
A Data and Software Availability532

A.1 Data Availability533

CryoBench datasets are deposited on Zenodo at DOI: 10.5281/zenodo.11629428. We include the534

downsampled images (D = 128) analyzed in this study in .mrcs, .txt, and .star file formats,535

along with CTFs and pose data in pickle files. We also include the consensus volume and mask536

used for FSC computation. Full resolution images (D = 256, 384) and ground truth PDB files and537

volumes will be deposited to EMPIAR [42]. We provide the datasets under the Creative Commons538

Attribution 4.0 International license.539

A.2 Software Availability540

Scripts for simulating cryo-EM images and computing metrics are available at https://github.541

com/ml-struct-bio/CryoBench.542
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B Dataset Design543

B.1 Generating IgG-1D544

Starting from an atomic model of the human immunoglobulin G (IgG) antibody (PDB: 1HZH),545

conformational heterogeneity is produced by rotating a dihedral angle connecting one of the fragment546

antibody (Fab) domains (Fig. 2(a)), simulating a simple one-dimensional continuous circular motion.547

Specifically, we rotate the backbone ψ angle of residue 230 in the heavy chain H. This process548

yields 100 atomic models approximating the continuous dihedral rotation (360 degrees, 3.6-degree549

intervals). For each atomic model, the molmap command in ChimeraX [43] was used to generate the550

corresponding density volume at a resolution of 3 Å with a bounding box of dimension D = 256551

pixels and a pixel size of 1.5 Å. Poses in Eq. 1 were uniformly sampled from R ∈ SO(3) and t was552

sampled uniformly from [20, 20]2 pixels. For the CTF, the accelerating voltage was set at 300 kV,553

spherical aberration at 2.7 mm, and amplitude contrast at 0.1. Defocus parameters were sampled554

from EMPIAR-11247 [44]. Noise was added at a signal-to-noise (SNR) ratio of 0.01. See Section555

B.6 for a definition of the SNR. We simulate 1,000 images for each conformation to produce a dataset556

of 100k images. The dataset is then downsampled to D = 128 by Fourier cropping.557

B.2 Generating IgG-RL558

For IgG-RL, we identified a sequence of 5 residues (D232, K235, T236, H237, T238) from 1HZH559

PDB as the linker and generated 100 random realizations of its structure by sampling the backbone560

dihedral angles according to the Ramachadran distributions of disordered peptides, using rejection561

sampling to eliminate structures with steric clashes. For each atomic model, the molmap command in562

ChimeraX [43] was used to generate the corresponding density volume at a resolution of 3 Å with a563

bounding box of dimension D = 256 pixels and a pixel size of 1.5 Å. Poses in Eq. 1 were uniformly564

sampled from R ∈ SO(3) and t was sampled uniformly from [20, 20]2 pixels. For the CTF, the565

accelerating voltage was set at 300 kV, spherical aberration at 2.7 mm, and amplitude contrast at 0.1.566

Defocus parameters were sampled from EMPIAR-11247 [44]. Noise was added at a signal-to-noise567

(SNR) ratio of 0.01. We simulate 1,000 images for each conformation to produce a dataset of 100k568

images. The dataset is then downsampled to D = 128 by Fourier cropping.569

B.3 Generating Ribosembly570

For Ribosembly, as explained in the section 3, we used the bacterial ribosome assembly states571

that describes 16 different atomic models. We first centered all atomic models using the move in572

ChimeraX. Subsequently, the models were aligned to the last state (PDB: 8C8X) using matchmaker573

in ChimeraX. For each atomic model, the molmap command in ChimeraX [43] was used to generate574

the corresponding density volume at a resolution of 3 Å with a bounding box of dimension D = 256575

pixels and a pixel size of 1.5 Å. Poses in Eq. 1 were uniformly sampled from R ∈ SO(3) and t was576

sampled uniformly from [20, 20]2 pixels. For the CTF, the accelerating voltage was set at 300 kV,577

spherical aberration at 2.7 mm, and amplitude contrast at 0.1. Defocus parameters were sampled from578

EMPIAR-10076 [45]. Noise was added at a signal-to-noise (SNR) ratio of 0.01. We simulate 1,000579

images for each conformation to produce a dataset of 16k images. The dataset is then downsampled580

to D = 128 by Fourier cropping.581

PDB: 8C9C, 8C9B, 8C9A, 8C99, 8C98, 8C97, 8C96, 8C95, 8C94, 8C93, 8C92, 8C91, 8C90, 8C8Z,582

8C8Y, 8C8X583

B.4 Generating Tomotwin-100584

We created Tomotwin-100 from different types of proteins as explained in the section 3. We centered585

all atomic models using the move in ChimeraX. Then, the molmap command in ChimeraX [43] was586

used to generate the corresponding volume map. For each atomic model, the molmap command in587

