
Published as a conference paper at ICLR 2025

DEEPERFORWARD: ENHANCED FORWARD-FORWARD
TRAINING FOR DEEPER AND BETTER PERFORMANCE

Liang Sun1,†, Yang Zhang1,†,∗, Weizhao He1, Jiajun Wen1, Linlin Shen1,2,3, Weicheng Xie1,2,3
1Computer Vision Institute, School of Computer Science & Software Engineering, Shenzhen University
2National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University
3Guangdong Provincial Key Laboratory of Intelligent Information Processing
{sunliang, heweizhao}2022@email.szu.edu.cn,
{yangzhang, wenjiajun, llshen, wcxie}@szu.edu.cn
Code: https://github.com/tobysunsun/deeperforward

ABSTRACT

While backpropagation effectively trains models, it presents challenges related
to bio-plausibility, resulting in high memory demands and limited parallelism.
Recently, Hinton (2022) proposed the Forward-Forward (FF) algorithm for high-
parallel local updates. FF leverages squared sums as the local update target, termed
goodness, and decouples goodness by normalizing the vector length to extract
new features. However, this design encounters issues with feature scaling and
deactivated neurons, limiting its application mainly to shallow networks. This
paper proposes a novel goodness design utilizing layer normalization and mean
goodness to overcome these challenges, demonstrating performance improvements
even in 17-layer CNNs. Experiments on CIFAR-10, MNIST, and Fashion-MNIST
show significant advantages over existing FF-based algorithms, highlighting the
potential of FF in deep models. Furthermore, the model parallel strategy is proposed
to achieve highly efficient training based on the property of local updates.

1 INTRODUCTION

Backpropagation (BP) (Rumelhart et al., 1986) has achieved significant success, serving as the
prevailing paradigm for training complex structures like ResNet (He et al., 2016) and Transformers
(Vaswani et al., 2017). However, no compelling evidence supports such a mechanism existing in the
brain, challenging the biological plausibility of BP. Critical challenges within BP consist of weight
transport (Grossberg, 1987), non-local (Whittington & Bogacz, 2019), freezing activity, and update
locking problems (Jaderberg et al., 2017; Czarnecki et al., 2017). The weight transport problem
arises from reusing the same path in forward and backward passes. The non-local problem arises
from global objective loss, while the brain relies on local signals for updates. The freezing activity
problem and update locking problem contradict the real-time property in neural systems. Freezing
activity involves maintaining intermediate states, leading to increased memory demands. The update
locking problem prevents any update until all layers are activated, reducing parallelism in practice.

To tackle these challenges, various brain-inspired training methods (Ororbia, 2023) have been
developed to formulate a comprehensive theory of inference and learning in a biologically plausible
manner (Lillicrap et al., 2016; Nøkland, 2016; Dellaferrera & Kreiman, 2022; Ororbia et al., 2023;
Hinton, 2022). Several of these methods are depicted in Figure 1. A recent breakthrough is the
Forward-Forward (FF) algorithm (Hinton, 2022), as depicted in Figure 1(d). FF employs the squared
sum of outputs, termed goodness, and fixes the output vector length via dividing by its vector length,
thereby decoupling goodness within the output features and compelling subsequent layers to learn
new features. Mathematically, the output’s length and direction correspond to goodness and features.
However, this design has limitations that confine current layer-wise FF studies to shallow models.
The primary reasons why FF fails to achieve performance improvements in deeper networks are as
follows:

†Equal Contribution: Liang Sun and Yang Zhang.
*Corresponding author: Yang Zhang.

1

https://github.com/tobysunsun/deeperforward


Published as a conference paper at ICLR 2025

𝑊1

𝑊2

𝑊3

ℎ1

ℎ2

𝑦

𝑥

ℒtarget

𝛿3

𝛿2

𝛿1

𝑊2
𝑇

𝑊3
𝑇

BP
a

FA

𝑊1

𝑊2

𝑊3

ℎ1

ℎ2

𝑦

𝑥

ℒtarget

𝛿3

𝛿2

𝛿1

B2

B3

b
FF

𝑊1

𝑊2

𝑊3

𝑥pos 𝑥neg

ℒpos3

ℒpos2

ℒpos1

ℒneg3

ℒneg2

ℒneg1

𝑥pos= image + true label

𝑥neg= image + wrong label

d

𝑊1

𝑊2

𝑊3

𝑥

ℒ2

ℒ3

ℒ1

Ours
e

PEPITA

𝑊1

𝑊2

𝑊3

ℎ1

ℎ2

𝑦

𝑥

ℒ

𝑒

F

ℎ1
err

ℎ2
err

c

Δ𝑊𝑙 = −𝛿𝑙+1 ⋅ ℎ𝑙
𝑇 Δ𝑊𝑙 = −𝛿𝑙+1 ⋅ ℎ𝑙

𝑇 Δ𝑊𝑙 = ℎ𝑙 − ℎ𝑙
err ⋅ ℎ𝑙−1

err 𝑇 Δ𝑊𝑙 = −∇𝑊𝑙
ℒpos𝑙

+ ℒneg𝑙
Δ𝑊𝑙 = −∇𝑊𝑙

ℒ𝑙

𝛿𝑙 = 𝑊𝑙+1
𝑇 ⋅ 𝛿𝑙+1 𝛿𝑙 = B𝑙+1

𝑇 ⋅ 𝛿𝑙+1 ℎ𝑙
err = 𝑊𝑙 ⋅ ℎ𝑙−1

err

ℎ1
err = 𝑊1 ⋅ (𝑥 + F ⋅ 𝑒)

target
target

Figure 1: Comparison of several training methods. (a) BP employs traditional forward and backward
passes represented by blue and green arrows respectively. (b) Feedback alignment (FA) uses an
alternative backward pass for error passes. (c) PEPITA uses two forward passes based on input
perturbation. (d) FF is implemented with two forward passes on positive data and negative data,
respectively. (e) Ours simplifies the learning process by using a single forward pass.

Feature scaling Normalization by vector length is uncommon in image classification tasks as it
does not ensure that features exhibit similar characteristics, such as identical means and standard
deviations. To address this, layer normalization (Ba et al., 2016) can be applied to the input vector,
but this leads to redundant normalization and compromises the mathematical significance of output
direction as a feature. Consequently, CwComp (Papachristodoulou et al., 2024) employs batch
normalization as a substitute. However, this approach fails to decouple goodness and leaks goodness
to the next layer, hindering deeper layers from learning new features and causing overfitting.

Deactivated neurons Square goodness is highly sensitive to outliers, which can dominate and
deactivate most neurons, distorting feature representation. Moreover, deactivated neurons do not
contribute to weight updates during gradient calculations, leading to features represented by a limited
subset of neurons and causing feature loss in deeper layers.

In this paper, DeeperForward is proposed to address the mentioned issues by redesigning goodness
and features to better suit deep networks. We also enhance the convolution structure proposed by
CwComp (Papachristodoulou et al., 2024), enabling effective training of FF in deeper CNNs. Our
main contributions are as follows:

• We adopt the more widely used layer normalization(Ba et al., 2016) to ensure a fixed mean
and standard deviation of the output, replacing normalization based on vector length and
effectively addressing feature scaling and redundant normalization issues.

• Exploiting the property of layer normalization that maintains a mean of zero, we propose
using mean goodness as an alternative to squared goodness, thereby facilitating the decou-
pling of goodness for enhanced feature extraction. This approach also ensures that weight
updates are not hindered by deactivated neurons, allowing for the learning of richer features.

• Based on the characteristics of layer-wise local updates, we introduce a model parallel
strategy that significantly enhances training efficiency on multiple GPUs.

• Our method enhances FF to achieve improved performance in deeper networks. Experi-
mental results indicate that our approach, utilizing a 17-layer CNN, outperforms existing
layer-wise FF-based methods on CIFAR-10, MNIST, and Fashion-MNIST, achieving sub-
stantial performance gains, particularly an 8.11% improvement on CIFAR-10

2 RELATED WORK

2.1 CONVENTIONAL BRAIN-INSPIRED LEARNING RULES

Hebbian learning (Hebb, 2005; Gerstner et al., 2014) updates synaptic plasticity determined by pre-
and post-synaptic neuron states (Löwel & Singer, 1992). Based on the Hebbian rule, a neural coding

2



Published as a conference paper at ICLR 2025

framework was proposed for learning generative models using the predictive coding (Ororbia & Kifer,
2022; Rao & Ballard, 1999). SoftHebb (Journé et al., 2023) proposes an algorithm based on theory
for Hebbian learning in soft winner-take-all (WTA) networks. Hebbian learning is considered a basic
bio-plausible method with no target.

