
A Omitted Proofs420

We will need the following helper Lemma in the proofs of consistency and robustness.421

Lemma 2. Recall that eB :=
(
1 + 1

B

)B
and αB := B

(
e
α/B
B − 1

)
. We have422

1. eB ≤ eBa
and423

2. αB ≥ αBa
.424

Proof. It is well known that eB converges to e from below for B →∞. Furthermore, we can show425

that αB is decreasing in B for all α ≥ 1 by taking the derivative426

∂

∂B
αB =

(
1 +

1

B

)α
− 1− α

B

(
1 +

1

B

)α−1

=

(
1 +

1

B

)α−1(
1 +

1

B
(1− α)

)
− 1

≤
(
1 +

1

B

)α−1(
1 +

1

B

)1−α

− 1 = 0

where the bound follows from Bernoulli’s inequality, which states that 1+ rx ≤ (1 + x)
r for x ≥ −1427

and r ∈ R \ (0, 1).428

A.1 Proof of Theorem 1 (Robustness)429

We write P and D to denote the objective value of the primal and dual solutions, i.e. P =430 ∑
a

∑
t∈Sa

wat and D =
∑
aBaβa +

∑
t zt where zt is specified in the following proof to en-431

sure feasibility. We can show that after the allocation of each impression t,432

∆P ≥ eαB − 1

BeαB

(
e
α/B
B − 1

)∆D
where ∆P and ∆D are the increase in the primal and dual solution values, respectively. Since we433

create feasible primal and dual solutions, this is sufficient to bound the robustness due to weak duality.434

There is one main difference to Feldman et al. (2009a): In their algorithm, setting the dual variable435

zt to wa(EXP)t − βa ensures dual feasibility as a(EXP) is the advertiser with maximum discounted436

gain. However, in order not to violate dual feasibility when following the prediction, we need to437

increase the dual variables zt by a factor of αB . Note that for α = 1, this recovers the competitiveness438

obtained by Feldman et al. (2009a).439

Proof. Consider an iteration where we assign an impression t to advertiser a and let w1 ≤ w2 ≤440

· · · ≤ wBa
be the values of impressions currently allocated to a in non-decreasing order. Let w0 be441

the least valuable of the impressions allocated to a at the end of iteration t− 1, i.e. the impression442

that is removed to make space for t. Assume that after allocating impression t to a, it becomes the443

k-th least valuable impression allocated to a with value wat = wk. Thus, using that wi ≥ wi−1, we444

can bound445

β(t−1)
a =

e
α/Ba

Ba
− 1

eαBa
− 1

(
k−1∑
i=0

wie
α(Ba−i−1)/Ba

Ba
+

Ba∑
i=k+1

wie
α(Ba−i)/Ba

Ba

)

=
e
α/Ba

Ba
− 1

eαBa
− 1

(
Ba−1∑
i=0

wie
α(Ba−i−1)/Ba

Ba
+

Ba∑
i=k+1

(wi − wi−1) e
α(Ba−i)/Ba

Ba

)

≥
e
α/Ba

Ba
− 1

eαBa
− 1

(
Ba−1∑
i=0

wie
α(Ba−i−1)/Ba

Ba

)
=: β̂(t−1)

a

which is tight when impression t becomes the most valuable impression assigned to a. We can now446

write β(t)
a as a function of the bound β̂(t−1)

a :447

β(t)
a =

e
α/Ba

Ba
− 1

eαBa
− 1

Ba∑
i=1

wie
α(Ba−i)/Ba

Ba
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=
e
α/Ba

Ba
− 1

eαBa
− 1

(
Ba−1∑
i=0

wie
α(Ba−i)/Ba

Ba
+ wBa

− w0e
α
Ba

)

=
e
α/Ba

Ba
− 1

eαBa
− 1

e
α/Ba

Ba

Ba∑
i=1

wi−1e
α(Ba−i)/Ba

Ba
+
e
α/Ba

Ba
− 1

eαBa
− 1

(
wBa

− w0e
α
Ba

)
= e

α/Ba

Ba
β̂(t−1)
a +

e
α/Ba

Ba
− 1

eαBa
− 1

(
wBa

− w0e
α
Ba

)
.

We set zt := αB

(
wBa

− β(t−1)
a

)
which is feasible as the discounted value wat − β(t−1)

a of the448

chosen advertiser a may only be αB-times less the maximum discounted value wa(EXP)t − β
(t−1)
a(EXP)

449

due to the advantage of the predicted advertiser. This yields a dual increase of450

∆D = Ba

(
β(t)
a − β(t−1)

a

)
+ zt

= Ba

(
β(t)
a − β(t−1)

a

)
+ αB

(
wBa − β(t−1)

a

)
≤ Ba

(
β(t)
a − β̂(t−1)

a

)
+ αB

(
wBa − β̂(t−1)

a

)
= Ba

((
e
α/Ba

Ba
− 1
)
β̂(t−1)
a +

e
α/Ba

Ba
− 1

eαBa
− 1

(
wBa

− w0e
α
Ba

))
+ αB

(
wBa

− β̂(t−1)
a

)
= αBa

β̂(t−1)
a +

αBa

eαBa
− 1

(
wBa

− w0e
α
Ba

)
+ αB

(
wBa

− β̂(t−1)
a

)
= αBa

eαBa

eαBa
− 1

(
β̂(t−1)
a − w0

)
︸ ︷︷ ︸

≥0

+
αBa

eαBa
− 1

(
wBa − β̂(t−1)

a

)
︸ ︷︷ ︸

≥0

+αB

(
wBa − β̂(t−1)

a

)

≤ αB
eαB

eαB − 1

(
β̂(t−1)
a − w0

)
+

αB
eαB − 1

(
wBa − β̂(t−1)

a

)
+ αB

(
wBa − β̂(t−1)

a

)
= αB

eαB
eαB − 1

(
β̂(t−1)
a − w0

)
+ αB

eαB
eαB − 1

(
wBa

− β̂(t−1)
a

)
= αB

eαB
eαB − 1

(wBa − w0) = B
e
α/B
B − 1

eαB − 1
eαB (wBa − w0)

where the second inequality is due to αB ≥ αBa and eB ≤ eBa , as shown in Lemma 2.451

A.2 Proof of Theorem 1 (Consistency)452

In the following, we upper bound PRD using the comparison in Line 7 of Algorithm 1.453

Lemma 3. We have454

PRD ≤
∑
a

(
(Ba − ℓa)β(T )

a +
1

αB

∑
t∈Xa\Pa

(
wat − β(t−1)

a

)
+

∑
t∈Pa∩Xa

wat

)

Proof. We first split impressions t into two categories: Either the algorithm followed the prediction455

and assigned t to a(t) = a
(t)
(PRD), or the algorithm ignored the prediction and assigned t to a(t) =456

a
(t)
(EXP) ̸= a

(t)
(PRD). In the latter case, due to the selection rule in Line 7 of Algorithm 1,457

αB

(
w
a
(t)

(PRD)
t
− β(t−1)

a
(t)

(PRD)

)
≤ w

a
(t)

(EXP)
t
− β(t−1)

a
(t)

(EXP)

.

In symbols,458

PRD =
∑
a

( ∑
t∈Pa\Xa

wat +
∑

t∈Pa∩Xa

wat

)
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≤
∑
a

( ∑
t∈Pa\Xa

(
β(t−1)
a +

1

αB

(
w
a
(t)

(EXP)
,t
− β(t−1)

a
(t)

(EXP)

))
+

∑
t∈Pa∩Xa

wat

)

=
∑
a

( ∑
t∈Pa\Xa

β(t−1)
a︸ ︷︷ ︸

(†)

+
1

αB

∑
t∈Xa\Pa

(
wat − β(t−1)

a

)
+

∑
t∈Pa∩Xa

wat

)

where the last equality holds because {Pa}a and {Xa}a are both partitioning the set of all impressions459

due to the introduction of the dummy advertiser. For (†), we use that βa can only increase in each460

round and bound461 ∑
t∈Pa\Xa

β(t−1)
a ≤ (Ba − ℓa)β(T )

a .