ChimeraX [43] was used to generate the corresponding density volume at a resolution of 3 Å with a588

bounding box of dimension D = 384 pixels and a pixel size of 1.5 Å. Poses in Eq. 1 were uniformly589
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Figure 8: Tomotwin-100. All 100 G.Ts of Tomotwin-100 dataset.

sampled from R ∈ SO(3) and t was sampled uniformly from [20, 20]2 pixels. For the CTF, the590

accelerating voltage was set at 300 kV, spherical aberration at 2.7 mm, and amplitude contrast at 0.1.591

Defocus parameters were sampled from EMPIAR-11247 [44]. Noise was added at a signal-to-noise592

(SNR) ratio of 0.01. Figure 8 illustrates all 100 ground truth volumes.593

PDB: 2CG9, 6VGR, 5A20, 1UL1, 5LJO, 5CSA, 7WBT, 7SGM, 7BLR, 6ZQJ, 7NIU, 1U6G, 3ULV,594

5JH9, 3D2F, 3CF3, 6LMT, 2RHS, 1BXN, 1N9G, 5H0S, 6CES, 7K5X, 7JSN, 6VN1, 1QVR, 2WW2,595

6U8Q, 6KRK, 6Z80, 6LXK, 6WZT, 3MKQ, 6KSP, 2XNX, 7B7U, 6CNJ, 1SS8, 6X5Z, 7KJ2, 6KLH,596

6PIF, 2DFS, 6AHU, 6F8L, 2VZ9, 7NHS, 6TGC, 6M04, 4XK8, 7E1Y, 7R04, 6I0D, 6BQ1, 7LSY,597

7DD9, 3LUE, 7SFW, 7NYZ, 5O32, 6YT5, 6SCJ, 7EGE, 5VKQ, 6VZ8, 6W6M, 7T3U, 6TAV, 7E8H,598

7ETM, 7AMV, 1G3I, 6Z3A, 7EGD, 7Q21, 6XF8, 6EMK, 6TA5, 6TPS, 7QJ0, 7KDV, 7EGQ, 6LXV,599

6GYM, 7O01, 5G04, 7BKC, 6MRC, 6JY0, 7WOO, 7EEP, 7MEI, 6GY6, 6DUZ, 7VTQ, 7EY7,600

6Z6O, 4CR2, 6ID1, 6UP6601

B.5 Generating Spike-MD602

We sourced the individual MD structures from the enhanced sampling molecular dynamics simulations603

performed in ref. [37]. Using the free-energy landscape calculated with these simulations for the604
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wild-type Spike, we sampled molecular structures assuming a Boltzmann distribution with T = 6000605

K. By using an artificially high temperature, we were able to increase the number of sampled606

conformations—particularly in regions with a high free energy. This process resulted in 46,789607

unique conformations. For each atomic model, the molmap command in ChimeraX [43] was used to608

generate the corresponding density volume at a resolution of 3 Å with a bounding box of dimension609

D = 256 pixels and a pixel size of 1.5 Å.. Poses in Eq. 1 were uniformly sampled from R ∈ SO(3)610

and t was sampled uniformly from [20, 20]2 pixels. For the CTF, the accelerating voltage was set611

at 300 kV, spherical aberration at 2.7 mm, and amplitude contrast at 0.1. Defocus parameters were612

sampled from Walls et al. [46]. Noise was added at a signal-to-noise (SNR) ratio of 0.1. We simulated613

100,000 images in total, 1 image per sampled conformation, resulting in approximately two images614

for each unique conformation.615

B.6 Signal to Noise Ratio (SNR)616

We define SNR as the ratio between the variance of the signal and the variance of the noise follow-617

ing [47]. We calculated the standard deviation of the signal (σsignal) over all CTF-applied projection618

images. We then computed σnoise= σsignal/
√

SNR. Finally, we added noise to each particle, drawn619

from a Gaussian distribution with a mean of 0 and a standard deviation of σnoise.620

Additionally, we illustrate cryo-EM images for all datasets in Figure 9.621
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IgG-1D IgG-RL Ribosembly (First)

Ribosembly (Last) Tomotwin-100 (Smallest) Tomotwin-100 (Largest)

IgG-1D noiser IgG-1D noisestSpike-MD

Figure 9: Cryo-EM images for all datasets. The first structures are shown for IgG-1D and IgG-RL,
the first and last structures are shown for Ribosembly and Tomotwin-100, and a mix of structures
is shown for Spike-MD.
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C Experimental Settings622