In target-based methods, feedback alignment (Lillicrap et al., 2016) and direct feedback alignment
(Nøkland, 2016) replace backpropagation weights with a fixed random matrix to establish alternative
error feedback connections, as shown in 1(b). Weight mirror (Akrout et al., 2019) adjusts the feedback
connection matrix, equivalent to the transport weight matrix. However, these methods still rely on
global error. Target propagation (TP) (Bengio, 2014; Bartunov et al., 2018) and difference target
propagation (DTP) (Lee et al., 2015; Ernoult et al., 2022) set local targets as the goal for local updates.
Local representation alignment (LRA) (Ororbia et al., 2023) addresses the asymmetry problem
through top-down signal transmission with Hebbian-like rules, further solving the non-local problem.
To update unlocking, decoupled greedy learning (Belilovsky et al., 2020) optimizes a joint training
objective to decouple the layer training with auxiliary networks. Avoiding using backward passes, a
forward propagation training method through time is proposed for recurrent neural networks (Kag
& Saligrama, 2021). PEPITA (Dellaferrera & Kreiman, 2022) achieves local updates by perturbing
inputs with the error and employs a Hebbian-like rule based on two forward passes with a fixed
feedback matrix, as shown in Figure 1(c). Despite these advancements, they partially suffer from the
update locking problem.

2.2 BACKGROUND OF FORWARD-FORWARD ALGORITHM

Inspired by Boltzmann machines (Hinton et al., 1986) and noise contrastive estimation (NCE)
(Gutmann & Hyvärinen, 2010), the Forward-Forward algorithm (FF) (Hinton, 2022) introduces a
greedy learning scheme via two forward passes, as shown in Figure 1(d), tackling the mentioned
bio-implausible problems. FF uses the length of the output vector as a measure of goodness, where
goodness represents the score of positive data. Decoupling goodness from the output features is
important to prevent subsequent layers from relying solely on previous goodness. Therefore, FF
extracts features by normalizing the vector length, denoted as,

y =ReLU(Wx), (1)

g =
∑

iy
2
i , z =

y√
1
N g + ϵ

, (2)

∆Wij = 2xiyj
∂L
∂g

, (3)

where x denotes the input, y represents the output after ReLU (Glorot et al., 2011) with N elements,
W is the weight matrix, yi denotes the element of the vector y of a hidden layer, and g denotes
goodness. The features z is the unit vector of y. ϵ is a small constant. ∆Wij denotes the weight
update term and L is the loss function. The image with a real label is regarded as positive data for
optimizing to reach a high goodness value in each layer, and vice versa. During inference, an image
entails computing the goodness of each label and selecting the highest one through several iterations.
The preliminary study of FF only works on small networks without weight-sharing structures.

Recently, several works have proposed some advanced FF-related algorithms. Symmetric
backpropagation-free contrastive learning with FF (SymBa) (Lee & Song, 2023) enhances per-
formance through a gradient-symmetric contrastive loss and a novel label embedding scheme. The
predictive Forward-Forward algorithm (PFF) (Ororbia & Mali, 2023) integrates FF with predictive
coding presenting a promising brain-inspired algorithm for classifying, reconstructing, and synthe-
sizing data patterns. However, these approaches are still limited to models without weight-sharing
structures. The cascaded forward (CaFo) algorithm (Zhao et al., 2023) utilizes a series of random
fixed convolutional kernels as the backbone and cascades a fully connected classifier for each ker-
nel. However, it merely updates the classifiers, leaving the kernels unchanged. Forward-Forward
contrastive learning (FFCL) (Ahamed et al., 2023) introduces contrastive learning for convolutional
models based on FF. However, this approach still prefers extra training by global errors. Recently,
convolutional channel-wise competitive learning (CwComp) (Papachristodoulou et al., 2023; 2024)
successfully extends FF into CNNs by grouping the features by channels for each class, and using
a loss function inducing competitive learning between class-specific features. Despite the advance-
ments, these methods focus on shallow networks within 4 layers. Currently, Trifecta (Dooms et al.,

3



Published as a conference paper at ICLR 2025

CW-Conv

CW-Conv

CW-Conv

…

𝒁(0)

𝒁(1)

𝒁(𝑳−1)

ෝ𝒚(1) 𝓛CE
(1)

ෝ𝒚(𝟐)

ෝ𝒚(𝑳)

b

∇𝜽(𝟏)

𝜽(𝟏)

𝓛CE
(2)

𝓛CE
(𝐿)

𝜽(2)

𝜽(𝑳)

Input image

∇𝜽(𝟐)

∇𝜽(𝑳)

Signal Integrating & Pruning (SIP)

ෝ𝒚(𝟏) ෝ𝒚(𝟐) ෝ𝒚(4)

ෝ𝒚

C
W

-C
o

n
v

A
v

er
ag

e 
p

o
o

li
n

g
ෝ𝒚(3)

Block 1

ෝ𝒚(5)

Block 2

Backbone

“cat”
C

W
-C

o
n

v

C
W

-C
o

n
v

C
W

-C
o

n
v

C
W

-C
o

n
v

a

ෝ𝒚(𝟕)

A
v

er
ag

e 
p

o
o

li
n
g

ෝ𝒚(𝟔) ෝ𝒚(𝟖)

Block 3

C
W

-C
o

n
v

C
W

-C
o

n
v

C
W

-C
o

n
v

ෝ𝒚(𝟏𝟎)

A
v

er
ag

e 
p

o
o

li
n

g

ෝ𝒚(𝟗) ෝ𝒚(𝟏𝟏)

Block 4

C
W

-C
o

n
v

C
W

-C
o

n
v

C
W

-C
o

n
v

ෝ𝒚(𝟏𝟑)

A
v

er
ag

e 
p

o
o

li
n

g

ෝ𝒚(𝟏𝟐) ෝ𝒚(𝟏𝟒)

Block 5

C
W

-C
o

n
v

C
W

-C
o

n
v

C
W

-C
o

n
v

…

c

ො𝑦

𝑿

𝜽
𝑯

L
N

𝒁

Mean

𝑿

𝒁𝑯

…𝑯1 𝑯2 𝑯𝑮

𝜽

G
N

Group mean

ො𝑦1 ො𝑦2 … ො𝑦𝐺 ෝ𝒚goodness

features

features
× 𝑮 classes

Channel-Wise Convolution (CW-Conv)

Training Process

Figure 2: Overview of DeeperForward. (a) Example network architecture for DeeperForward,
including backbone and Signal Integrating and Pruning module. A VGG-like architecture is displayed
as an instance. (b) The training scheme of DeeperForward. (c) Modified channel-wise convolution
(CW-Conv) from CwComp based on mean goodness.

2023) employs a two-layer block-wise backpropagation approach to replace single-layer updates in
a 12-layer CNN, using batch normalization. However, this integration with backpropagation still
presents bio-plausibility issues, diminishing parallelism and contradicting the motivations behind the
FF algorithm. Both Trifecta and CwComp facilitate easier training by leaking goodness, which can
result in potential overfitting in deeper networks.

3 METHODOLOGY

This paper introduces DeeperForward, which extends the FF algorithm to 17-layer CNNs through a
novel goodness design. This approach addresses the bio-plausibility issues of backpropagation and
overcomes the limitations of FF concerning model size. Figure 2 illustrates the overall framework of
our method, including the architecture and training approach. The details of the new goodness design
are presented in Section 3.1. The network architecture is discussed in Section 3.2, while the training
process and advanced strategies for DeeperForward are outlined in Section 3.3.

