
r̂w(x |θ)p(θ) dθ, (40)

where r̂w(x |θ) comes from a (trained) neural network and Zw(x) denotes the normalization con-
stant. With the above notations we get for the expected Kullback-Leibler divergence the expression:

Ep(x) [KLD(p(θ |x) ∥ pw(θ |x))] = Ep(θ,x)

[
log

p(θ |x)
pw(θ |x)

]
(41)

= Ep(θ,x)

[
log

p(θ,x)

p(θ)p(x)

p(θ)

pw(θ |x)

]
(42)

= I(θ;x)− Ep(θ,x)

[
log

r̂w(x |θ)
Zw(x)

]
(43)

= I(θ;x)− Ep(θ,x) [log r̂w(x |θ)] + Ep(x) [logZw(x)] , (44)

where I(θ;x) is the mutual information w.r.t. p(θ,x). Since we aim at minimizing the expected
Kullback-Leibler divergence we implicitely aim to maximize our mutual information approximation:

I(0)w (θ;x) := Ep(θ,x) [log r̂w(x |θ)]− Ep(x) [logZw(x)] (45)

= Ep(θ,x) [log r̂w(x |θ)]− Ep(x)

[
logEp(θ)[r̂w(x |θ)]

]
(46)

= Ep(θ,x) [hw(θ,x)]− Ep(x)

[
logEp(θ)[exp(hw(θ,x))]

]
, (47)

which can be estimated via Monte-Carlo by sampling i.i.d. θn,θn,m ∼ p(θ), xn ∼ p(x |θn),
n = 1, . . . , N , m = 1, . . . ,M and then compute:

Î(0)w (θ;x) :=
1

N

N∑
n=1

log r̂w(xn |θn)−
1

N

N∑
n=1

log

(
1

M

M∑
m=1

r̂w(xn |θn,m)

)
(48)

=
1

N

N∑
n=1

hw(θn,xn)−
1

N

N∑
n=1

log

(
1

M

M∑
m=1

exp(hw(θn,m,xn))

)
. (49)

Since in all mentioned methods r̂w(x |θ) is meant to approximate the ratio p(θ |x)
p(θ) , and estimating the

normalizing constant is expensive, a naive alternative to approximate the expected Kullback-Leibler
divergence is by plugging the unnormalized distribution q̂w(θ |x) := r̂w(x |θ)p(θ) into the above
formula and using the estimate:

Îw(θ;x) :=
1

N

N∑
n=1

log r̂w(xn |θn) =
1

N

N∑
n=1

hw(θn,xn). (50)
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While this is justified for the training objectives for NRE-A and NRE-C, which encourage a trivial
normalizing constant Zw(x) ≈ 1 at optimum, the same is not true for NRE-B, which leads to an
additional non-vanishing, possibly arbitrarily big, bias term:

Îw(θ;x) ≈ I(0)w (θ;x) + Cw (NRE-B) (51)

Another way to address the normalizing constant is the use of the Kullback-Leibler divergence that
also works for unnormalized distributions p(z), q(z):

KLD(p(z) ∥ q(z)) :=
∫ (

log

(
p(z)

q(z)

)
+

q(z)

p(z)
− 1

)
p(z) dz, (52)

which is always ≥ 0 with equality if p(z) = q(z) for p(z)-almost-all z.

This gives for the expected Kullback-Leibler divergence between the posterior p(θ |x) and the
unnormalized approximate posterior q̂w(θ |x) := r̂w(x |θ)p(θ):

Ep(x) [KLD(p(θ |x) ∥ q̂w(θ |x))] (53)

= Ep(θ,x)

[
log

p(θ |x)
q̂w(θ |x)

+
q̂w(θ |x)
p(θ |x)

− 1

]
(54)

= Ep(θ,x)

[
log

p(θ,x)

p(θ)p(x)

p(θ)

q̂w(θ |x)
+

q̂w(θ |x)p(x)
p(θ,x)

− 1

]
(55)

= I(θ;x)− Ep(θ,x) [log r̂w(x |θ)] +
∫ (∫

r̂w(x |θ) p(θ) dθ
)

p(x) dx− 1 (56)

= I(θ;x)− Ep(θ,x) [log r̂w(x |θ)] + Ep(x) [Zw(x)− 1] . (57)

We see that the normalizing constant Zw(x) re-appears, but with a different term. Similar to before
the above can be used for another mutual information approximation given by:

I(1)w (θ;x) := Ep(θ,x) [log r̂w(x |θ)]− Ep(x) [Zw(x)− 1] (58)

= Ep(θ,x) [log r̂w(x |θ)]− Ep(x)p(θ) [r̂w(x |θ)− 1] (59)

= Ep(θ,x) [hw(θ,x)]− Ep(x)p(θ) [exp(hw(θ,x))− 1] , (60)

which can be estimated via Monte-Carlo, again, by sampling i.i.d. θn,θn,m ∼ p(θ), xn ∼ p(x |θn),
n = 1, . . . , N , m = 1, . . . ,M and then computing:

Î(1)w (θ;x) :=
1

N

N∑
n=1

log r̂w(xn |θn)−
1

N

1

M

N∑
n=1

M∑
m=1

(r̂w(xn |θn,m)− 1) (61)

=
1

N

N∑
n=1

hw(θn,xn)−
1

N

1

M

N∑
n=1

M∑
m=1

(exp(hw(θn,m,xn))− 1) . (62)

Note that since log(r) ≤ r − 1 we always have the inequalities:

I(θ;x) ≥ I(0)w (θ;x) ≥ I(1)w (θ;x), Î(0)w (θ;x) ≥ Î(1)w (θ;x), (63)

showing that I(0)w (θ;x) leads to a tighter approximation to the mutual information I(θ;x) than
I
(1)
w (θ;x).