C.1 CryoDRGN, CryoDRGN2623

CryoDRGN [5] is a deep generative network-based method where the input images are encoded in624

the (conformational) latent space and the latent coordinates are decoded into 3D volumes in Fourier625

domain via an implicit neural representation [4]. In its second version CryoDRGN2 [41], better ab626

initio capabilities were improved with changes to the hierarchical pose search (HPS) algorithm for627

image pose inference. In our benchmark, we use CryoDRGN for fixed, and CryoDRGN2 for ab initio628

purposes.629

We trained CryoDRGN and CryoDRGN2 using the official PyTorch implementation1, version 3.0.0b.630

We used the default settings with the z-dimension set to 8. For the total number of training epochs,631

20 and 30 were used, respectively. We used one V100 GPU for training.632

C.2 DRGN-AI, DRGN-AI-fixed633

DRGN-AI [40] is a deep generative network-based method, inspired by CryoDRGN. DRGN-AI uses634

both HPS and stochastic gradient descent in pose estimation, while utilizing a differential lookup635

table instead of an encoder network to encode the pose and conformational latent variable information.636

We denote the fixed pose mode of operation with “DRGN-AI-fixed” and ab initio with “DRGN-AI.”637

We trained DRGN-AI and DRGN-AI-fixed using the official PyTorch implementation2, version638

0.2.2b0. We used the default settings with the z-dimension set to 4 and the total number of training639

epochs set to 100. We used one A100 GPU for training.640

C.3 Opus-DSD641

Opus-DSD [9] is also a deep generative network-based method, built upon CryoDRGN. The network642

architecture is similar to CryoDRGN except that it uses a 3D Convolutional Neural Network (CNN)643

and priors for the latent conformational variable.644

We trained Opus-DSD using the official PyTorch implementation3. We used the default settings645

with the z-dimension set to 12, valfrac of 0.25, downfrac of 0.75, and lamb of 1.0, bfactor of646

4.0, and templateres of 192 as recommended on the official GitHub. For the Spike-MD dataset,647

we use a downfrac of 1.00 and templateres of 256. The total number of training epochs was648

set to 20. The volume reconstructed by Opus-DSD is smaller than the original image dimensions.649

Consequently, to compute the volume metric (Per-Conformation FSC), we added zero paddings to650

match the dimensions of the original image. We used four A100 GPUs for training.651

C.4 RECOVAR652

RECOVAR [10] is a white-box approach that utilizes principal component analysis (PCA), which is653

computed through regularized covariance estimation.654

We trained RECOVAR using the official PyTorch implementation4. We used the default settings with655

the z-dimension set to 10 and applied the mask as an input. We used one V100 GPU for training.656

C.5 CryoSPARC657

We used the official CryoSPARC5 version 4.4.0 to train 3DFlex, 3DVA, 3D Classificaion (fixed,658

ab initio). Some methods in CryoSPARC require a consensus volume. We created this volume for659

1https://github.com/ml-struct-bio/cryodrgn
2https://github.com/ml-struct-bio/drgnai
3https://github.com/alncat/opusDSD
4https://github.com/ma-gilles/recovar
5https://cryosparc.com
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IgG-1D IgG-RL Ribosembly Tomotwin-100(a)

(b)

Spike-MD

Figure 10: Consensus volumes and Masks. (a) Consensus volumes (Backprojection) for each
dataset (b) Mask for each dataset. 10 G.T. volumes are shown within the mask for Spike-MD, and all
G.T. volumes are shown for other datasets.

each dataset by using the backprojection [5] of all corresponding cryo-EM images. We provide the660

backprojected volume (consensus volume) and masks in Figure 10.661

3DFlex. 3DFlex [39] is a heterogeneous reconstruction method provided in the CryoSPARC software662

suite. 3DFlex is a deep learning-based method in which a deep neural network is trained to construct663

deformation flow fields as a function of the conformational latent space coordinates to construct the664

heterogeneous reconstruction as a “deformation” of the single canonical 3D volume.665

In the mesh preparation phase (Flex Mesh Prep), we provided the consensus volume and mask as666

inputs. We adjusted the settings as follows: Mask threshold was set to 2, Mask dilation to667

5, Mask soft padding to 10, Min.rigidity weight to 1. For the 3D Flex Training, we set668

the Rigidity parameter to 10 and left all other training parameters to their default settings. The669

z-dimension is 2.670

Due to the its high levels of heterogeneity, Spike-MD required special treatment. First, the particle671

stack was normalised such that the mean of each image was 0 and the variance was 1. A 3DFlex672

model was trained with consensus poses and volume from ab initio reconstruction, and the following673

hyperparameters. The number of latent dimensions was 3, the MLP neural network which dictates674

the deformations of the 3DFlex model had 256 hidden layers, we trained the model for 32 epochs675

beyond the standard training time. All other parameters were left to their default values.676