3.1 MEAN GOODNESS

FF uses squared goodness and normalization of the length, as described in Eq. 2. This method
suffers from issues related to feature scaling, deactivated neurons, and redundant normalization,
resulting in suboptimal performance in deep networks. Although CwComp (Papachristodoulou et al.,
2024) improves performance using squared goodness and batch normalization, it leaks goodness
information, leading to overfitting in deeper networks. Considering these factors, we adopt widely
used layer normalization for better feature scaling with identical mean and standard deviations. To
decouple goodness through normalization, we utilize the mean as goodness, leveraging the property
of layer normalization that produces an output with a mean of zero. Furthermore, mean goodness
ensures that deactivated neurons do not hinder updates. The specific formula is as follows:

y = ReLU(Wx), (4)

g =
∑

iyi, z =
y− g√
σ2 + ϵ

, (5)

∆Wij = Cxi
∂L
∂g

, (6)

4



Published as a conference paper at ICLR 2025

where x denotes the input, y represents the output after ReLU (Glorot et al., 2011), W is the weight
matrix, g indicates goodness, σ is the standard deviation, z refers to the output features, ∆Wij is the
weight update term, L is the local loss function, and C is a constant.

From Eq. 5, it is evident that the output distribution z maintains a mean of zero, effectively eliminating
goodness. This also ensures that the features share a similar distribution, addressing the feature
scaling issue. During weight updates, mean goodness (Eq. 6) allows for updates even when the output
neuron yj is zero, unlike squared goodness (Eq. 3), thereby solving the deactivated neurons problem.

3.2 ARCHITECTURE FOR DEEPERFORWARD

The architecture for DeeperForward, as illustrated in Figure 2(a), incorporates a modified classical
CNN backbone, exemplified by the VGG-like model (Simonyan & Zisserman, 2014). It incorporates
a convolutional structure that combines channel-wise convolution (CW-Conv) with mean goodness,
along with a Signal Integrating and Pruning (SIP) module to obtain the final results.

Channel-Wise Convolution with Mean Goodness To incorporate mean goodness into CNNs,
combining convolution with mean goodness involves simply obtaining the output mean as goodness,
followed by layer normalization to facilitate feature extraction. Formally, the goodness ŷ and
representation Z are defined as:

ŷ =
1

HWC

∑
h∈H

h, Z = LayerNorm(H), (7)

where H ∈ RH×W×C denotes the hidden states after the convolution with ReLU (Glorot et al., 2011).
ŷ ∈ R indicates the goodness, that is, the mean of H. The representation output Z is H going through
layer normalization.

In multi-class tasks, we optimize the channel-wise convolution (CW-Conv) structure from CwComp
(Papachristodoulou et al., 2023; 2024), combining it with our mean goodness to obtain goodness
scores for all classes through a single inference. The outputs are evenly grouped by channel, with
each group representing a class. Goodness is calculated for each group, followed by individual layer
normalization to extract features, effectively implementing group normalization (Wu & He, 2018) on
the entire output, as illustrated in Figure 2(c). Formally, the channel-wise convolution with mean
goodness for G classes can be described as:

ŷi =
G

HWC

∑
h∈Hi

h, i = 1, 2, ..., G;

ŷ = [ŷ1, ŷ2, ..., ŷG], (8)
Z = GroupNorm(H;G), (9)

where Hi ∈ RH×W×C
G and ŷi denotes the hidden states and goodness for the i-th class, and ŷ stands

for classification scores. GroupNorm(H;G) represents the group normalization of hidden states H
by G groups. Z stores the representation feature maps.

Compared to our method, CwComp performs classification training directly on the outputs after
batch normalization without decoupling goodness, resulting in goodness leakage to the next layer
and leading to overfitting in deeper layers.

Backbone The backbone is derived from the classical CNNs, leveraging their well-established
structural advantages. We substitute the general convolutional kernels with CW-Conv modules to
generate classification results locally. The representation from each CW-Conv module serves as the
input for the next layer, denoted as Z(l) where l signifies the layer number. The local classification
result at the l-th layer is represented as ŷ(l). In particular, the channel size of kernels must be a
multiple of the class count. Furthermore, to maintain approximate zero mean of the representation,
we adopt average pooling for downsampling, instead of max pooling, as the latter tends to increase the
mean value. In this architecture, each layer produces a classification score using CW-Conv. Moreover,
the experiments in Appendix E reveal that the CW-Conv outperforms the fully connected (FC) layer
in terms of performance. Consequently, the final FC layer is needless.

5



Published as a conference paper at ICLR 2025

𝑿

𝒁

𝒁′

CW-Conv, 𝟏𝟎

: addition C : concatenation

a b

10 c

Target: 10 channels Target: 20 channels

10 c

𝒁𝐫

𝑿𝐫

Avg Pool

10 c

𝑿

𝒁′

CW-Conv, (20−10)

20 c

10 c

C

𝒁

10 c

𝒁𝐫

𝑿𝐫

Avg Pool

10 c

10 c

(c: channels)

Figure 3: Residual structures: (a) Addition type for the shortcut channels match the target channels.
(b) Concatenation type for shortcut channels differing from the target channels.

Residual Structure Residual structures are traditionally employed to facilitate error backpropaga-
tion by providing shortcuts for easier learning. In FF, it enables the integration of features at different
levels, enriching the representational capacity of deep networks. To adapt to the FF, we implement
two parameter-free residual structures, the addition and concatenation types, as alternatives to the
original parameterized versions, as illustrated in Figure 3. To match the spatial dimensions, we
employ average pooling to the shortcut, as shown below, for downsampling.

Zr =

{
AvgPool(Xr), (Hr,Wr) ̸= (H,W ),

Xr, (Hr,Wr) = (H,W ),
(10)

where Zr ∈ RH×W×Cr denotes the shortcut feature map after spatial dimension adjustment, and
AvgPool(·) is the average pooling operation to adjust Xr from (Hr,Wr) to (H,W ).

Two types of residual structures are adapted in different scenarios. If the shortcut matches the channel
of target feature maps, the addition type is employed. Otherwise, the concatenation type is used. As
shown in Figure 3, two residual structures can be summarized as:

Z =

{
F (X;C) + Zr, C = Cr,

Concat(F (X;C − Cr),Zr), C ̸= Cr,
(11)

where F (X;C) stands for the CW-Conv with C channels output from input X, and Zr is the feature
maps from shortcut. Concat(·, ·) denotes the concatenation operation on channel dimension. Z
represents the final representation output. Particularly, the number of convolution channels is reduced
to C − Cr in concatenation type to ensure the channel of final output satisfies the target.

Signal Integrating and Pruning Module Inspired by synaptic pruning (Chechik et al., 1998;
Neniskyte & Gross, 2017), where the brain forms excess synapses and then eliminates redundancies,
we propose the Signal Integrating and Pruning (SIP) module. The FF accumulates local goodness to
obtain the final result, with experiments showing that the last three layers perform best on the test set.
Similarly, we separate a subset of data from the training set, leave it untrained, and evaluate accuracy
on this subset to select the best layer combination, avoiding direct testing on the test set. However,
for a deep model with L layers, there are 2L combinations. To reduce complexity, we simplify the
rule to accumulating layers between a chosen start layer and an end layer, reducing the combinations
to L(L+ 1)/2. The SIP module with L layers can be described as:

ŷ =

E∑
l=S

ŷ(l), 0 < S ≤ E ≤ L, (12)

where ŷ(l) denotes classification scores from the l-th layer, and ŷ is the final result. S,E ∈ Z are
integers and range from 1 to L, representing the start and end layers to be accumulated. After
selection, layers beyond the end layer are no longer used and can be pruned.

3.3 DEEPERFORWARD TRAINING SCHEME

Training Scheme We present DeeperForward, a training strategy that optimizes the classification
result at each layer through a single forward pass, relying solely on the local input-output states.

6



Published as a conference paper at ICLR 2025

Figure2(b) depicts the training procedure of DeeperForward. Local optimization leverages the
classification results from CW-Conv as the local target. It utilizes a local cross-entropy loss for
each layer to generate the update signal, preventing error transportation across layers. The local
optimization can be formulated as:

L(l)
CE(ŷ

(l), y) = −
∑G

i=1 yi log(softmax(ŷ
(l)
i )),

∇θ(l) = ∇θ(l)L(l)
CE(ŷ

(l), y), (13)

where ŷ(l) and y denote the local classification result and the real label with G classes. L(l)
CE denotes

the cross-entropy loss, while∇θ(l) is the update of weights at the l-th layer, and∇θ(l)L(l)
CE(ŷ

(l), y) is
the gradient of L(l)

CE with respect to the kernel weights θ(l). The local optimization process solely
relies on the input and classification result of the individual CW-Conv. DeeperForward is compatible
with general gradient-based optimizers, such as Adam (Kingma & Ba, 2014). Owing to the local
learning process, there is no need to store intermediate states, eliminating the freezing activity
problem and the update locking problem. Additionally, the non-local problem and weight transport
problem are addressed by the local loss optimization and the forward training scheme.