462

For the remainder of this section, we consider a fixed advertiser a. Let us denote with ti the i-th463

impression allocated to a. Let464

(⋆) =
1

αB

∑
t∈Xa\Pa

(
wat − β(t−1)

a

)
+

∑
t∈Pa∩Xa

wat

as part of the the bound on PRD in Lemma 3.465

In order to understand this bound, we make some useful observations in the following lemma to466

simplify the analysis. The key idea is that we may assume that impressions in Xa are ordered to be467

non-decreasing. In particular, we need to argue that the sum
∑
t∈Xa\Pa

β
(t−1)
a can only decrease (as468

this term is negated in (⋆)) when impressions in Xa are ordered to be non-decreasing: Intuitively,469

each β(t−1)
a depends only on the Ba most valuable impressions assigned before impression t, no470

matter the order in which X
(t−1)
a arrived. We can thus minimize each β(t−1)

a if the impressions471

allocated prior to t are the impressions of smallest value. To simultaneously minimize each β(t)
a in472

the sum, we order the impressions in Xa to have non-decreasing value. We prove this simplification473

formally in the following lemma.474

Lemma 4. Without loss of generality, we may assume that Pa∩Xa are the most valuable impressions475

in Xa and that impressions in Xa arrive such that their values are non-decreasing.476

Proof. We may assume that the impressions in Pa ∩Xa are the most valuable impressions in Xa:477

this can only increase the value of Pa but leaves Sa unaffected, as Sa are by design the Ba most478

valuable impressions in Xa. All impressions in (⋆) are from Xa, so reordering impressions only479

affects (⋆). Specifically, we can show that the sum
∑
t∈Xa\Pa

β
(t−1)
a in (⋆) is minimized if the480

values in Xa are ordered to be non-decreasing. Assume to the contrary that the i-th impression added481

to a is the last that is in order. That is wat1 ≤ wat2 ≤ · · · ≤ wati and there exists a j ≤ i such that482

watj−1 ≤ wati+1 < watj . Moving ti+1 ahead to its ranked position within the first i impressions483

allocated to a changes the ordering as follows (the first and second row show the impression values484

before and after changing the position of ti+1, respectively):485

wat1 ≤ · · · ≤watj−1
≤ watj ≤watj+1

≤ · · · ≤ wati
wat1 ≤ · · · ≤watj−1 ≤wati+1 < watj ≤ · · · ≤wati−1

Note that each position decreases in value, even strictly at the j-th position. As such, the exponential486

average β(t−1)
a decreases as well for t < ti+1; it remains constant for t ≥ ti+1 as it only depends on487

theBa most valuable impressions assigned up to twhich remain the same. We can thus simultaneously488

minimize β(t)
a for each t by putting Xa in non-decreasing order. This reordering does not affect β(T )

a489

or the other terms in (⋆), so we may indeed assume that values are non-decreasing.490

In light of Lemma 4, we can write (⋆) as follows.491
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Lemma 5. We have492

(⋆) =
1

αB

Ia−ℓa∑
i=1

(
wati − β(ti−1)

a

)
+

Ia∑
i=Ia−ℓa+1

wati .

Proof. Impression values are non-decreasing due to Lemma 4, so wati is the i-th least valuable493

impression in Xa. The impressions {Ia − ℓa + 1, . . . , Ia} = Xa ∩Pa are thus the most valuable.494

We can now write (⋆) as495

1

αB

∑
t∈Xa\Pa

(
wat − β(t−1)

a

)
+

∑
t∈Pa∩Xa

wat =
1

αB

Ia−ℓa∑
i=1

(
wati − β(ti−1)

a

)
+

Ia∑
i=Ia−ℓa+1

wati

where β(ti−1)
a = β

(ti−1)
a as there was no change to the dual variable of advertiser a since no496

impression in {ti−1 + 1, . . . , ti − 1} was allocated to a.497

Combining Lemmas 3 and 5, we obtain:498

Lemma 6. PRD ≤∑a PRDa where499

PRDa :=
1

αB

Ia−ℓa∑
i=1

(
wati − β(ti−1)

a

)
+

Ia∑
i=Ia−ℓa+1

wati + (Ia − ℓa)β(T )
a .

In the following, we use the non-decreasing ordering of impressions in Xa to compute β(ti−1)
a and500

bound PRDa with a linear combination of values wati . Consider the j-th impression tj allocated501

to a. Since we assume that impression values are non-decreasing, we know that tj becomes the502

most valuable impression right after it is allocated. After the allocation of the (j + 1)-th impres-503

sion to a, it becomes the second most valuable impression, and so forth, until it is disposed after504

the allocation of the (j + Ba)-th impression. The value watj therefore appears alongside each505

coefficient in the convex combination that defines β(ti−1)
a for i ∈ {j + 1, . . . , j +Ba}. Expanding506

each β(ti−1)
a in the sum

∑Ia−ℓa
i=1 β

(ti−1)
a in PRDa, we thus observe that the coefficients of values507

watj for j ≤ Ia − ℓa − Ba sum up to 1. We use this fact to cancel out most of the values in508 ∑Ia−ℓa
i=1 wati . What remains are only the values wati for i ∈ {Ia − ℓa −Ba + 1, . . . , Ia − ℓa}. For509

i ∈ {Ia − ℓa −Ba + 1, . . . , Ia −Ba}, we bound wati by watIa−Ba
which is really the best we can510

hope for. Formally, we show:511

Lemma 7. We have512

PRDa ≤
Ia−ℓa∑

i=Ia−Ba+1

ϕiwati +

Ia∑
i=Ia−ℓa+1

ψiwati + watIa−Ba
Ωa

with coefficients513

ϕi := (Ba − ℓa)
e
α/Ba

Ba
− 1

eαBa
− 1

e
α(Ia−i)/Ba

Ba
+

1

αB

eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

ψi := 1 + (Ba − ℓa)
e
α/Ba

Ba
− 1

eαBa
− 1

e
α(Ia−i)/Ba

Ba

Ωa :=
1

αB

1

eαBa
− 1

(
ℓae

α
Ba
−
eαBa
− eα(Ba−ℓa)/Ba

Ba

e
α/Ba

Ba
− 1

)
.

Proof. We start by rewriting the terms in PRDa individually. Since we assume that the514

values are non-decreasing, we can express β
(ti−1)
a as the exponential average of values515

wati−Ba
, wati−Ba+1

, . . . , wati−1 of the last Ba impressions (for simplicity, we set watj = 0 for516

j ≤ 0). Summing over multiple iterations, we thus obtain for the sum over the dual variables that517

Ia−ℓa∑
i=1

β(ti−1)
a =

e
α/Ba

Ba
− 1

eαBa
− 1

Ia−ℓa∑
i=1

i−1∑
j=i−Ba

watje
α(i−j−1)/Ba

Ba

15



=
e
α/Ba

Ba
− 1

eαBa
− 1

Ia−ℓa∑
j=1

watj

min{j+Ba,Ia−ℓa}∑
i=j+1

e
α(i−j−1)/Ba

Ba

=
e
α/Ba

Ba
− 1

eαBa
− 1

Ia−ℓa∑
j=1

watj

min{Ba,Ia−ℓa−j}∑
i=1

e
α(i−1)/Ba

Ba

=
e
α/Ba

Ba
− 1

eαBa
− 1

Ia−Ba−ℓa∑
j=1

watj

Ia∑
i=1

e
α(i−1)/Ba

Ba

+
e
α/Ba

Ba
− 1

eαBa
− 1

Ia−ℓa∑
j=Ia−Ba−ℓa+1

wa

Ia−ℓa−j∑
i=1

e
α(i−1)/Ba

Ba

=

Ia−Ba−ℓa∑
i=1

wati +
1

eαBa
− 1

Ia−ℓa∑
i=Ia−Ba−ℓa+1

wati

(
e
α(Ia−ℓa−i)/Ba

Ba
− 1
)
.