3DVA. 3DVA [7] is a heterogeneous reconstruction algorithm, which is formulated as a Probabilistic677

PCA approach and utilizes E-M to obtain the heterogeneous reconstructions.678

We provided the particles and mask as inputs and set the latent dimension to 3 (default). Moreover,679

the Filter resolution was set to 5 for Spike-MD, 10 for IgG-1D, IgG-RL, and Ribosembly,680

and 15 for Tomotwin-100.681

682

3D Classification. 3D Classification is a standard method for analyzing and filtering heterogeneous683

cryo-EM datasets due to its ease of use and interpretability [48, 49, 50, 38, 51]. This approach models684

heterogeneity as originating from a discrete mixture model of K independent voxel arrays, where685

class assignment probabilities are jointly optimized with the molecular volumes via expectation maxi-686

mization (E-M). While use of 3D classification is ubiquitous, the method requires ad hoc, user-driven687

choices such as the number of classes and initialization for E-M, which leads to complex processing688

pipelines and often misses conformations, especially when the simple model of heterogeneity is689

mismatched with the true distribution.690

For fixed pose classification, we used a Target resolution of 3 for Spike-MD and 9 for691

Tomotwin-100. We used 20 classes for Spike-MD and 10 classes for all other datasets. All other692

parameters were left at their defaults. For ab initio classification, the Target resolution was693

24



set to 6 for Spike-MD. We used 10 classes for Tomotwin-100, 16 classes for Ribosembly, and 20694

classes for IgG-1D, IgG-RL, and Spike-MD. All other parameters were left at their defaults.695

The z-dimension, for the purposes of the metric analysis, was defined as the class posterior, whose696

length was dataset dependent: 10 (fixed) and 20 (abinit) for IgG-1D, IgG-RL, and Ribosembly, 10697

(fixed and abinit) for Tomotwin-100, and 20 (fixed and abinit) for Spike-MD.698

C.6 Number of Latent Dimensions.699

An overview of the number of latent dimensions for each method is given in Table 3.

Method Number of Latent Dimensions
CryoDRGN 8
DRGN-AI-fixed 4
Opus-DSD 12
3DFlex 2 (3 for MD-Spike)
3DVA 3
RECOVAR 10
3D Class 10
CryoDRGN2 8
DRGN-AI 4
3D Class abinit 20 (10 for Tomotwin-100)

Table 3: Number of Latent Dimensions for Different Methods

700

C.7 Ground Truth Heterogeneity Embeddings.701

Here we define the ground truth heterogeneity embeddings used for Neighborhood Similarity and702

Information Imbalance. The ground truth embedding for each IgG-1D structure is a 2D vector of the703

sine and cosine of the rotation angle. The embedding for each IgG-RL conformation is a 3D vector of704

the centre of mass, and the sine and cosine of the dihedral angle. The Ribosembly embeddings are705

defined in two different ways: i) size rank of the atomic models or ii) 4096D vector of voxel intensity706

(real spaced cropped to 1563 and downsampled via Fourier cropping to 163 = 4096 voxels). The707

Tomotwin-100 embeddings are defined as the size rank of the atomic models. The embeddings for708

Spike-MD are defined as CV1 and CV2 as in Ref. [37] and Figure 7.709

C.8 Neighborhood Similarity.710

The percentage of matching neighbors (pMN) (Eq. 2) was calculated using Python with JAX GPU711

acceleration [52] as a function of the neighborhood radius. All datasets, except for Ribosembly,712

were divided into five independent sets (Ribosembly was divided into three). The mean pMN and713

the standard deviation of its mean were computed using these independent sets. The neighborhood714

radius, expressed as a percentage of the total number of images, was k = 100n
Ns

, where Ns the715

total number of structures in the dataset and n = 1, . . . , Ns. Note that the pMN for n = 1 (i.e.,716

k = 100
Ns

[%]) evaluates how well the embeddings cluster images originating from each structure,717

effectively measuring structural clustering. In contrast, the pMN for n > 1 provides insights into how718

the connections between ground truth structures relate to the embeddings generated by each method,719

revealing how images from different structures are interconnected.720

C.9 Information Imbalance.721

Information imbalance was computed via the implementation in DADApy [53], using a maxk (maxi-722

mum number of neighbours to be considered for the calculation of distances) of the total number723

of points (16,000 for Ribosembly and 100,000 for the other datasets), and a subset_size of 2,000.724

Error was defined by computing the standard deviation of information imbalances computed with725
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different neighbourhood sizes, and here we used k = 1, 3, 10, 30 (0.05, 0.015, 0.5, 1.5%) of neigh-726

bourhood size. Significantly larger neighbourhood sizes approached the orthogonal (1,1) region.727