Model Parallel Strategy Our method enables a model parallel strategy based on the parallelism
of FF mentioned in (Aktemur et al., 2024), as illustrated in Figure 4. Our strategy treats each
convolutional layer as an independent component in the pipeline. Once a convolutional layer
processes a batch of data, it passes the results to the next group, allowing the next batch to be
processed without waiting for the entire network to complete. As shown in Figure 4 (a), this
approach enables simultaneous processing of multiple batches across different layers, achieving high
parallelism.

Figure 4(b) illustrates an implementation example using multithreading techniques in a multi-GPU
setup. Our strategy assigns an independent thread for each convolutional layer to update, utilizing
first-in-first-out(FIFO) queues for data transfer. Different threads can be allocated to various GPUs,
enabling model parallelism. Compared to the commonly used distributed data-parallel (DDP) (Li
et al., 2020) technique in backpropagation, our approach offers several advantages for improved
efficiency: (i) Each GPU does not need to store the entire network, and (ii) Data transfer between
GPUs occurs only between layers on different GPUs, rather than across the entire network. Details of
implementation are in Appendix G.

CW-Conv …
Fin …

FIFO FIFO

…
FIFO Fsin

Fout

Fsout …
FIFO

ℒCE∇𝜽

(GPU 1) Thread l

CW-Conv …
Fin

FIFO

…
FIFO Fsin

Fout

Fsout

ℒCE∇𝜽

(GPU 0) Thread 𝒍 − 𝟏

… …

Layer 1

Layer 2

Layer 3

F𝑛: Inference of the n-th minibatch U𝑛: Update of the n-th minibatch 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖

F1 U1 F2 U2 F3 U3

F1 U1 F2 U2 F3 U3

F1 U1 F2 U2 F3 U3

a

b

Figure 4: Model parallel strategy. (a) A pipeline program (the same color indicates operations on the
same minibatch of data). (b) An implementation example based on the multi-threading technique.

Memory-saving Strategy Due to update locking problems, BP requires a large amount of memory
to store intermediate states throughout the process. Without limitation of update locking, this strategy
achieves memory savings by promptly releasing memory after each layer’s computation. The memory
saving strategy is a layer-by-layer update strategy, which consists of following steps: (1) Perform
computation and update weights in current layer. (2) Pass the output to the next layer. (3) Release
all intermediate states from the memory used by the current layer. (4) Repeat steps (1)-(3) layer by
layer. More details are shown in Appendix H. This memory-saving strategy is particularly suitable
for scenarios with constrained memory resources, such as edge computing.

7



Published as a conference paper at ICLR 2025

Table 1: Classification on CIFAR10, MNIST, and F-MNIST, evaluating performance compared to BP
and FF-related algorithms. Measurements of mean and standard deviation are for five trial runs.
*: Reproduced results. †: With data augmentation. ‡: With block-wise backprop.

Type Method Arch. #Layer CIFAR10 MNIST F-MNIST

non-FF

PEPITA CNN 2 52.57 ± 0.36 98.01 ± 0.09 -
DTP CNN 6 89.38 ± 0.20 98.93 ± 0.04 90.35 ± 0.11
recLRA CNN 18 93.58 98.18 88.13
SoftHebb SoftHebb 4 80.31 ± 0.14 99.35 ± 0.03 -
F3 MLP 2 46.04 ± 0.18 97.16 ± 0.10 -
SP CNN 8 92.4 - -

Block-wise BP
HPFF CNN 110 91.04 - -
SEDONA CNN 152 93.87 - -
BWBPF CNN 152 95.52 - -

BP ResNet18-BP* CNN 18 94.03 ± 0.11† 99.58 ± 0.02 93.78 ± 0.06

FF

FF MLP 4 59.00 98.69 -
SymBa MLP 3 59.09 98.58 -
CaFo CNN 3 67.43 98.80 -
CwComp CNN 4 78.11 ± 0.44 99.42 ± 0.08 92.31 ± 0.32
TinyCNN-ours CNN 4 79.49 ± 0.29 99.50 ± 0.05 91.83 ± 0.06

FF

Trifecta‡ CNN 12 83.51 ± 0.78 99.58 ± 0.06 91.44 ± 0.49
CwComp* CNN 14 75.28 ± 0.54 99.27 ± 0.09 91.79 ± 0.47
CNN-ours CNN 14 81.76 ± 0.30 99.65 ± 0.02 92.44 ± 0.08
ResNet-ours CNN 17 86.22 ± 0.17 99.63 ± 0.04 93.13 ± 0.13

Table 2: Classification on CIFAR100.
ResNet-BP ResNet-ours ResNet-CHx3-ours

Accuracy 58.01 ± 0.48 53.09 ± 0.79 60.28 ± 1.02

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENT SETTINGS

To fully validate the effectiveness of DeeperForward, we conduct experiments on 3 datasets: MNIST
(LeCun et al., 1998), Fashion-MNIST (F-MNIST) (Xiao et al., 2017), and CIFAR10 (Krizhevsky
et al., 2009) without any data augmentation. Specifically, the training sets of MNIST and F-MINST
are separated into two groups, 50,000 and 10,000 samples. The former group is used for training
and the latter group is used for pruning by Signal Integrating and Pruning (SIP) module. Similarly,
CIFAR10’s training set is split into 45,000 and 5,000 samples. All the samples in the datasets are
resized to 32× 32 pixels. Hyperparameters setting is detailed in Appendix B. Our experiments are
executed on 4 Nvidia GTX Titan X GPUs (12GB).

A
c
c
u

ra
c
y
 (

%
)

Epoch

A
c
c
u

ra
c
y
 (

%
)

Epoch

a b

A
c
c
u

ra
c
y
 (

%
)

Layer

A
c
c
u

ra
c
y
 (

%
)

Epoch

c d

Figure 5: Performances on CIFAR10. (a) Shallow networks, compared to BP and FF-based methods.
(b) Deep networks, compared to BP without data augmentation. (c,d) Comparison experiments for
residual structures on CIFAR10 without dropout. (c) Model performance during training. (d) The
accuracy of each layer after training for 150 epochs.

8



Published as a conference paper at ICLR 2025

4.2 COMPARISONS OF DIFFERENT METHODS

We employ three CNN models to evaluate our method: a 4-layer tiny CNN, a VGG-like 14-layer CNN,
and a 17-layer ResNet-like CNN (He et al., 2016), as detailed in the Appendix A. Our comparisons
encompass both non-FF and FF methods for a comprehensive analysis. Non-FF brain-inspired
methods include advanced BP-free approaches such as PEPITA (Dellaferrera & Kreiman, 2022),
DTP (Ernoult et al., 2022), rec-LRA (Ororbia et al., 2023), SoftHebb (Journé et al., 2023), F3 (Flügel
et al., 2023), and Signal Propagation(SP) (Kohan et al., 2024). We also compare with block-wise BP
method: HPFF(Su et al., 2024), SEDONA(Pyeon et al., 2021), and BWBPF(Cheng et al., 2024). In
the FF methods, we consider FF (Hinton, 2022), SymBa (Lee & Song, 2023), CaFo (Zhao et al., 2023),
Trifecta (Dooms et al., 2023), and CwComp (Papachristodoulou et al., 2024). Since layer-wise FF-
based methods operate on shallow networks, we reproduce and extend CwComp (Papachristodoulou
et al., 2024) into the same 14-layer CNNs for comparison. Results are summarized in Table 1. Our
method outperforms FF-based methods in CIFAR10 and MNIST with shallow networks. The training
curves on CIFAR10 with FF-based methods in shallow networks are shown in Figure 5(a). As we
extend to 14 and 17 layers, our performance improves, whereas CwComp (Papachristodoulou et al.,
2024) exhibits overfitting, leading to performance decline. Therefore, our method extended the
capability of FF to train in deeper models. The results indicate that our design of mean goodness
enhances the performance of FF, making it more suitable for deep CNN models. However, FF-based
methods train greedily through classification objectives at each layer, indirectly extracting features.
This results in weaker feature learning capabilities compared to BP, which directly learns intermediate
layer features. Although Figure 5(b) shows that our method’s performance is close to BP without
data augmentation, the improvement is limited after data augmentation, as detailed in Appendix C,
leading to a larger gap with BP. These points are also directions worth exploring further.