The procedures above require estimating the normalizing constant or the partition function. Generally
this can be quite expensive and may require techniques like Nested Sampling [65]; however, it is
tractable with Monte Carlo on problems with parameters within low dimensional compact regions.
That being said, the ratio can also introduce large variance in the integral estimates. This occurs when
the posterior is much narrower than the prior, i.e., when data x carries a lot of information about θ.
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Bounds on the mutual information There is a connection between the training objective of NRE-B
and a multi-sample lower bound on the mutual information [58], as noted in Durkan et al. [16].
Contrastive learning has been explored for estimating the mutual information by Van den Oord et al.
[71] also discussed by Belghazi et al. [4]. The bounds we define above are also discussed in detail
by Poole et al. [58], although we find computing Î

(0)
w (θ;x) and Î

(1)
w (θ;x) to be tractable within

SBI–although potentially expensive and high-variance with an extremely narrow posterior.

We attempted to train a ratio estimator by minimizing Î
(1)
w (θ;x) directly on fixed data. Our prelimi-

nary experiments found that the C2ST was near unity on the SLCP task and other works claim that
this mutual information bound has extremely high variance. We therefore ended our investigation.

Numerical estimates of bounds on mutual information In remains unclear how to evaluate the
performance of SBI algorithms across model types without access to the ground truth. Computing
−Î

(0)
w (θ;x) as a validation loss is applicable to NRE-B and NRE-C for all γ and K. Therefore,

we investigate estimating this bound on the mutual information for model comparison and as a
surrogate for computing the C2ST across several pieces of simulated data. (It is also noteworthy
that this bound is applicable to Neural Posterior Estimation, where the likelihood-to-evidence ratio
would be approximated by pw(θ |x)/p(θ) and pw(θ |x) represents an approximate posterior density.
However, this case is not investigated further in this work.)

In the effort to find a model comparison metric that applies when the user does not have access to
the ground truth, we ran another set of experiments where we trained ratio estimators using NRE-B

and NRE-C over various γ and K, then we validated them on held-out data with −Î
(0)
w (θ;x) as a

validation loss. All networks corresponded with the Large NN architecture. Just like in the main
experiments, we computed the C2ST over the ten different observations from the SBI benchmark.
The results of the training can be seen in Figure 4 and in full in Figure 12. Visually, −Î

(0)
w (θ;x) was

more comparable across models than plotting their classification validation loss, see Figure 10, for
both NRE-B and NRE-C. The classification validation loss has a bias depending on γ and K which
−Î

(0)
w (θ;x) does not exhibit. The metric therefore allows us to compare models such that model

producing the most negative mutual information bound also most-accurately estimates the posterior,
on average.

A correlation plot showing the relationship between Î
(0)
w (θ;x) and the C2ST for various γ and K on

the SLCP task can be found in Figure 13. We find that the two measurements are well correlated,
implying that −Î

(0)
w (θ;x), which does not require access to the ground truth posterior, may be able

to replace computing the C2ST across several pieces of data, which does require access to the ground
truth posterior, but further investigation is necessary.
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Figure 12: Our proposed metric, a negative bound on the mutual information −Î
(0)
w (θ;x), for the

SLCP task estimated over the validation set versus training epochs using (a) NRE-B and (b) NRE-C
with various values of γ and K, a Large NN architecture, and fixed training data. The bound permits
visualization of the convergence rates and pairwise comparison across models.
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Figure 13: A scatter plot of the minimum −Î
(0)
w (θ;x) versus the C2ST on the SLCP task with every

point corresponding to a different set of values for γ and K. C2ST scales from 0.5 to 1.0 with 0.5
implying that the classifier could not distinguish the approximate posterior from the ground truth.
Just like in the fixed data regime in the main experiment, see Figure 6, we found that on this task a
lower γ improved the C2ST. We also find that the mutual information is correlated with the average
C2ST across 10 pieces of data, but the mutual information has the practical advantage that we can
bound it without knowing the ground truth posterior. The C2ST requires being able to sample from
the ground truth posterior. This data represents the same set of experiments as in Figure 4, Figure 12,
and Figure 14.
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Numerical estimates of the partition function In addition to bounds on the mutual information,
we computed a Monte Carlo estimate of the partition function, Zw(x), based on data from the
validation set at every epoch during training. The value of the estimated partition function as a
function of epoch is shown in Figure 14 for this set of runs on the SLCP task. The estimated Zw(x),
based on the ratio from NRE-B, is completely unconstrained and varies significantly with epoch.
NRE-C does encourage the partition function to remain “near” unity, although both γ and K affect the
strength of the encouragement. We find that large numbers of contrastive parameters cause Zw(x) to
deviate significantly from unity; although, often by tens of orders of magnitude less than NRE-B.

This result is connected to the reliability of the importance sampling diagnostic, see Section 2.2. If
the partition function is not near unity, then the estimated likelihood-to-evidence ratio does not cancel
with the evidence and the diagnostic will behave like NRE-B, i.e., it becomes possible to produce
accurate, albeit unnormalized, posteriors while failing the diagnostic. This is one reason to limit the
number of contrastive parameters.
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Figure 14: Monte Carlo estimate of the partition function Ẑw(x) for (a) NRE-B and (b) NRE-C with
various values for γ and K on the SLCP inference problem. Note the scale of the ordinate axes.
Ẑw(x) is completely unconstrained with NRE-B; however, it is constrained with NRE-C. The strength
of encouragement the partition function towards unity depends on the hyperparameters for NRE-C.
Ẑw(x) can still take on extreme values, especially for large number of contrastive examples and large
γ. This represents the same set of experiments as in Figure 4, Figure 4 and Figure 13.
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