Error bars are visible in Tomotwin-100 (Fig. 6d), but smaller than marker size for other datasets.728

Small amounts of smearing were applied to average over the 1000-fold duplication of the ground729

truth heterogeneity latent in the image. Additive noise from a uniform distribution, u ∼ U [−ϵ, ϵ] was730

added according to Table 4.731

The ground truth pose embedding is a 9 dimensional flattened vector of the rotation matrix (translation732

neglected). The ground truth CTF embedding is a 4 dimensional vector of the two defoci, and the733

sine and cosine of the angle of astigmatism, normalized by subtracting off the mean and dividing by734

the standard deviation.735

Dataset Collective Variable ϵ
IgG-1D angle in degrees (before sine / cosine transform) 0.05
IgG-RL center of mass (Å), angle in degrees (before sine / cosine transform) 0.1

Ribosembly voxel intensity 0.1
Tomotwin-100 rank size 0.1

MD CV1 and CV2 0.1

Table 4: Smearing ground truth heterogeneity latent embeddings.
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Figure 11: Metric verification. (a) AUC-FSC between one G.T and all 100 G.T.s of the IgG-1D
dataset. Each plot corresponds to the reference G.T volume, indicated by the number above the plot.
(b) Heatmap comparing all 100 G.Ts against all 100 G.Ts.

D Supplementary Results736

D.1 Metric verification737

UMAP visualization. In Section 5, we provide UMAP plots computing using the official framework6,738

applying the default parameters.739

AUC-FSC. Figure 11(a) illustrates the AUC-FSC for the ground truth volumes of IgG-1D dataset.740

The AUC reaches its highest point at one specific index, indicating the value is sensitive to structural741

differences. Given that the IgG-1D dataset includes 1D circular motion, the volume indices 1 and742

100 show two peak points. Figure 11(b) demonstrates that the heatmap displays the highest values743

when AUC values are compared between identical volumes.744

D.2 Mask vs No Mask745

We utilize a mask when computing the FSC metrics reported elsewhere in the text. Here, we provide746

an analysis comparing the use of a mask versus no mask with Per-Conformation FSC (Fig. 12). For747

mask generation, we first aggregated all ground truth volumes using the volume add in ChimeraX.748

Subsequently, we then applied the Volume Tools in CryoSPARC. Specifically, for IgG-1D, IgG-RL,749

and Ribosembly, the Dilation radius (pix) and Soft padding width (pix) were set at 8750

and 5, respectively. For Tomotwin-100, these parameters were adjusted to a Dilation radius751

(pix) of 5 and a Soft padding width (pix) of 3. For Spike-MD, we take the union of all752

binarized volumes and use the cryoDRGN gen_mask command with a dilation of 25 Å and soft753

6https://umap-learn.readthedocs.io/en/latest/api.html

27

https://umap-learn.readthedocs.io/en/latest/api.html


CryoDRGN DRGN-AI-fixed Opus-DSD 3DFlex

3DVA 3DVA 3D Class

CryoDRGN2 DRGN-AI 3D Class abinit

AUC-FSC

Figure 12: Mask comparison with IgG-1D. Histogram comparing Per-Conformation FSC for each
method, with and without a mask.

Figure 13: IgG-1D with noise. (a) Histogram of Per-Conformation FSC for each method at SNR
levels of 0.01, 0.005, 0.001. (b) UMAP visualizations colored by G.T. dihedral conformations of
each method.

cosine edge of 15 Å. Masking out background noise generally enhances performance when computing754

volume metrics.755

D.3 Noise Comparison756

As shown in Figure 13, we applied higher noise settings (SNR 0.005, 0.001) to the IgG-1D dataset.757

With increasing noise levels, there is a noticeable reduction in volume metrics, and the capability to758

differentiate between different conformations decreases.759
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CryoDRGN DRGN-AI-fixed Opus-DSD 3DFlex

3DVA RECOVAR 3D Class

CryoDRGN2 DRGN-AI 3D Class abinit
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Figure 14: Per-Conformation FSC per particle. All 100 FSCs for the IgG-1D dataset at an SNR
level of 0.01. Masks were applied to compute the FSCs.
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Figure 15: Per-Conformation FSC for Spike-MD.