Furthermore, we conduct a more challenging experiment on CIFAR100, as shown in Table 2. ResNet-
CHx3 is a variant of ResNet with triple the number of channels. Table 2 highlights the disparity
between DeeperForward and BP on ResNet. The significant improvement of ResNet-CHx3 indicates
that an inadequate allocation of neurons to each class results in a sharp decline in performance.

4.3 PERFORMANCE OF SIGNAL INTEGRATING AND PRUNING MODULE

Table 3: Performance on Signal Integrating and Pruning (SIP) using a 17-layer ResNet. (Start, End)
denotes the selected layers by SIP, where Start and End represent start layer and end layer.

CIFAR10 MNIST F-MNIST
ALL LAYERS 86.45 99.68 93.08
AFTER SIP 86.51 99.67 93.23

(Start, End) (2,17) (2,11) (3,16)

We validate our pruning strategy using the Signal Integrating and Pruning (SIP) module by comparing
the performance with a similar strategy in FF (Hinton, 2022) that accumulates all the goodness
as the final result. In Table 3, we select the best trial results using ResNet for the SIP experiment
comparison, showing that SIP can improve performance in most cases. Interestingly, experiments on
simpler tasks such as MNIST tend to retain fewer layers compared to more challenging tasks like
CIFAR10. This observation shows the ability to adapt its depth based on the complexity of the task.

4.4 ABLATION STUDY

Table 4: Ablation study on CIFAR-10, showing the mean performance from five experimental trials.

MEAN SIP RESIDUAL ACCURACY
✓ ✓ 79.38

✓ 81.02
✓ ✓ 81.16
✓ ✓ 86.08
✓ ✓ ✓ 86.22

This method introduces mean goodness, the Signal Integrating and Pruning (SIP) module, and
a non-learned residual structure to optimize performance. To evaluate the contributions of each
component, we conducted ablation experiments using a 17-layer ResNet architecture on CIFAR10,
averaging results from five trials, as shown in Table 4. When mean goodness is omitted, we utilize

9



Published as a conference paper at ICLR 2025

squared goodness and normalization of the vector length. For comparison with SIP, we directly sum
all layers as the final output. The removal of the residual structure involves excluding the shortcut
connections. To provide a more comprehensive analysis, Appendix I discusses the differences in
deactivated neurons between mean and square goodness.

The experimental results show that mean goodness achieves a substantial performance increase
of 6.84% compared to squared goodness within the same network. The SIP module provides a
slight performance boost while allowing for optimization of network size. The residual structure
significantly enhances performance by integrating features at various levels, resulting in a more
comprehensive feature representation. Figures 5 (c) and (d) analyze the training curves and local
classification performance with and without the residual structure, demonstrating that the residual
connections facilitate improved learning in deeper layers.

4.5 PARALLEL PERFORMANCE OF DEEPERFORWARD

We evaluate the performance of model parallel strategy through time-consumption training on
CIFAR10, using 1, 2, and 4 GPUs. In multi-GPU case, layers are evenly grouped and assigned to
different GPUs. As a point of comparison, we use BP with the widely adopted distributed data parallel
(DDP) (Li et al., 2020) as a baseline. As shown in Table 5, our method outperforms BP with DDP in
terms of training time. Notably, our approach achieves a higher speedup with 2 GPUs, as inter-GPU
communication occurs only between layers on different devices, unlike DDP, where communication
involves the entire network. However, with 4 GPUs, the speedup is lower than DDP. We observed
a drop in GPU utilization, caused by imbalanced computation across layers, leading to pipeline
program bottlenecks. Future work could explore advanced pipeline techniques for optimization. This
study demonstrates the feasibility and potential of model parallelism in our method.

Table 5: Training time per epoch on CIFAR10 (Speedup rate relative to 1 GPU in parentheses).

METHOD 1 GPU 2 GPUS 4 GPUS
BP-DDP 51.98S (1.0×) 32.70S (1.59×) 19.92S (2.61×)

OURS 36.38S (1.0×) 20.77S (1.75×) 14.68S (2.48×)

Moreover, training on CIFAR10 with a batch size of 128 using the memory-saving strategy consumes
a minimum of 618.64MB of memory in practice, while BP in ResNet18 requires 1314.49MB.

Additionally, we experiment with deeper ResNet models with 33 and 100 layers but do not observe
significant performance improvements, as detailed in Appendix D. Moreover, Appendix E provides a
comparison of classification performance between different convolutional layers and fully connected
layers. Appendix F presents t-SNE (Van der Maaten & Hinton, 2008) visualizations of the results on
the MNIST dataset.

5 CONCLUSION

This paper presents the DeeperForward algorithm, extending the Forward-Forward approach to deeper
networks with significant performance enhancements. We introduce a novel goodness design, com-
bining mean goodness and layer normalization, which addresses key issues in the effective training of
deep networks: feature scaling, redundant normalization, and deactivated neurons. Additionally, we
propose a model parallel strategy to significantly improve training efficiency and a memory-saving
strategy suitable for resource-constrained environments. Experimental results demonstrate that our
method substantially enhances the depth and performance of FF-based algorithms, highlighting the
potential of FF in terms of performance and parallelism.

Limitations. DeeperForward, similar to FF, relies solely on classification information for learning,
lacking direct representation learning capabilities. This results in slower convergence and weaker
generalization. Future research should focus on enhancing feature extraction capabilities to address
these limitations. Additionally, as the number of categories increases, the convolutional structure
grows, making it challenging to implement on extensive datasets. Future work should aim to develop
more general structures that avoid excessively large models and multiple forward passes in FF.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China under Grant
62176163; the Shenzhen Higher Education Stable Support Program General Project under Grant
20231120175215001; and the Science and Technology Foundation of Shenzhen under Grant
JCYJ20210324094602007.

REFERENCES

Md Atik Ahamed, Jin Chen, and Abdullah Al Zubaer Imran. FFCL: Forward-forward contrastive
learning for improved medical image classification. In Medical Imaging with Deep Learning, short
paper track, 2023.

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. Advances in neural information processing systems, 32, 2019.

Ege Aktemur, Ege Zorlutuna, Kaan Bilgili, Tacettin Emre Bok, Berrin Yanikoglu, and Suha Orhun
Mutluergil. Going forward-forward in distributed deep learning. arXiv preprint arXiv:2404.08573,
2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lilli-
crap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
Advances in neural information processing systems, 31, 2018.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of CNNs.
In International Conference on Machine Learning, pp. 736–745. PMLR, 2020.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Synaptic pruning in development: a computational
account. Neural computation, 10(7):1759–1777, 1998.

Anzhe Cheng, Heng Ping, Zhenkun Wang, Xiongye Xiao, Chenzhong Yin, Shahin Nazarian, Mingxi
Cheng, and Paul Bogdan. Unlocking deep learning: A bp-free approach for parallel block-wise
training of neural networks. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4235–4239, 2024. doi: 10.1109/ICASSP48485.2024.
10447377.

Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals, and
Koray Kavukcuoglu. Understanding synthetic gradients and decoupled neural interfaces. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, pp. 904–912. PMLR, 2017.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit
assignment problem without a backward pass. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, pp. 4937–4955. PMLR, 2022.

Thomas Dooms, Ing Jyh Tsang, and Jose Oramas. The trifecta: Three simple techniques for training
deeper forward-forward networks, 2023. URL https://arxiv.org/abs/2311.18130.

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina
Rish, Blake Richards, and Yoshua Bengio. Towards scaling difference target propagation by
learning backprop targets. In International Conference on Machine Learning, pp. 5968–5987.
PMLR, 2022.

Katharina Flügel, Daniel Coquelin, Marie Weiel, Charlotte Debus, Achim Streit, and Markus Götz.
Feed-forward optimization with delayed feedback for neural networks, 2023. URL https:
//arxiv.org/abs/2304.13372.

11

https://arxiv.org/abs/2311.18130
https://arxiv.org/abs/2304.13372
https://arxiv.org/abs/2304.13372


Published as a conference paper at ICLR 2025

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cogni-
tive science, 11(1):23–63, 1987.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297–304. JMLR Workshop and Conference Proceedings,
2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology press,
2005.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.