where for the last equality, we use that the two inner sums are geometric. We can use this expression518

to cancel out most of the terms of the first sum in PRDa:519

Ia−ℓa∑
i=1

(
wati − β(ti−1)

a

)
=

Ia−ℓa∑
i=1

wati −
Ia−Ba−ℓa∑

i=1

wati −
1

αB
(
eαBa
− 1
) Ia−ℓa∑
i=Ia−Ba−ℓa+1

wati

(
e
α(Ia−ℓa−i)/Ba

Ba
− 1
)

=

Ia−ℓa∑
i=Ia−Ba−ℓa+1

wati

(
1−

e
α(Ia−ℓa−i)/Ba

Ba
− 1

eαBa
− 1

)

=

Ia−ℓa∑
i=Ia−Ba−ℓa+1

wati
eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

=

Ia−ℓa∑
i=Ia−Ba+1

wati
eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

+

Ia−Ba∑
i=Ia−Ba−ℓa+1

wati
eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

. (3)

We use that wati ≤ watIa−Ba
for all i ≤ Ia −Ba to upper bound the second sum, divided by αB , in520

(3) to521

1

αB

Ia−Ba∑
i=Ia−Ba−ℓa+1

wati
eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

≤ watIa−Ba

1

αB

Ia−Ba∑
i=Ia−Ba−ℓa+1

eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

(4)

= watIa−Ba

1

αB

1

eαBa
− 1

(
ℓae

α
Ba
−

Ba−1∑
i=Ba−ℓa

e
αi/Ba

Ba

)

= watIa−Ba

1

αB

1

eαBa
− 1

(
ℓae

α
Ba
−
eαBa
− eα(Ba−ℓa)/Ba

Ba

e
α/Ba

Ba
− 1

)
︸ ︷︷ ︸

=Ωa

. (5)

Furthermore, by definition of β(T )
a = β

(tIa )
a ,522

(Ba − ℓa)β(T )
a = (Ba − ℓa)

e
α/Ba

Ba
− 1

eαBa
− 1

Ia∑
i=Ia−Ba+1

watie
α(Ia−i)/Ba

Ba
. (6)
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We combine (3), (5), and (6) and group terms to obtain the desired bound523

PRDa ≤
Ia∑

i=Ia−ℓa+1

wati +
1

αB

Ia−ℓa∑
i=Ia−Ba+1

wati
eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

+ watIa−Ba
Ωa

+ (Ba − ℓa)
e
α/Ba

Ba
− 1

eαBa
− 1

Ia∑
i=Ia−Ba+1

watie
α(Ia−i)/Ba

Ba

=

Ia−ℓa∑
i=Ia−Ba+1

wati

(
(Ba − ℓa)

e
α/Ba

Ba
− 1

eαBa
− 1

e
α(Ia−i)/Ba

Ba
+

1

αB

eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

)
︸ ︷︷ ︸

=ϕi

+

Ia∑
i=Ia−ℓa+1

wati

(
1 + (Ba − ℓa)

e
α/Ba

Ba
− 1

eαBa
− 1

e
α(Ia−i)/Ba

Ba

)
︸ ︷︷ ︸

=ψi

+wIa−BaΩa

524

We can express ALG analogously:525

Lemma 8. We have ALG =
∑
aALGa where526

ALGa :=

Ia∑
i=Ia−Ba+1

wati .

Proof. We have ALG =
∑
a

∑
t∈Sa

wat. As we always dispose of the least valuable impression527

in Algorithm 1, Sa are the Ba most valuable impressions in Xa. Due to Lemma 4, these are528

Sa = {Ia −Ba + 1, . . . , Ia} and hence
∑
t∈Sa

wat =
∑Ia
i=Ia−Ba+1 wati = ALGa.529

We upper bound the ratio PRD/ALG by maxa PRDa/ALGa. To this end, we fix an advertiser a530

and upper bound the ratio PRDa/ALGa. Recall from Lemmas 7 and 8 that we can express PRDa531

and ALGa as linear combination over impression values. We could obtain a natural upper bound by532

comparing impression value coefficients. However, in the following lemma, we show how to use the533

non-decreasing ordering due to Lemma 4 to obtain a tighter bound.534

We define535

Φa :=

Ia−ℓa∑
i=Ia−Ba+1

ϕi and Ψa :=

Ia∑
i=Ia−ℓa+1

ψi

as the total factor mass on values wati for ϕi and ψi, respectively. Let τa := (Φa +Ψa +Ωa) /Ba536

be the average factor. Recall that537

PRDa ≤
Ia−ℓa∑

i=Ia−Ba+1

ϕiwati +

Ia∑
i=Ia−ℓa+1

ψiwati + watIa−Ba
Ωa (7)

ALGa =

Ia∑
i=Ia−Ba+1

wati .

In the following lemma, we use that wati ≤ watj for i ≤ j due to Lemma 4, to further upper538

bound the RHS of 7 by a linear combination of the values, where we move mass from coefficients539

on wati to coefficients on watj . Additionally, we move mass from Ωa to coefficients ϕi for i ∈540

{Ia −Ba + 1, . . . , Ia − ℓa} and from ϕi to ψj for j ∈ {Ia − ℓa + 1, . . . , Ia}. In the best case, we541

are able to redistribute mass equally across all values, in which case the consistency is given as the542

average factor τa. Otherwise, the factors on the largest values dominate, giving us a consistency of543

Ψa/ℓa.544
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Lemma 9. We have545

PRDa
ALGa

≤
{
max

{
τa,

Ψa

ℓa

}
if ℓa > 0

τa otherwise

where546

τa = 1 +
1

eαBa
− 1

1

αB

(
eαBa
− eαBa

− 1

αBa

)
and547

Ψa
ℓa

= 1 +

(
Ba
ℓa
− 1

)
e
αℓa/Ba

Ba
− 1

eαBa
− 1

.

Proof. We calculate τa and Ψa/ℓa separately in Lemma 10 below. Our main goal is to distribute548

mass from the factors ϕi, ψi, and from Ωa equally to the values wIa−Ba+1, . . . , wIa . We begin by549

taking a closer look at the factors ϕi and ψi. First, note that ψi is always decreasing in i as550

ψi = 1 + (Ba − ℓa)︸ ︷︷ ︸
≥0

e
α/Ba

Ba
− 1

eαBa
− 1︸ ︷︷ ︸

≥0

e
α(Ia−i)/Ba

Ba
.

We can therefore bound the linear combination over values in {Ia − ℓa + 1, . . . , Ia} using the average551

value w̄Ψ := 1
ℓa

∑Ia
i=Ia−ℓa+1 wati as552

Ia∑
i=Ia−ℓa+1

watiψi ≤
Ia∑

i=Ia−ℓa+1

w̄Ψψi = w̄ΨΨa. (8)

However, ϕi is not always decreasing which can be seen by rearranging553

ϕi = (Ba − ℓa)
e
α/Ba

Ba
− 1

eαBa
− 1

eα(Ia−i)/Ba +
1

αB

eαBa
− eα(Ia−ℓa−i)/Ba

Ba

eαBa
− 1

=
1

eαBa
− 1

(
(Ba − ℓa)

(
e
α/Ba

Ba
− 1
)
− 1

αB
e
−αℓa/Ba

Ba

)
e
α(Ia−i)/Ba

Ba
+

1

αB

eαBa

eαBa
− 1

.