D.4 Per-Conformation FSC760

We presented the average values and error bars for Per-Conformation FSC across all datasets for each761

method in the Figure 2, 3, 4, 6, 7. In this section, we illustrate all 100 FSC plots for the IgG-1D762

dataset for all methods in Figure 14. Additionally, we present FSC curves for the Spike-MD dataset763

in Figure 15.764

D.5 Volume FSC765

We illustrate the Volume FSC plots for each method across all datasets in Figure 16. Given a recon-766

structed volume, the AUC of the FSC at varying resolutions is computed between the reconstructed767

volume and all original volumes. The maximum AUC is taken to be its Volume FSC. The metric can768
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Figure 16: Volume FSC.
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Figure 17: Per-image FSC.

be written as:769

V olume-FSC(U) = max
g

AUC
t

(x, FSCt(U, V
(g))) (4)

FSCt(U, V
(g)) =

 Σs∈St
UsV

(g)
s√

Σs∈St
|Us|2Σs∈St

|V (g)
s |2

 (5)

where U is the Fourier transform of the reconstructed volume, V (g) is the Fourier transform of the770

g’th ground truth volume, St represents the set of Fourier voxels in a spherical shell at a distance t771

from the origin, and x denotes the resolution. In practice, we choose cluster centroid volumes of each772

method as representative reconstructions for evaluation.773

D.6 Per-image FSC774

We propose Per-image FSC as a metric for jointly assessing reconstruction quality and image775

conformation estimation. Here, for each of 100 images uniformly chosen from the datasets, we776

reconstruct an associated volume and assess its FSC AUC to the image’s ground truth volume. Thus,777
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unlike with Volume FSC, methods must produce a high quality reconstruction that is also consistent778

with the conformation in a given image. For 3DVA, we aggregate the consensus density map with779

all three eigen-volumes according to the latent coordinates of each image. For 3D Class, the class780

volume assigned to a given image is used as its reconstruction. Figure 17 provide Per-image FSC781

plots for each method across all datasets.782

D.7 Qualitative Evaluation783

For the qualitative evaluation, we provide additional visualization results for the reconstructed784

volumes and UMAPs. Figure 18, 19, 20, 21, 22, 23, and 24 display K-means centers and UMAP,785

with dots corresponding to each center.786

D.8 Information Imbalance787

CTF and Pose: Information imbalance with respect to the ground truth latent pose (rotation only,788

not translation) and CTF parameters is generally in the orthogonal region (1,1) for all methods (Figs.789

25,26). However, zooming in, for pose, CryoDRGN and Opus-DSD are off the shared information790

x=y line, indicating their minor entanglement is more pronounced that other methods. For CTF the791

trends are less clear, but Opus-DSD and 3D Class abinit are generally the furthest away from the792

orthogonal region.793

D.9 Spike-MD embedding metrics794

The percentage of matching neighbors was calculated as a function of the neighborhood radius for795

the Spike-MD dataset (Figure 27-left). Consistent with UMAP visualizations, we observe a relatively796

low similarity in neighborhoods between the embeddings and the ground truth molecular dynamics797

collective variables for small neighbhoorhood radii.798

Information imbalance of the Spike-MD dataset (Figure 27-right) shows 3DVA on the shared infor-799

mation line at (0.5,0.5) - a very similar result as in IgG-1D. Opus-DSD and CryoDRGN2 are near800

(0.9,0.6), the closest to the orthogonal region for the Spike-MD dataset compared with other methods.801

For Opus-DSD, this is the closest to the orthogonal region compared with its information imbalance802

on the other datasets. For CryoDRGN2, this is a similar value as the challenging datasets (IgG-RL and803

Tomotwin-100). The other methods employed in these experiments (CryoDRGN, DRGN-AI-fixed,804

3DFlex, RECOVAR, DRGN-AI) are closer to the equivalent zone and cluster together near (0.5,0.2).805

D.10 K-Means Clustering Accuracy806

To additionally assess the ability of methods to classify particles arising from discrete structures, for807

Ribosembly and Tomotwin-100, we k-means cluster the latents for each method, with k set to the808

number of ground truth structures in the dataset, and compare the cluster assignments to the true809

structural labels. We employ two common metrics for clustering consistency, the Adjusted Rand Index810

(ARI) and Adjust Mutual Information (AMI). As shown in Table 5, results are generally consistent811

with the clustering accuracy shown in Table 2, with RECOVAR and CryoDRGN performing the best812

on Ribosembly and Tomotwin-100, respectively.813
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Method Ribosembly Tomotwin-100
ARI AMI ARI AMI

CryoDRGN 0.789 0.886 0.956 0.983
DrgnAI-fixed 0.718 0.854 0.791 0.906
Opus-DSD 0.707 0.812 0.500 0.781