Geoffrey E Hinton, Terrence J Sejnowski, et al. Learning and relearning in boltzmann machines.
Parallel distributed processing: Explorations in the microstructure of cognition, 1(282-317):2,
1986.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, pp. 1627–1635. PMLR, 2017.

Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep
learning without feedback. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=8gd4M-_Rj1.

Anil Kag and Venkatesh Saligrama. Training recurrent neural networks via forward propagation
through time. In International Conference on Machine Learning, pp. 5189–5200. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Adam Kohan, Edward A. Rietman, and Hava T. Siegelmann. Signal propagation: The framework for
learning and inference in a forward pass. IEEE Transactions on Neural Networks and Learning
Systems, 35(6):8585–8596, 2024. doi: 10.1109/TNNLS.2022.3230914.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pp. 498–515. Springer,
2015.

Heung-Chang Lee and Jeonggeun Song. Symba: Symmetric backpropagation-free contrastive learn-
ing with forward-forward algorithm for optimizing convergence. arXiv preprint arXiv:2303.08418,
2023.

12

https://openreview.net/forum?id=8gd4M-_Rj1


Published as a conference paper at ICLR 2025

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Siegrid Löwel and Wolf Singer. Selection of intrinsic horizontal connections in the visual cortex by
correlated neuronal activity. Science, 255(5041):209–212, 1992.

Urte Neniskyte and Cornelius T Gross. Errant gardeners: glial-cell-dependent synaptic pruning and
neurodevelopmental disorders. Nature Reviews Neuroscience, 18(11):658–670, 2017.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Alexander Ororbia. Brain-inspired machine intelligence: A survey of neurobiologically-plausible
credit assignment. 12 2023. doi: 10.31219/osf.io/xukqf.

Alexander Ororbia and Daniel Kifer. The neural coding framework for learning generative models.
Nature communications, 13(1):2064, 2022.

Alexander Ororbia and Ankur Mali. The predictive forward-forward algorithm. arXiv preprint
arXiv:2301.01452, 2023.

Alexander G Ororbia, Ankur Mali, Daniel Kifer, and C Lee Giles. Backpropagation-free deep
learning with recursive local representation alignment. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 9327–9335, 2023.

Andreas Papachristodoulou, Christos Kyrkou, Stelios Timotheou, and Theocharis Theocharides. In-
troducing Convolutional Channel-wise Goodness in Forward-Forward Learning. In Proceedings of
the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN), Bruges, Belgium, 2023. i6doc.com publ. ISBN 978-2-87587-088-9. doi:
10.14428/esann/2023.ES2023-121. URL https://doi.org/10.14428/esann/2023.
ES2023-121. ESANN 2023 proceedings, Bruges (Belgium) and online event, 4-6 October 2023.
Available from http://www.i6doc.com/en/.

Andreas Papachristodoulou, Christos Kyrkou, Stelios Timotheou, and Theocharis Theocharides.
Convolutional channel-wise competitive learning for the forward-forward algorithm. Proceedings
of the AAAI Conference on Artificial Intelligence, 38(13):14536–14544, Mar. 2024. doi: 10.
1609/aaai.v38i13.29369. URL https://ojs.aaai.org/index.php/AAAI/article/
view/29369.

Myeongjang Pyeon, Jihwan Moon, Taeyoung Hahn, and Gunhee Kim. {SEDONA}: Search for
decoupled neural networks toward greedy block-wise learning. In International Conference on
Learning Representations, 2021.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Junhao Su, Chenghao He, Feiyu Zhu, Xiaojie Xu, Dongzhi Guan, and Chenyang Si. Hpff: Hierar-
chical locally supervised learning with patch feature fusion. arXiv preprint arXiv:2407.05638,
2024.

13

https://doi.org/10.14428/esann/2023.ES2023-121
https://doi.org/10.14428/esann/2023.ES2023-121
https://ojs.aaai.org/index.php/AAAI/article/view/29369
https://ojs.aaai.org/index.php/AAAI/article/view/29369


Published as a conference paper at ICLR 2025

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends in
cognitive sciences, 23(3):235–250, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Gongpei Zhao, Tao Wang, Yidong Li, Yi Jin, Congyan Lang, and Haibin Ling. The cascaded forward
algorithm for neural network training. arXiv preprint arXiv:2303.09728, 2023.

14



Published as a conference paper at ICLR 2025

A NETWORK ARCHITECTURES

We perform experiments using the network architectures depicted in Figure 6, which include Tiny-
CNN, CNN, and ResNet. TinyCNN is a shallow 4-layer CNN designed for performance comparison
with FF-related methods that are effective in shallow networks. CNN adopts a VGG-like (Simonyan
& Zisserman, 2014) architecture with 14 layers, while ResNet is a modified version of ResNet18 (He
et al., 2016) with 17 layers and incorporates shortcut connections. CNN and ResNet are specifically
chosen to assess the efficacy of our method in training deep models.

𝐇 𝟐
×
𝐖 𝟐
×
𝟏
𝟒
𝟎

𝐇
×
𝐖
×
𝐂

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

7
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

7
0

Block 1

A
v
er

a
g
e 

p
o
o
li

n
g
: 
𝟐
×
𝟐

, 
s=

2

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

1
4
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

1
4
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

1
4
0

Block 2

A
v
er

a
g
e 

p
o
o
li

n
g
: 
𝟐
×
𝟐

, 
s=

2

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

2
8
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

2
8
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

2
8
0

Block 3

A
v
er

a
g
e 

p
o
o
li

n
g
: 
𝟐
×
𝟐

, 
s=

2

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

5
6
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

5
6
0

C
W

-C
o

n
v

:
𝟑
×
𝟑

, 
s=

1
, 

p
=

1
, 
c=

5
6

0

Block 4

A
v
er

a
g
e 

p
o
o
li

n
g
: 
𝟐
×
𝟐

, 
s=

2

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

5
6
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

5
6
0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

5
6
0

Block 5

𝐇
×
𝐖
×
𝟕
𝟎

𝐇 𝟒
×
𝐖 𝟒
×
𝟐
𝟖
𝟎

𝐇 𝟖
×
𝐖 𝟖
×
𝟓
𝟔
𝟎

C
W

-C
o
n

v
:
𝟓
×
𝟓

, 
s=

1
, 
p

=
2
, 
c=

1
0
0

C
W

-C
o
n

v
:
𝟓
×
𝟓

, 
s=

1
, 
p

=
2
, 
c=

 2
0
0

C
W

-C
o

n
v

:
𝟑
×
𝟑

, 
s=

1
, 

p
=

1
, 
c=

4
0

0

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

 4
0
0

A
v
er

a
g
e 

p
o
o
li

n
g
: 
𝟐
×
𝟐

, 
s=

2

A
v
er

a
g
e 

p
o
o
li

n
g
: 
𝟐
×
𝟐

, 
s=

2

𝐇
×
𝐖
×
𝐂

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=

1
0
0

R
es

id
u

a
l 

B
lo

ck
 1

: 
S

 =
 1

R
es

id
u

a
l 

B
lo

ck
 2

: 
S

 =
 2

R
es

id
u

a
l 

B
lo

ck
 3

: 
S

 =
 2

R
es

id
u

a
l 

B
lo

ck
 4

: 
S

 =
 2

𝐇
×
𝐖
×
𝟏
𝟎
𝟎

𝐇
×
𝐖
×
𝟐
𝟎
𝟎

𝐇 𝟐
×
𝐖 𝟐
×
𝟒
𝟎
𝟎

𝐇 𝟒
×
𝐖 𝟒
×
𝟖
𝟎
𝟎

𝐇
×
𝐖
×
𝐂

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

s,
 p

=
1
, 
c=
𝐂
𝐢𝐧

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=
𝐂
𝐢𝐧

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=
𝐂
𝐢𝐧

C
W

-C
o
n

v
:
𝟑
×
𝟑

, 
s=

1
, 
p

=
1
, 
c=
𝐂
𝐢𝐧

C

𝐇
𝐢𝐧
×
𝐖
𝐢𝐧
×
𝐂
𝐢𝐧

𝐇
𝐢𝐧 𝐬
×
𝐖
𝐢𝐧 𝐬
×
𝟐
𝐂
𝐢𝐧

Residual Block (s = 1 or 2)

𝐇
𝐢𝐧 𝐬
×
𝐖
𝐢𝐧 𝐬
×
𝐂
𝐢𝐧

: addition C : concatenation

TinyCNN

CNN

ResNet
Avgpool (if s=2)

Figure 6: The details of network architectures for the experiments. (Top): TinyCNN is a 4-layer
shallow CNN with a comparable number of parameters to other FF-related algorithms. (Mid): CNN
represents a VGG-like architecture with 14 layers. (Bottom): Our ResNet architecture is modified
from ResNet18, and its residual block structure is illustrated on the right.