We observe that ϕi is decreasing if (Ba − ℓa)
(
e
α/Ba

Ba
− 1
)

is at least 1
αB
e
−αℓa/Ba

Ba
, and we analyze554

two cases based on the relationship of both terms.555

Let us first assume that (Ba − ℓa)
(
e
α/Ba

Ba
− 1
)
≥ 1

αB
e
−αℓa/Ba

Ba
such that ϕi is decreasing in i556

which helps us to bound the linear combinations in Lemma 7 over {Ia −Ba + 1, . . . , Ia − ℓa} and557

{Ia − ℓa + 1, . . . , T} by the average values w̄Φ := 1
Ba−ℓa

∑Ia−ℓa
i=Ia−Ba+1 wati and w̄Ψ, respectively.558

We further use that watIa−Ba
≤ w̄Φ to charge mass from Ωa to Φa and obtain due to (8) that559

Ia−ℓa∑
i=Ia−Ba+1

watiϕi +

Ia∑
i=Ia−ℓa+1

watiψi + watIa−Ba
Ωa

≤ w̄ΦΦa + w̄ΨΨa + watIa−Ba
Ωa (9)

≤ w̄Φ (Φa +Ωa) + w̄ΨΨa
= w̄Φ (Ba − ℓa) τa + w̄Φ (Φa +Ωa − (Ba − ℓa) τa) + w̄ΨΨa

=

Ia−ℓa∑
i=Ia−Ba+1

τawati + w̄Φ (Φa +Ωa − (Ba − ℓa) τa) + w̄ΨΨa (10)

On the other hand, if (Ba − ℓa)
(
e
α/Ba

Ba
− 1
)
≤ 1

αB
e
−αℓa/Ba

Ba
we can no longer bound the values560

over {Ia −Ba + 1, . . . , Ia − ℓa} by the average value w̄Φ. However, each factor ϕi is less than τa561

which can be seen by rearranging562
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ϕi =
1

eαBa
− 1

(
(Ba − ℓa)

(
e
α/Ba

Ba
− 1
)
− 1

αB
e
−αℓa/Ba

Ba

)
e
α(Ia−i)/Ba

Ba
+

1

αB

eαBa

eαBa
− 1

≤ 1 +
1

eαBa
− 1

1

αB

(
eαBa
− eαBa

− 1

αBa

)
= τa

to the equivalent expression563 (
(Ba − ℓa)

(
e
α/Ba

Ba
− 1
)
− 1

αB
e
−αℓa/Ba

Ba

)
︸ ︷︷ ︸

≤0

e
α(Ia−i)/Ba

Ba︸ ︷︷ ︸
≥0

≤ eαBa
− 1− 1

αB

eαBa
− 1

αBa

=

(
1− 1

αB · aBa

)
︸ ︷︷ ︸

≥0

(
eαBa
− 1
)︸ ︷︷ ︸

≥0

which is true since the LHS is ≤ 0 and the RHS ≥ 0. We can thus charge τa − ϕi of mass from Ωa to564

the coefficients ϕi for each i ∈ {Ia −Ba + 1, . . . , Ia − ℓa} which yields565

Ia−ℓa∑
i=Ia−Ba+1

watiϕi +

Ia∑
i=Ia−ℓa+1

watiψi + watIa−Ba
Ωa

≤
Ia−ℓa∑

i=Ia−Ba+1

watiϕi + w̄ΨΨa + watIa−Ba
Ωa

=

Ia−ℓa∑
i=Ia−Ba+1

τawati −
Ia−ℓa∑

i=Ia−Ba+1

wati (τa − ϕi)︸ ︷︷ ︸
≥0

+w̄ΨΨa + watIa−Ba
Ωa

≤
Ia−ℓa∑

i=Ia−Ba+1

τawati −
Ia−ℓa∑

i=Ia−Ba+1

watIa−Ba
(τa − ϕi) + w̄ΨΨa + watIa−Ba

Ωa

=

Ia−ℓa∑
i=Ia−Ba+1

τawati + watIa−Ba
(Φa +Ωa − (Ba − ℓa) τa) + w̄ΨΨa (11)

In both cases (10) and (11), we have shown that566

Ia−ℓa∑
i=Ia−Ba+1

watiϕi +

Ia∑
i=Ia−ℓa+1

watiψi + watIa−Ba
Ωa

≤
Ia−ℓa∑

i=Ia−Ba+1

τawati + v (Φa +Ωa − (Ba − ℓa) τa) + w̄ΨΨa

for a v ≤ w̄Ψ. If ℓa > 0, we can use v ≤ w̄Ψ to charge the remaining mass to Ψa if the factors over567

{Ia − ℓa + 1, . . . , T} leave enough space. In symbols, this means568

Ia−ℓa∑
i=T−Ba+1

τawati + v (Φa +Ωa − (Ba − ℓa) τa) + w̄ΨΨa

≤
Ia−ℓa∑

i=T−Ba+1

τawati + w̄Ψ max {Φa +Ωa − (Ba − ℓa) τa, 0}+ w̄ΨΨa

=

Ia−ℓa∑
i=T−Ba+1

τawati + w̄Ψ max {Φa +Ψa +Ωa − (Ba − ℓa) τa,Ψa}

=

Ia−ℓa∑
i=T−Ba+1

τawati + w̄Ψ max {ℓaτa,Ψa}
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≤ τa
Ia−ℓa∑

i=T−Ba+1

wati +max

{
τa,

Ψa
ℓa

} Ia∑
i=T−ℓa+1

wati

≤ max

{
τa,

Ψa
ℓa

}∑
t∈Sa

wat.

If ℓa = 0, we have Ψa = 0 and immediately obtain by definition of τa that569

Ia−ℓa∑
i=Ia−Ba+1

τawati + v (Φa +Ωa − (Ba − ℓa) τa) + w̄ΨΨa =

Ia−ℓa∑
i=Ia−Ba+1

τawati .

570

Lemma 10. We have571

Ψa
ℓa

= 1 +

(
Ba
ℓa
− 1

)
e
αℓa/Ba

Ba
− 1

eαBa
− 1

and572

τa = 1 +
1

eαBa
− 1

1

αB

(
eαBa
− eαBa

− 1

αBa

)
.

Proof. We compute573

Φa =

T−ℓa∑
i=T−Ba+1

ϕi

=

T−ℓa∑
i=T−Ba+1

(
1

eαBa
− 1

(
(Ba − ℓa)

(
e
α/Ba

Ba
− 1
)
− 1

αB
e
−αℓa/Ba

Ba

)
e
α(T−i)/Ba

Ba
+

1

αB

eαBa

eαBa
− 1

)

=
1

eαBa
− 1

(
(Ba − ℓa)

(
e
α/Ba

Ba
− 1
)
− 1

αB
e
−αℓa/Ba

Ba

)
eαBa
− eαℓa/Ba

Ba

e
α/Ba

Ba
− 1

+ (Ba − ℓa)
1

αB

eαBa

eαBa
− 1

=
1

eαBa
− 1

(Ba − ℓa)
(
eαBa
− eαℓa/Ba

Ba
+

1

αB
eαBa

)
− 1

eαBa
− 1

1

αB

e
α−αℓa/Ba

Ba
− 1

e
α/Ba

Ba
− 1

and574

Ψa =

T∑
i=T−ℓa+1

ψi

=

T∑
i=T−ℓa+1

(
1 + (Ba − ℓa)

e
α/Ba

Ba
− 1

eαBa
− 1

e
α(T−i)/Ba

Ba

)

= ℓa + (Ba − ℓa)
e
α/Ba

Ba
− 1

eαBa
− 1

e
αℓa/Ba

Ba
− 1

e
α/Ba

Ba
− 1

= ℓa + (Ba − ℓa)
e
αℓa/Ba

Ba
− 1

eαBa
− 1

.