3DVA 0.726 0.860 0.058 0.335
RECOVAR 0.807 0.908 0.315 0.649

CryoDRGN2 0.549 0.698 0.116 0.374
DrgnAI-abinit 0.630 0.800 0.086 0.275

Table 5: K-Means Clustering Accuracy. Adjusted Rand Index (ARI) and Adjusted Mutual Informa-
tion (AMI) between true structural labels and predicted labels for each particle. Predicted labels are
obtained by running k-means clustering on the particle latents, with k set to the number of ground
truth structures. These findings align with those previously reported for neighborhood similarity, as
shown in Table 2.
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Figure 18: Qualitative Results (IgG-1D). For each method, representative volumes and a UMAP
plot of the latent space are shown. Volumes correspond to K-Means cluster centers with K=20.
Cluster centers are marked on the UMAP plot with a dot of the corresponding color. Class volumes
and particle counts are shown for 3D Classification.
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Figure 19: Qualitative Results (IgG-RL). For each method, representative volumes and a UMAP
plot of the latent space are shown. Volumes correspond to K-Means cluster centers with K=20.
Cluster centers are marked on the UMAP plot with a dot of the corresponding color. Class volumes
and particle counts are shown for 3D Classification.
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Figure 20: Qualitative Results (Ribosembly). For each method, representative volumes and a
UMAP plot of the latent space are shown. Volumes correspond to K-Means cluster centers with
K=20. Cluster centers are marked on the UMAP plot with a dot of the corresponding color. Class
volumes and particle counts are shown for 3D Classification.
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Figure 21: Qualitative Results (Tomotwin-100). For each method, representative volumes and a
UMAP plot of the latent space are shown. Volumes correspond to K-Means cluster centers with
K=20. Cluster centers are marked on the UMAP plot with a dot of the corresponding color. Class
volumes and particle counts are shown for 3D Classification.
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CryoDRGN DRGN-AI-fixed

Opus-DSD 3DFlex

3DVA RECOVAR

CryoDRGN2 DRGN-AI

3D Class 3D Class abinit

Figure 22: Qualitative Results (Spike-MD). For each method, representative volumes and a UMAP
plot of the latent space are shown. Volumes correspond to K-Means cluster centers with K=20.
Cluster centers are marked on the UMAP plot with a dot of the corresponding color. Class volumes
and particle counts are shown for 3D Classification.
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Figure 23: Qualitative Results (IgG-1D noisier). For each method, representative volumes and
a UMAP plot of the latent space are shown. Volumes correspond to K-Means cluster centers with
K=20. Cluster centers are marked on the UMAP plot with a dot of the corresponding color. Class
volumes and particle counts are shown for 3D Classification.
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Figure 24: Qualitative Results (IgG-1D noisiest). For each method, representative volumes and
a UMAP plot of the latent space are shown. Volumes correspond to K-Means cluster centers with
K=20. Cluster centers are marked on the UMAP plot with a dot of the corresponding color. Class
volumes and particle counts are shown for 3D Classification.
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Figure 25: Pose Information Imbalance. In full view ([0, 1]2; top row) and zoomed in (bottom row).
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Figure 26: CTF Information Imbalance. In full view ([0, 1]2; top row) and zoomed in (bottom row).
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Figure 27: Embedding metric results for the Spike-MD dataset (left) Neighborhood similarity as
a function of the neighborhood radius [%]. (right) Information Imbalance. CryoDRGN2 (not visible)
is underneath Opus-DSD.
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E Glossary of Terms from Single-Particle Electron Cryo-Microscopy814

E.1 Sample815

• Biomolecular: Pertaining to molecules involved in the biological processes of living816

organisms, such as proteins and nucleic acids.817

• Protein: Large, complex molecules made up of amino acids, essential for various biological818

functions like catalyzing metabolic reactions and DNA replication.819

• Nucleic Acid: A type of biomolecule, including (deoxy)ribonucleic acid (DNA, RNA,820

respectively). This term can refer to a single unit that can polymerize (form a long chain).821

• Specimen: The biological sample that is the object of investigation.822

• Complex: In the context of biomolecular complexes, the term ‘complex’ refers to a stable823

association of two or more biomolecules that interact with each other, typically to perform824

a specific biological function. The interactions that hold these molecules together can825

be non-covalent, such as hydrogen bonds, ionic interactions, van der Waals forces, and826

hydrophobic effects, or covalent, such as disulfide bonds.827

• Subunit: a part of a larger whole. The part (domain, polypeptide) is contextual to the whole828

(domain, protein complex).829

E.2 Data Source830

• Real, Experimental, Empirical: Data based on observed and measured phenomena, derived831

from real-world evidence rather than theory or pure logic.832

• Synthetic, Simulated: Data generated by algorithms or models, mimicking real-world data833

for testing and training purposes.834

• Protein Data Bank (PDB): A publicly accessible database for the three-dimensional835

structural data of large biological molecules such as proteins and nucleic acids. Atomic836

models are indexed by alphanumeric codes, and in this work we list them in the SI.837