15



Published as a conference paper at ICLR 2025

B HYPERPARAMETER SETTING

In our method, we utilize Adam (Kingma & Ba, 2014) with a cosine annealing schedule (Loshchilov
& Hutter, 2016), reducing the learning rate from 0.08 to 0.008, with a weight decay of 0.0005.
Dropout with a rate of 20% is introduced after all hidden states. The models are initialized using
He initialization (He et al., 2015). Training is conducted for 150 epochs with a batch size of 128
for all datasets. The experiment with original goodness in Table 4 uses the learning rate from 0.1
to 0.01 without dropout to have a better performance. The reproduced experiment of CwComp
(Papachristodoulou et al., 2024) uses the same setting original paper.

C DATA AUGMENTATION EXPERIMENT

We conduct experiments on CIFAR10 with different augmentation settings based on the ResNet
mentioned above architecture. We trained the model using the AdamW optimizer for 1000 epochs,
starting with a learning rate of 0.08 and halving it every 100 epochs. The experiment without
augmentation uses a dropout rate of 20%. There are two augmentation experiments, including
standard augmentation and heavy augmentation. The standard augmentation contains random
horizontal flips and random crops for a size of 32 with a padding of 4. The enhanced augmentation
uses 4 kinds of augmentation techniques, including random horizontal flips, random rotation with a
degree of 10, random scaling from 0.8 to 1.2, and color jittering by up to 0.2 shifting on brightness,
contrast, saturation, and hue. Note that the experiments with augmentation do not use dropout,
because, experimentally, the dropout causes the convergence too slow with data augmentation.

The training curve on the test set is depicted in Figure 7, and the final performance is listed in
Table 6. As shown in Table 6, standard augmentation has no significant impact on performance, while
enhanced augmentation improves performance from 87.16% to 88.72%. However, compared to the
performance gains from data augmentation in traditional BP, the improvement with our method is
less pronounced. Figure 7 exhibits that training without augmentation converges faster. At the 150th
epoch, no augmentation outperforms standard and enhanced augmentation. This result demonstrates
that DeeperForward is not sensitive to data augmentation.

0 100 200 300 400 500 600 700 800 900 1000

Epoch

60

65

70

75

80

85

90

A
cc

ur
ac

y 
(%

)

w/o augmentation
stardard augmentation
enhanced augmentation

Figure 7: Comparison in test accuracy for data augmentation experiments on CIFAR10 for 1000
epochs. (Without augmentation): Training on original CIFAR10 with a dropout rate of 20%.
(Standard augmentation): Standard data augmentation without dropout using random horizontal
flips and random crops. (Enhanced augmentation): Enhanced data augmentation without dropout
using random horizontal flips, random rotation of 10 degrees, random scaling from 0.8 to 1.2, and
color jitter.

16



Published as a conference paper at ICLR 2025

Table 6: Performances of different augmentation on CIFAR10.

NO AUG. STANDARD AUG. ENHANCED AUG.

TEST ACC. 87.16 87.47 88.72

D SCALING EXPERIMENT

To evaluate the performance of our method in deeper models, we tested it using deeper ResNet (He
et al., 2016) models on CIFAR-10. We modified ResNet34 and ResNet101 by removing their fully
connected layers, renamed as ResNet33 and ResNet100, and replacing the residual structures with
those described in Figure 3. The first convolutional layer was adjusted to have a kernel size of 3 and
100 channels. ResNet33, like ResNet18, uses two kernel size 3 layers as the basic residual block,
while ResNet100 employs a bottleneck residual block with three convolutional layers of kernel sizes
1, 3, and 1, where the third layer’s output channels are four times the target number of channels. All
models retain the original four stages, with corresponding channel numbers {100, 200, 400, 800},
each stage consisting of stacked residual blocks. In the ResNet33 structure, the four stages contain
{3, 4, 6, 3} blocks, while ResNet100 contains {3, 4, 23, 3} blocks.

Table 7 presents the performance of various network depths on CIFAR-10, including the ResNet17
structure described in the main text. The experiments were conducted with the experimental setting
mentioned in Section 4 and Appendix B and trained for 150 epochs on CIFAR-10. The results show
that the ResNet17 model performs the best, while increasing the network depth to 33 layers did not
yield better results. The ResNet100, which uses a bottleneck structure, performed worse. Tracking
each layer’s performance revealed significant drops after each 1×1 convolution layer, indicating that
our method is unsuitable for the bottleneck structure. Additionally, the SIP layer retention results
show that all layers were retained in ResNet33, whereas in ResNet100, only 32 layers were retained,
with the latter layers being discarded due to poor performance.

Table 7: Performance on CIFAR10 for scaling experiments.

RESNET17 RESNET33 RESNET100

ACCURACY 86.22 85.43 83.06

17



Published as a conference paper at ICLR 2025

E EXPERIMENTS FOR DIFFERENT TYPES OF LAYERS

Our work uses channel-wise convolution (CW-Conv) for classification instead of fully connected (FC)
layers. The experiments for different types of layers aim to compare the classification performance
of different layer types, including a fully connected (FC) layer and two convolutional layers with
different kernel sizes. The residual structure experiment’s favorable results in deep layers of ResNet
confirm the feasibility of classifying representations from these layers. Specifically, we replace the
last 4 layers of ResNet with the layers to be tested and evaluate their local performance, as illustrated
in Figure 8. The convolutional layer is the channel-wise convolution mentioned in the main body.
The FC layer differs from the typical linear classifier, producing 1000 outputs divided equally into 10
groups for the 10 classes. Each class utilizes the mean of outputs from the corresponding group as its
classification score. Using a general linear classifier with 10 outputs yields poor convergence.

Table 8 demonstrates that CW-Conv outperforms the FC layer significantly. Surprisingly, the
experiment reveals that 3×3 kernels with fewer weights exhibit better performance. These findings
suggest that the fully connected layer is superfluous in our method.

Table 8: Performances on different types of layers on CIFAR10.

FC LAYER CONV 5×5 CONV 3×3
ACCURACY 76.92 82.85 83.25

CW-Conv: 𝟑 × 𝟑, s=1, p=1, c=100

Residual Block 1: S = 1

Residual Block 2: S = 2

Residual Block 3: S = 2

𝟑𝟐 × 𝟑𝟐 × 𝟏𝟎𝟎

𝟑𝟐× 𝟑𝟐 × 𝟐𝟎𝟎

𝟏𝟔 × 𝟏𝟔 × 𝟒𝟎𝟎

𝟖 × 𝟖 × 𝟖𝟎𝟎

𝟑𝟐 × 𝟑𝟐 × 𝟑

CW-Conv:

𝟑 × 𝟑, s=1, p=1, 

c=1000

CW-Conv:

𝟓 × 𝟓, s=1, p=2, 

c=1000

FC layer:

𝟏𝟐𝟖𝟎𝟎 × 𝟏𝟎𝟎𝟎

Flatten

Group mean

Test Layer

𝟏𝟐𝟖𝟎𝟎

𝟏𝟎𝟎𝟎

𝟏𝟎

Network Architecture Layer Type

FC Layer

Conv 𝟑 × 𝟑

Conv 𝟓 × 𝟓

Figure 8: The network architecture setting of layer type experiments. (Left): The network
architecture is modified by the ResNet model, replacing the last residual block with 3 types of layers.
(Right): 3 types of layer architectures in this experiment, including an FC layer, a 3× 3 channel-wise
convolution, and a 5× 5 channel-wise convolution.

18



Published as a conference paper at ICLR 2025

F T-SNE VISUALIZATION

T-SNE (Van der Maaten & Hinton, 2008), short for t-distributed stochastic neighbor embedding,
is a dimensionality reduction technique commonly used for visualizing high-dimensional data in
lower-dimensional space. It emphasizes the preservation of local structure, making it effective for
revealing underlying patterns and clusters within complex datasets.