Summing up,575

Φa +Ψa +Ωa

=
1

eα − 1
(Ba − ℓa)

(
eαBa
− eαℓa/Ba

Ba
+

1

αB
eαBa

)
− 1

eαBa
− 1

1

αB

e
α−αℓa/Ba

Ba
− 1

e
α/Ba

Ba
− 1

+ ℓa + (Ba − ℓa)
e
αℓa/Ba

Ba
− 1

eαBa
− 1

+
1

eαBa
− 1

1

αB

(
ℓae

α
Ba
−
eαBa
− eα(Ba−ℓa)/Ba

Ba

e
α/Ba

Ba
− 1

)
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=
1

eαBa
− 1

(Ba − ℓa)
(
eαBa
− 1 +

1

αB
eαBa

)
− 1

eαBa
− 1

1

αB

eαBa
− 1

e
α/Ba

Ba
− 1

+ ℓa +
1

eαBa
− 1

1

αB
ℓae

α
Ba

= Ba +
1

eαBa
− 1

1

αB
(Ba − ℓa) eαBa

− 1

eαBa
− 1

1

αB

eαBa
− 1

e
α/Ba

Ba
− 1

+
1

eαBa
− 1

1

αB
ℓae

α
Ba

= Ba +
1

eαBa
− 1

1

αB
Bae

α
Ba
− 1

eαBa
− 1

1

αB

eαBa
− 1

e
α/Ba

Ba
− 1

= Ba +
1

eαBa
− 1

1

αB

(
Bae

α
Ba
− eαBa

− 1

e
α/Ba

Ba
− 1

)
which does no longer depend on ℓa. Dividing Ψa by ℓa and Φa+Ψa+Ωa byBa yields the result.576

Putting everything together, we have PRD/ALG ≤ maxamax
{
τa,maxℓa∈{1,...,Ba} Ψa/ℓa

}
as τa577

does not depend on ℓa. The reader can refer back to Figure 2 for an illustration of this upper bound.578

In the following lemma, we further analyze analytically maxℓa∈{1,...,Ba} Ψa/ℓa and compare it with579

τa to obtain the upper bound:580

Lemma 11. The consistency of Algorithm 1 is given by581

PRD/ALG ≤
(
1 +

1

eαB − 1
max

{
1

αB

(
eαB −

eαB − 1

αB

)
, ln (eαB)

})
.

Proof. Due to Lemma 9, it is sufficient to show582

1 +
1

eαB − 1
max

{
1

αB

(
eαB −

eαB − 1

αB

)
, ln (eαB)

}
≥
{
max {τa,Ψa/ℓa} if ℓa > 0

τa otherwise.

By Lemma 10, we know for the first term in the maximum that583

τa = 1 +
1

eαBa
− 1

1

αB

(
eαBa
− eαBa

− 1

αBa

)
This term is maximized for Ba = B since584

1 +
1

eαBa
− 1

1

αB

eαBa
− eαBa

− 1

Ba

(
e
α/Ba

Ba
− 1
)
 = 1 +

1

αB

(
eαBa

eαBa
− 1
− 1

αBa

)

≤ 1 +
1

αB

(
eαB

eαB − 1
− 1

αB

)
= 1 +

1

eαB − 1

1

αB

(
eαB −

eαB − 1

αB

)
︸ ︷︷ ︸

=:p(α)

due to Lemma 2. The lemma statement therefore follows immediately if ℓa = 0. We may thus585

assume that ℓa > 0 and use Lemma 10 to determine the second term in the maximum as586

Φa
ℓa

= 1 +
1

eαBa
− 1

(
1

x
− 1

)(
eαxBa
− 1
)

where x =: ℓa/Ba. The second term behaves similarly to the first as587

Φa
ℓa

= 1 +
1

eαBa
− 1

(
1

x
− 1

)(
eαxBa
− 1
)
≤ 1 +

1

eαB − 1

(
1

x
− 1

)
(eαxB − 1)

since
(
eαxBa
− 1
)
/
(
eαBa
− 1
)
≤ (eαxB − 1) / (eαB − 1). We define g(α, x) :=

(
1
x − 1

)
(eαxB − 1)588

such that we can write589

max

{
Φa +Ψa +Ωa

Ba
,
Ψa
ℓa

}
≤ 1 +

1

eαB − 1
max {p(α), g(α, x)} .
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We want to remove the dependency on x in g by maximizing g over x ∈ [0, 1] for a fixed α. As590

g(α, x) is continuous, it suffices to evaluate g in both endpoints and find the stationary points. We591

have592

g(α, 0) = lim
x→0

(
1

x
− 1

)
(eαxB − 1) = lim

x→0

(1− x) (eαxB − 1)

x

= lim
x→0
− (eαxB − 1) + (1− x) ln(eαB)eαxB = ln(eαB)

by L’Hoptial. Further, g(α, 1) = 0. Next, we find the stationary points x∗ ∈ [0, 1] as solutions to the593

equation594

∂

∂x
g(α, x∗) = ln(eαB)

(
1

x∗
− 1

)
eαx

∗

B − eαx
∗

B − 1

(x∗)2
= 0

which is equivalent to595

eαx
∗

B − 1 = ln(eαB)(x
∗)2
(

1

x∗
− 1

)
eαx

∗

B .

There is no closed form solution for x∗, but we can replace eαxB − 1 in g with the RHS of the above.596

This yields a new function597

h(α, y) =

(
1

y
− 1

)
ln(eαB)y

2

(
1

y
− 1

)
eαyB = ln(eαB) (1− y)2 eαyB

with h(α, x∗) = g(α, x∗). We can thus maximize h over y ∈ [0, 1] to obtain an upper bound on598

g(x∗). Note that h(α, 0) = ln(eαB) = g(α, 0) and h(α, 1) = 0 = g(α, 1). To this end, let y∗ be such599

that600
∂

∂y∗
h(α, y∗) = ln(eαB)

2 (1− y∗)2 eαy
∗

B − 2 ln(eαB) (1− y∗) eαy
∗

B = 0

which is equivalent to ln(eαB) (1− y∗)− 2 = 0 or y∗ = 1− 2
ln(eαB) . We evaluate h in y∗ and obtain601

h(α, y∗) = α ln(eB)

(
2

α ln(eB)

)2

e
α− 2

ln(eB)

B =
4

α ln(eB)e2
eαB .

Note that y∗ ≥ 0 ⇐⇒ α ≥ 2/ ln(eB). Furthermore, h∗(α) always exceeds the endpoint g(α, 0):602

We calculate603

h∗(α) := h(α, y∗) =
4

ln(eαB)e
2
eαB

≥ 4

ln(eαB)e
2
e2 ln(e

α/2
B )2

= ln(eαB)

where the inequality is due to ez ≥ ez for z = ln
(
e
α/2
B

)
≥ 0. Therefore, for all x ∈ [0, 1],604

g(α, x) ≤
{
ln(eαB) if α ≤ 2

ln(eB)

h∗(α) otherwise.

We consider both intervals separately. Let us first consider the the case when α ∈
[
0, 2

ln(eB)

]
. If605

B < ∞, there could be multiple intersection points between p(α) and α ln(eB). However, the606

situation is easier if B →∞ as the intersection points given by607

p(α) =
1

α

(
eα − eα − 1

α

)
= α ⇐⇒ αeα − eα + 1 = α3

are at α = 1 and α∗ ≈ 1.79, whereas α ln(eB) dominates p(α) between 1 and α∗.608

It remains to consider the case α ≥ 2
ln(eBa )

. Again, there can be many intersection points of p(α)609

with α ln(eBa
) and h∗(α). However, if B → ∞, then p(α) already dominates h∗(α) for α > 2610

which we can see as follows. First,611

h∗(α) =
4

α
eα−2 ≤ 1

α

(
eα − eα − 1

α

)
= p(α)
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⇐⇒ 4e−2 ≤ 1− 1− e−α
α

.