E.3 Heterogeneity838

• Heterogeneity: The presence of variations in shape or the presence or absence of mass839

within a sample. Coming in two main sub-classes840

– Compositional: Related to the total amount of mass and their proportions within a841

sample or structure. Often used in the context of discrete differences in total mass.842

– Conformational: Pertaining to the various shapes or structures that a molecule can843

adopt. Often used in the context of continuous movement in 3D space.844

• 3D Structure: The spatial form or shape of an object, which in the context of cryo-EM refers845

to the 3D structure of biomolecules. Often contrasted with the sequence of a biomolecule,846

or schematic (e.g. 2D) representations communicating atom type of bond connectivity.847

• Conformation: The specific three-dimensional arrangement of atoms in a molecule. Often848

employed in the plural to refer to the different shapes a particular biomolecule can adopt.849

• Collective Variable (CV): A parameter used to describe the state of a system, typically in850

terms of a few degrees of freedom. Further distinguished into geometric (centre of mass,851

angle, distance) and abstract [54]. The term CV is related to ‘order parameter’, and ‘reaction852

coordinate‘, which is often used in the context of reactants and products in chemical catalysis853

[55]. However, as employed in the biomolecular simulation community, CVs typically relate854

to distinguishing metastable states [56].855

E.4 Model and Representation856

• Angstrom (Å): A unit of length equal to 0.1 nm, or 10−10 m. Often used in chemistry857

because the distance of and between atoms is close to 1 Å.858
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• Voxel: A volume element representing an intensity value on a regular grid in three-859

dimensional space, similar to a pixel in 2D images but for a 3D array. A typical voxel860

volume ranges 0.53 − 23 Å3.861

• 3D Map, Volume, Density, Model: A representation of spatial data, in cryo-EM this862

typically refers to the 3D Coulombic (electric, electrostatic) potential instead of the electron863

density in other structural biology techniques based on X-ray diffraction. [57, 58]864

• Latent: Hidden variables inferred from observed data, representing underlying structures or865

features in the model not directly observed.866

• Embedding: A representation of data, for example a continuous n-dimensional vector space.867

Used to concretely parametrize or otherwise numerically represent a latent variable.868

• White Gaussian Noise: noise with a flat power spectral density, meaning that its power is869

uniformly distributed across all frequencies. This implies that the noise has equal intensity870

at different frequencies, making it ‘white’ by analogy to white light, which contains all871

visible wavelengths.872

E.5 Microscopy873

• Point Spread Function (PSF): A function describing the response of an imaging system to874

a point source, indicating, for example, the system’s resolution and blur characteristics.875

• Contrast Transfer Function (CTF): The Fourier transform of the point spread function.876

A mathematical description of how an electron microscope transfers contrast from the877

specimen to the image, influenced by various microscope parameters. We employ a common878

parametric form which depends on beam energy (electron wave length via the de Broglie879

relation), defocus and its astigmatism, spherical aberration, and amplitude contrast (ratio)880

??.881

• Microscope Effects: Artifacts and distortions introduced by the electron microscope during882

image acquisition. At times used in a phenomenological sense to describe effects not883

modelled well by the PSF/CTF.884

• Camera Effects: Distortions or noise introduced by the optical system used to capture885

images. Can be used in a wide sense beyond detector effects for the entire optical system.886

E.6 Image Acquisition and Analysis887

• Micrograph: A two dimensional image obtained using an electron microscope, typically888

showing a field of view that includes multiple particles. Often the image contains tempo-889

ral frames in a ‘movie’ format, which is corrected for motion. A typical micrograph is890

approximately 40002 pix2, at 0.5− 2 Å per pixel.891

• Particle: Individual biomolecular structures captured within a patch of micrograph, which892

is typically boxed out of the wide frame image. Can refer to the physical entity in the image,893

or the recorded measurement. A typical particle is approximitely 642−5122 pix2, at 0.5−2894

Å per pixel.895

• Reconstruction: a 3D volume, typically in a real spaced voxelized array form, generated896

by processing data from a series of two-dimensional 2D images. Distinguished further to897

homogeneous (one 3D volume) and heterogeneous (multiple 3D volume).898
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F Broader Impact899

While the advancements in protein structure prediction offer tremendous potential benefits in biologi-900

cal discovery, there are also ethical considerations regarding data privacy, responsible technology901

use, and equitable access to healthcare innovations. Although our work focuses on synthetic bench-902

marks for Cryo-EM reconstruction tasks, it’s important to note that our datasets are based on real903

data. Therefore, addressing these concerns is essential to ensure that deep learning technologies are904

deployed responsibly and ethically to maximize their positive societal impact.905
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