In our experimental setup, we employed t-SNE to analyze the MNIST dataset. We selected t-SNE
for its capability to capture intricate relationships between data points and represent them in a
lower-dimensional space while preserving their local structures. The t-SNE analysis of the MNIST
representation was validated using the hidden states of the 11th layer before group normalization in
ResNet, which represents the last layer after the pruning operation conducted by the signal integrating
and pruning (SIP) module.

The t-SNE visualization result is depicted in Figure 9. Before model training, the point clusters of
each class in the MNIST dataset overlapped on boundaries. However, after training, a noticeable
transformation occurred: the clusters became more distinctly separated, with discernible boundaries
between them. This evolution underscores the model’s ability to learn discriminative features and
improve class separability.

Our utilization of t-SNE provided valuable insights into the dynamics of the MNIST dataset and
highlighted the efficacy of our model in enhancing the separability of MNIST.

Initialization Trained

Figure 9: The t-SNE visualization of the MNIST representation at the hidden state of the 11th layer
before group normalization in ResNet trained on MNIST, both before (initialization) and after training
(trained). Each color corresponds to a different class.

19



Published as a conference paper at ICLR 2025

G IMPLEMENTATION OF MODEL PARALLEL STRATEGY

Without the limitation of update locking, our method enables a model parallel strategy using pipeline
programming. Pipeline programming is a parallel computing paradigm where complex tasks are
divided into a series of independent and sequential stages. Each stage performs a specific task and
passes its results to the next stage. This programming model resembles a factory assembly line,
where each worker is responsible for completing a particular task in the process without waiting
for the completion of the previous task. Tasks are divided into multiple stages that can execute
simultaneously, thus speeding up the overall processing. By employing pipeline programming, we
can enhance the efficiency and performance of computer systems, achieving faster data processing and
reduced response times. The advantages of this programming model include parallelized processing,
reduced latency, increased throughput, and better utilization of hardware resources.

Figure 10 illustrates our method’s model parallel strategy implemented using pipeline programming
based on multi-threading techniques. The network is divided into a series of independent and
sequential threads. Each layer is organized into a thread to execute local optimization and generate
data for the subsequent layer. As depicted in Figure 10, we employ first-in-first-out (FIFO) queues
for communication among threads. The training set serves as the first FIFO designated for the initial
layer. Each layer independently executes its specific task without waiting for the completion of other
layers. This approach enables high parallelism, enhancing throughput, and optimizing hardware
resource utilization. Algorithm 1 provides detailed insights into the implementation of each thread’s
functionality.

For clearer presentation, we simplify channel-wise convolution to the following equation:

(Z, ŷ) = CWConv(X;θ, G), (14)

where ŷ and Z represent the classification output by the channel-wise convolution and the features
extracted via layer normalization, respectively. X is the input, θ denotes the convolutional kernel
parameters, and G is the number of classes.

CW-Conv …
Fin …

FIFO FIFO

…
FIFO Fsin

Fout

Fsout …
FIFO

ℒCE∇𝜽

Thread l

CW-Conv …
Fin

FIFO

…
FIFO Fsin

Fout

Fsout

ℒCE∇𝜽

Thread 𝒍 − 𝟏

… …

Figure 10: The implementation of the model parallel strategy of our method using pipeline program-
ming based on the multi-threading technique. The network is segmented into a series of independent
sequential threads, with each layer arranged within a thread to execute local optimization and produce
data for the subsequent layer. Communication among threads is facilitated by first-in-first-out (FIFO)
queues. It is important to note that we use the training set as the first FIFO, designated for the initial
layer.

20



Published as a conference paper at ICLR 2025

Algorithm 1 A thread for local layer updates
1: Input: Input FIFO Fin, output FIFO Fout, FIFO for shortcut input Fsin, FIFO for shortcut output

Fsout, parameters of convolutional kernel θ, number of class G, learning rate η, number of
minibatch N .

2: for i = 1, 2, ..., N do
3: Wait for Fin not empty
4: (X, y)← Fin // pop data from Fin into (X, y)
5: (Z, ŷ) = CWConv(X;θ, G)
6: // residual structure
7: if residual structure is existed then
8: Wait for Fsin not empty
9: Zr ← Fsin // pop data from Fsin into Zr

10: if Zr and Z differ in spatial dimension then
11: Zr = AvgPool(Zr) // downsampling Zr to match Z in spatial dimension
12: end if
13: if concatenation type then
14: Z = Concat(Z,Zr)
15: else
16: Z = Z + Zr

17: end if
18: end if
19: if output connect to a shortcut then
20: Fsout ← Z // push Z into Fsout

21: end if
22: Fout ← (Z, y) // push (Z, y) into Fout

23: // update layer
24: ∇θ = ∇θLCE(ŷ, y)
25: θ = θ − η · ∇θ
26: end for

21



Published as a conference paper at ICLR 2025

H MEMORY-SAVING STRATEGY

Due to the update locking problems, BP requires a large amount of memory to store intermediate states
throughout the process. Without this constraint, our method can employ a memory-saving strategy,
efficiently releasing memory once the update for a layer is completed, as shown in Algorithm 2. In
this strategy, the memory requirement is determined by the layer with the largest memory demand.
This memory-saving strategy is particularly suitable for scenarios with constrained memory resources,
such as edge computing.

Algorithm 2 DeeperForward
1: Input: Dataset B ∈ {B1,B2, ...,BN}, Bi = (Xi, yi), number of

layers L, number of classes G, learning rate η.
2: for i = 1, 2, ..., N do
3: (Z(0), y) = Bi
4: for l = 1, ..., L do
5: (Z(l), ŷ(l)) = CWConv(Z(l−1);θ(l), G) Eq. 14
6: ∇θ(l) = ∇θ(l)LCE(ŷ(l), y) Eq. 13
7: θ(l) = θ(l) − η · ∇θ(l)

8: Release memory of Z(l−1), ŷ(l) and ∇θ(l)

9: end for
10: end for

22



Published as a conference paper at ICLR 2025

I DEACTIVATION NEURONS RATIO

To better explore the improvements of our method on the deactivated neurons issue, we conducted
experiments and analysis on the deactivated neurons ratio across different layers. The experiments
compared our combination of mean goodness and layer normalization with the original square
goodness and normalization of the vector length, both tested on the same 17-layer ResNet structure in
the CIFAR10 dataset. Both networks were trained with the same settings for 150 epochs on CIFAR10.
The average deactivated neurons ratio for each layer was tested on the CIFAR10 test set, as shown in
the Figure 11.

The results show that our mean goodness design indeed significantly reduces the deactivated neurons
ratio. Specifically, in the shallow layers, square goodness deactivates a large number of neurons
by focusing on outliers. Moreover, we observed that the mean goodness deactivated neurons ratio
increases as the depth of the network increases. This phenomenon aligns with our observation
that high-level feature matching becomes sparser in deeper layers, which also explains why deeper
networks (such as ResNet33 and ResNet100 in Appendix D) do not show improved performance —
extracting higher-level features from high-level features becomes increasingly difficult.

This experiment confirms that our method effectively addresses the deactivated neurons issue present
in the original FF. Additionally, we further observe that high-level features extracted in deeper layers
are relatively sparse, limiting the extraction of higher-level features. This results in deeper network
layers failing to achieve optimal performance, which is a topic worthy of further exploration.

1 3 5 7 9 11 13 15 17

Layer

40

50

60

70

80

90

100

D
ea

ct
iv

at
e 

R
at

io
 (

%
)

Deactivated Ratio of Mean and Square Goodness

Mean(Ours)
Square

Figure 11: Comparison of mean goodness and square goodness in average deactivated neurons ratio
per layer in 17-layer ResNet on CIFAR10’s test set.

23



Published as a conference paper at ICLR 2025

J IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

24


	Introduction
	Related Work
	Conventional Brain-inspired Learning Rules
	Background of Forward-Forward Algorithm

	Methodology
	Mean Goodness
	Architecture for DeeperForward
	DeeperForward Training Scheme

	Experiment
	Datasets and Experiment Settings
	Comparisons of Different Methods
	Performance of Signal Integrating and Pruning Module
	Ablation Study
	Parallel Performance of DeeperForward

	Conclusion
	Network Architectures
	Hyperparameter Setting
	Data Augmentation Experiment
	Scaling Experiment
	Experiments for Different Types of Layers
	T-SNE Visualization
	Implementation of Model Parallel Strategy
	Memory-saving Strategy
	Deactivation Neurons Ratio
	Impact Statements