We can see that 1−e−α

α is decreasing in α as612

∂

∂α

1− e−α
α

=
e−α (α− eα + 1)

α2
≤ 0

which holds as 1 + α ≤ eα. Finally, we check that h∗(2) = 2 ≤ 2.10 ≈ p(2).613

B Generalized Assignment Problem614

The generalized assignment problem (GAP) is a generalization of Display Ads where impressions615

t can take up any size uat in the budget constraint of advertiser a. This formulation encompasses616

both Display Ads and Ad Words, and we empirically compare it to the Ad Words algorithm with617

predictions due to Mahdian et al. (2007) in Section C.3. For simplicity of presentation, we assume618

that budgets are all 1 and instead, uat → 0. However, as before it is possible to adapt the algorithm619

to work with large sizes uat. We state the LP below.620

GAP Primal

max
∑
a,t

watxat

∀a :
∑
t

uatxat ≤ 1

∀t :
∑
a

xat ≤ 1

GAP Dual

min
∑
a

βa +
∑
t

zt

∀a, t : zt ≥ wat − uatβa

621

Algorithm 2 is a generalization of Algorithm 1 to GAP. An immediate difference is that the discounted622

gain wat − uatβa respects the impression size uat in accordance with the changed dual constraint.623

We still follow the predicted advertiser if its discounted gain still is a sufficiently high fraction of the624

maximum discounted gain. However, we might now have to remove multiple impressions with least625

value-size ratio to accommodate the new impression. The update for βa also differs and is based on626

value-size ratios of impressions allocated to a: For a fixed advertiser a let Ua =
∑
t∈Xa

uat, be the627

total size of all impressions ever allocated to a. For any x ∈ (0, Ua] define wx

ux
as the minimal ratio628

such that629 ∑
t∈Xa:

wat
uat

≤wx
ux

uat > x. (12)

Then, we can naturally define βa as the exponential average over ratios wx

ux
. As before, we also630

assume that there exists a dummy advertiser that only receives impressions of zero value-size ratio631

and that all advertisers are initially filled up with impressions of zero value.632

B.1 Robustness633

Theorem 12. Algorithm 1 has a robustness of634

ALG

OPT
≥ eα − 1

αeα

Proof. Assume we assign impression t to advertiser a while disposing of some impressions to make635

space. We will bound the dual increase as a multiple of the primal increase. We now assume that after636

allocating t to a, it becomes the impression with highest value-size ratio (a general proof follows637

analogously to the proof of robustness for Display Ads in Section A.1). The primal increase is simply638

∆P =

∫ Ua

Ua−uat

wx
ux
dx−

∫ Ua−1

Ua−1−uat

wx
ux
dx = wat −

∫ Ua−1

Ua−1−uat

wx
ux
dx.
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Algorithm 2 Exponential Averaging with Predictions for GAP

1: Input: Robustness-consistency trade-off parameter α ∈ [1,∞)
2: For each advertiser a, initialize βa ← 0 and fill up a with zero-value impressions
3: for all arriving impressions t do
4: a(PRD) ← PRD(t)
5: a(EXP) ← argmaxa{wat − uatβa}
6: if α

(
wa(PRD),t − ua(PRD),tβa(PRD)

)
≥ wa(EXP),t − ua(EXP),tβa(EXP)

then
7: a← a(PRD)

8: else
9: a← a(EXP)

10: end if
11: Dispose of impressions with least value-size ratio currently allocated to a until there is uat of

free space and allocate t to a

12: Let wx

ux
as in (12) and update βa ←

α

eα − 1

∫ Ua

Ua−1

wx
ux
eα(Ua−x)dx

13: end for

At the same time,639

β(t)
a =

α

eα − 1

∫ Ua

Ua−1

wx
ux
eα(Ua−x)dx

=
α

eα − 1

(∫ Ua−uat

Ua−1−uat

wx
ux
eα(Ua−x)dx+

∫ Ua

Ua−uat

wx
ux
eα(Ua−x)dx−

∫ Ua−1

Ua−1−uat

wx
ux
eα(Ua−x)dx

)

=
α

eα − 1

(
eαuat

∫ Ua−uat

Ua−1−uat

wx
ux
eα(Ua−x−uat)dx+ wat −

∫ Ua−1

Ua−1−uat

wx
ux
eα(Ua−x)dx

)

= eαuatβ(t−1)
a +

α

eα − 1

(
wat −

∫ Ua−1

Ua−1−uat

wx
ux
eα(Ua−x)dx

)

We set zt = α
(
wat − uatβ(t−1)

a

)
and obtain, since eαuat − 1 = αuat due to uat → 0,640

∆D = β(t)
a − β(t−1)

a + zt

= (eαuat − 1)β(t−1)
a +

α

eα − 1

(
wat −

∫ Ua−1

Ua−1−uat

wx
ux
eα(Ua−x)dx

)
+ α

(
wat − uatβ(t−1)

a

)
= αuatβ

(t−1)
a +

α

eα − 1

(
wat −

∫ Ua−1

Ua−1−uat

wx
ux
eα(Ua−x)dx

)
+ α

(
wat − uatβ(t−1)

a

)
=

αeα

eα − 1
wat −

αeα

eα − 1

∫ Ua−1

Ua−1−uat

wx
ux
dx

=
αeα

eα − 1
∆P.

641

B.2 Consistency642

Theorem 13. Algorithm 1 has a consistency of643

ALG

PRD
≥
(
1 +

1

eα − 1
max

{
1

α

(
eα − eα − 1

α

)
, α

})−1

.

As before, we split the impressions t based on whether the algorithm followed the prediction or644

not. If the algorithm ignores the prediction, we can use that α
(
wa(PRD),t − ua(PRD),tβa(PRD)

)
≤645
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wa(EXP),t − ua(EXP),tβa(EXP)
due to Line 6 in Algorithm 2. With a similar calculation, we obtain646

PRD =
∑
a

PRDa

=
∑
a

( ∑
t∈Pa∩Xa

wat +
1

α

∑
t∈Xa\Pa

wat −
1

α

∑
t∈Xa\Pa

uatβ
(t−1)
a +

∑
t∈Pa\Xa

uatβ
(t−1)
a

)
.

Once again, we fix an advertiser a. Let ρa :=
∑
t∈Pa∩Xa

uat so that we can bound647 ∑
t∈Pa\Xa

uatβ
(t−1)
a ≤ (1− ρa)β(T )

a .

We still have to argue that the worst-case is when all impressions are ordered such that their value-size648

ratios are non-decreasing and the impressions in Pa ∩Xa are the ones with maximum value-size649

ratio among Xa. The latter is obvious as it can only increase the value of PRD, so it remains to650

show that the non-decreasing value-size ordering minimizes the third sum in PRDa (the first two651

sums are invariant under reordering). To this end, note that the value of βa for GAP is the limit of652

βa for Display Ads in the following sense: For positive ϵ→ 0, we can split each GAP-impression653

t ∈ Xa into ut

ϵ identical Display Ads-impressions with value wt

ut
, while assuming a budget of 1/ϵ.654

Then, the GAP βa and Display Ads βa are identical. As we know from Display Ads, the worst case655

is achieved when the Display Ads-impressions with value wt

ut
are in non-decreasing order. In this656

ordering, consecutive Display-Ads impressions with identical value wt

ut
still correspond to the same657

GAP-impression t, so we also know that this ordering is the worst-case for GAP. We may therefore658

assume that the impressions are ordered such that their value-size ratios are non-decreasing. As such,659

we obtain660

β(t)
a =

α

eα − 1

∫ U(t)
a

U
(t)
a −1

wx
ux
eα(U

(t)
a −x)dx =

∫ y

y−1

wx
ux
eα(y−x)dx =: β(y)

a

where y = U
(t)
a . Combined with the fact that Pa ∩Xa are last impressions in Xa, we can now write661 ∑

t∈Pa∩Xa

wat +
1

α

∑
t∈Xa\Pa

wat −
1

α

∑
t∈Xa\Pa

uatβ
(t−1)
a

=

∫ Ua

Ua−ρ

wx
ux
dx+

1

α

∫ Ua−ρa

0

wx
ux
dx− 1

α

∫ Ua−ρa

0

β(x)
a dx

This helps us to compute β(x)
a in PRDa and rewrite the whole term as a linear combination of662

value-size ratios.663

Lemma 14. We have664

PRDa ≤
∫ Ua−ρa

Ua−1

wx
ux
ϕxdx+

∫ Ua

Ua−ρa

wx
ux
ψxdx+

wUa−1

uUa−1
Ωa

where665

ϕx := (1− ρa)
α

eα − 1
eα(Ua−x) +

1

α

eα − eα(Ua−ρa−x)

eα − 1

ψx := 1 + (1− ρa)
α

eα − 1
eα(Ua−x)

Ωa :=
1

α

1

eα − 1

(
ρae

α − 1

α

(
eα − eα(1−ρa)

))
Proof. We rewrite the third sum in PRDa to666 ∫ Ua−ρa

0

β(x)
a dx

25



=
α

eα − 1

∫ Ua−ρa

0

∫ x

x−1

wy
uy
eα(x−y)dydx

=
α

eα − 1

∫ Ua−ρa

0

wy
uy

∫ min{1,Ua−ρa−y}

0

eαxdxdy

=
α

eα − 1

∫ Ua−1−ρa

0

wy
uy

∫ 1

0

eαxdxdy +
α

eα − 1

∫ Ua−ρa

Ua−1−ρa

wy
uy

∫ Ua−ρa−y

0

eαxdxdy

=

∫ Ua−1−ρa

0

wy
uy
dy +

1

eα − 1

∫ Ua−ρa

Ua−1−ρa

wy
uy

(
eα(Ua−ρa−y) − 1

)
dy

where for the last equality, we simply evaluated the integral. Using this in place of the second sum in667

PRDa cancels out most of the terms of the second sum:668 ∫ Ua−ρa

0

wx
ux
dx−

∫ Ua−ρa

0

β(x)
a dx

=

∫ Ua−ρa

0

wx
ux
dx−

∫ Ua−1−ρa

0

wy
uy
dy − 1

eα − 1

∫ Ua−ρa

Ua−1−ρa

wy
uy

(
eα(Ua−ρa−y) − 1

)
dy

=

∫ Ua−ρa

Ua−1−ρa

wy
uy

(
1− eα(Ua−ρa−y) − 1

eα − 1

)
dy

=

∫ Ua−ρa

Ua−1−ρa

wy
uy

eα − eα(Ua−ρa−y)

eα − 1
dy

=

∫ Ua−ρa

Ua−1

wy
uy

eα − eα(Ua−ρa−y)

eα − 1
dy +

∫ Ua−1

Ua−1−ρa

wy
uy

eα − eα(Ua−ρa−y)

eα − 1
dy. (13)

We upper bound the third sum669

1

α

∫ Ua−1

Ua−1−ρa

wy
uy

eα − eα(Ua−ρa−y)

eα − 1
dy ≤ wUa−1

uUa−1

1

α

∫ Ua−1

Ua−1−ρa

eα − eα(Ua−ρa−y)

eα − 1
dy

=
wUa−1

uUa−1

1

α

1

eα − 1

(
ρae

α −
∫ 1

1−ρa
eαydy

)
=
wUa−1

uUa−1

1

α

1

eα − 1

(
ρae

α − 1

α

(
eα − eα(1−ρa)

))
︸ ︷︷ ︸

=Ωa

(14)

Furthermore,670

(1− ρa)β(Ua)
a = (1− ρa)

α

eα − 1

∫ Ua

Ua−1

wx
ux
eα(Ua−x)dx (15)

Combining (13), (14), and (15) and grouping terms yields671 ∫ Ua

Ua−ρa

wx
ux
dx+

1

α

∫ Ua−ρa

Ua−1

wy
uy

eα − eα(Ua−ρa−y)

eα − 1
dy +

wUa−1

uUa−1
Ωa

+ (1− ρa)
α

eα − 1

∫ Ua

Ua−1

wx
ux
eα(Ua−x)dx

=

∫ Ua−ρa

Ua−1

wx
ux

(
(1− ρa)

α

eα − 1
eα(Ua−x) +

1

α

eα − eα(Ua−ρa−x)

eα − 1

)
︸ ︷︷ ︸

=ϕx

dx

+

∫ Ua

Ua−ρa

wx
ux

(
1 + (1− ρa)

α

eα − 1
eα(Ua−x)

)
︸ ︷︷ ︸

=ψx

dx+
wUa−1

uUa−1
Ωa.

672
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Analogously to Display Ads, we define673

Φa :=

∫ Ua−ρa

Ua−1

ϕxdx and Ψa :=

∫ Ua

Ua−ρ
ψxdx

and the total coefficient τa := Φa +Ψa + Ωa which by a calculation similar to Lemma 10 can be674

shown to be675

τa = 1 +
1

eα − 1

1

α

(
eα − eα − 1

α

)
.

Lemma 15. We have676

PRD ≤ max

{
τa,

Ψa
ρa

}
ALG

if ρa > 0 and otherwise,677

PRD ≤ τaALG.

Proof. Again, let678

w̄Φ :=
1

1− ρa

∫ Ua−ρa

Ua−1

wx
ux
dx

w̄Ψ :=
1

ρa

∫ Ua

Ua−ρa

wx
ux
dx

be the average coefficients on the intervals [Ua − 1, Ua − ρa] and [Ua − ρa, Ua], respectively. The679

latter coefficients are still decreasing as680

ψx = 1 + (1− ρa)
α

eα − 1︸ ︷︷ ︸
≥0

eα(Ua−x)

so we can bound the linear combination681 ∫ Ua

Ua−ρa

wx
ux
ψxdx ≤ w̄Ψ

∫ Ua

Ua−ρ
ψxdx = w̄ΨΨa.

However, ϕx is not always decreasing which can be seen by rearranging682

ϕx = (1− ρa)
α

eα − 1
eα(Ua−x) +

1

α

eα − eα(Ua−ρa−x)

eα − 1

=
1

eα − 1

(
(1− ρa)α−

1

α
e−αρa

)
eα(Ua−x) +

1

α

1

eα − 1
eα

We observe that ϕx is decreasing if (1− ρa)α is at least 1
αe

−αρa , and we analyze two cases based683

on the relationship of both terms:684

• (1− ρa)α ≥ 1
αe

−αρa : We have
∫ Ua−ρa
Ua−1

wx

ux
ϕxdx ≤ w̄ΦΦa and thus685 ∫ Ua−ρa

Ua−1

wx
ux
ϕxdx+

∫ Ua

Ua−ρ

wx
ux
ψxdx+

wUa−1

uUa−1
Ωa

≤ w̄ΦΦa + w̄ΨΨa + wa,Ia−Ba
Ωa

≤ w̄Φ (Φa +Ωa) + w̄ΨΨa
= w̄Φ (1− ρa) τa + w̄Φ (Φa +Ωa − (1− ρa) τa) + w̄ΨΨa

=

∫ Ua−ρa

Ua−1

wx
us
τadx+ w̄Φ (Φa +Ωa − (1− ρa) τa) + w̄ΨΨa (16)

• (1− ρa)α ≤ 1
αe

−αρa : We can still show that ϕx ≤ τa as686
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ϕx = (1− ρa)
α

eα − 1
eα(Ua−x) +

1

α

eα − eα(Ua−ρa−x)

eα − 1

≤ 1 +
1

eα − 1

1

α

(
eα − eα − 1

α

)
= τa

687

⇐⇒
(
(1− ρa)α−

1

α
e−αρa

)
︸ ︷︷ ︸

≤0

eα(Ua−x)︸ ︷︷ ︸
≥0

≤ eα − 1− 1

α

eα − 1

α
=

(
1− 1

α2

)
︸ ︷︷ ︸

≥0

(eα − 1)︸ ︷︷ ︸
≥0

.

Therefore,688 ∫ Ua−ρa

Ua−1

wx
ux
ϕxdx+

∫ Ua

Ua−ρ

wx
ux
ψxdx+

wUa−1

uUa−1
Ωa

≤
∫ Ua−ρa

Ua−1

wx
ux
ϕxdx+ w̄ΨΨa +

wUa−1

uUa−1
Ωa

=

∫ Ua−ρa

Ua−1

wx
ux
τadx−

∫ Ua−ρa

Ua−1

wx
ux

(τa − ϕx) dx+ w̄ΨΨa +
wUa−1

uUa−1
Ωa

≤
∫ Ua−ρa

Ua−1

wx
ux
τadx−

∫ Ua−ρa

Ua−1

wUa−1

uUa−1
(τa − ϕx) dx+ w̄ΨΨa +

wUa−1

uUa−1
Ωa

=

∫ Ua−ρa

Ua−1

wx
ux
τadx+

wUa−1

uUa−1
(Φa +Ωa − (1− ρa) τa) + w̄ΨΨa (17)

In both cases (16) and (17), we have shown that689 ∫ Ua−ρa

Ua−1

wx
ux
ϕxdx+

∫ Ua

Ua−ρ

wx
ux
ψxdx+

wUa−1

uUa−1
Ωa

≤
∫ Ua−ρa

Ua−1

wx
ux
τadx+ v (Φa +Ωa − (1− ρa) τa) + w̄ΨΨa

for a v ≤ w̄Φ.690

∫ Ua−ρa

Ua−1

wx
ux
τadx+ v (Φa +Ωa − (1− ρa) τa) + w̄ΨΨa

≤
∫ Ua−ρa

Ua−1

wx
ux
τadx+ w̄Ψ max {Φa +Ωa − (1− ρa) τa, 0}+ w̄ΨΨa

=

∫ Ua−ρa

Ua−1

wx
ux
τadx+ w̄Ψ max {Φa +Ψa +Ωa − (1− ρa) τa,Ψa}

=

∫ Ua−ρa

Ua−1

wx
ux
τadx+ w̄Ψ max {ρaτa,Ψa}

≤ τa
∫ Ua−ρa

Ua−1

wx
ux
dx+max

{
τa,

Ψa
ρa

}∫ Ua

Ua−ρa

wx
ux
dx

≤ max

{
τa,

Ψa
ρa

}∫ Ua

Ua−1

wx
ux
dx

or ≤ τa
∫ Ua

Ua−1
wx

ux
dx if ρa = 0691

Note that for the bound of Lemma 11, we did not require that ℓa is integral. We can thus apply692

Lemma 11 to bound max
{
τa,

Ψa

ρa

}
and obtain the same result, which proves Theorem 13.693
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Figure 6: Experimental results for varying values of α on synthetic data with 12 advertisers and
2000 impressions of 10 types, where we report the same quantities as in Figure 3. We use Dual Base
predictions for different σ and ϵ. Note that there are two black lines indicating the performance of the
worst-case algorithm without predictions, corresponding to the datasets with differing σ.
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Figure 7: Performance for varying prediction quality with the data from Figure 6 (top) for α = 2
(top) and α = 5 (bottom).

C Further Experimental Results694

C.1 Real-World Data695

Description of the Yahoo Dataset: The original dataset contains impression allocations to 16268696

advertisers throughout 123 days, each tagged with the advertiser that bought the impression and a set697

of keyphrases that categorize the user for whom the impression is displayed. Lavastida et al. (2021)698

then consider the 20 most common keyphrases and create an impression type for each non-empty699

subset thereof. Whenever an advertiser buys an impression with a certain set of keyphrases, we700

assume that all impression types that correspond to a superset of these keyphrases are relevant for701

this advertiser, and that it derives some constant value (say, 1) from this allocation. At the same time,702

the number of impressions we create from each impression type (i.e. the supply) is the number of703

impression allocations in the original dataset that show that the impression type is relevant for an704

advertiser. As such, we obtain around 2 million impressions. Lavastida et al. (2021) try multiple705
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Figure 8: Performance on a worst-case instance with different predictors.

impression orders and budgets for the advertisers, but due to space constraints we restrict ourselves706

to display all impressions of a type at once, in supply-ascending order. We determine advertisers’707

budgets by allocating each impression to one of the advertisers with non-zero valuation uniformly at708

random and taking the number of allocated impressions at the end to be the advertiser’s budget.709

C.2 Synthetic Data710

Results: Figure 5 shows consistency and robustness of our algorithm on synthetic data on T = 2000711

impressions of 10 types and k = 12 advertisers, for a variation of predictions. The plot shows the712

performance for predictions from the optimum solutions (with varying corruption) and the dual base713

prediction. Our algorithm converges to almost perfect consistency and robustness for α = 10, given714

the optimum solution. At the same time, we observe that the algorithm is robust against both random715

and biased corruption, as the robustness does not drop to the prediction’s low competitiveness of716

around 0.7. Furthermore, the algorithm performs well in combination with the dual base prediction717

for ϵ = 0.1 even though the first 200 impressions are clearly not representative of all synthetically718

generated impressions.719

To investigate the our algorithm in conjunction with an easily available prediction, we also analyze720

the behavior of the dual base algorithm for different values of σ and ϵ in Figure 6. The performance of721

our algorithm under dual base predictions clearly improves for increasing values of σ as impressions722

become more evenly distributed across the day. Generally, sampling more impressions helps but dual723

base predictions may also lead to a drop in robustness, and more samples can even lead to a more724

adversarial prediction, as we explore further below. Yet, the robustness does still stays above the725

prediction’s competitiveness in these cases.726

Figure 7 shows consistency and robustness for different predictions with varying competitiveness on727

α ∈ {2, 5}. We achieve this by varying the fraction ϵ ∈ [0, 1] of samples for the dual base algorithm728

and the corruption rate p ∈ [0, 1] for random and biased corruptions. For α = 2, the consistency729

exceeds 1 if the prediction is not very good (competitiveness below 0.9). The algorithm is not heavily730

influenced by a bad prediction since α = 2 is low, so the total obtained value remains relatively731

constant. For α = 5, the algorithm might however follow the bad choices of the prediction, so the732

competitiveness varies more. As expected, the average robustness decreases for increasing α, but733

the dual base prediction starts out with a much lower robustness than the corrupted predictions. The734

reason for that is that both the dual base algorithm and exponential averaging make their decisions735

based on the discounted gain. Our algorithm might therefore easily disregard a corrupted prediction736

as its discounted gain is low (or even negative), but the dual base prediction looks like a sensible737

choice. The dual base algorithm therefore manages to fool the algorithm for low α, while a biased738

corruption leads to the worst corruption for larger values of α.739

Hard Instances: We consider the worst-case instance for the Display Ads problem described in740

Mehta et al. (2007). For k advertisers, we create impressions of types r ∈ {1, . . . , k}. An impression741

t of type r has zero value for the first r − 1 advertisers w1,t = · · · = wr−1,t = 0 and value 1 for742

the following advertisers wr,t = · · · = wk,t = 1. We first show all impressions of type 1, then743

all impressions of type 2, and so forth. The instance is difficult as the algorithm—not knowing744

about future impressions—has to allocate impressions of a type equally among advertisers that can745
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Figure 9: Performance on synthetic Ad Words instances, compared to the algorithm of Mehta et al.
(2007). The black lines show the robustness of two worst-case algorithms without predictions: The
algorithm due to Feldman et al. (2009a) which is the basis for our algorithm, and the algorithm of
Mehta et al. (2007), which serves as a basis for the algorithm of Mahdian et al. (2007).

derive value from this impression type. As shown by Mehta et al. (2007), the competitiveness of the746

exponential averaging algorithm reaches 1− 1
e for k →∞ on this instance.747

We evaluate the performance of our algorithm on this worst-case instance in Figure 8. Providing the748

optimum solution as prediction allows the algorithm to quickly ascend to a perfect robustness of 1.749

We also consider two (biased) corrupted versions of this prediction with p ∈ {50%, 75%}. In both750

cases, the algorithm still achieves a robustness above the competitiveness of the prediction. The dual751

base algorithm cannot deliver meaningful predictions as it only sees impressions of the first type,752

which are clearly not representative of the following impressions by construction.753

C.3 Evaluation of GAP on an Ad Words Instance754

With an algorithm for GAP, we can also solve AdWords instances. This allows us to compare our755

generalized algorithm to the algorithm of Mahdian et al. (2007) under the same predictions. In Figure756

9, we run both algorithms on synthetic instances from Section C.2 with an optimum prediction and757

random corruption (p = 0.5). Both algorithms seem to have similar consistency, but our algorithm758

achieves a better robustness, due to a different choice of constants in the underlying algorithms.759
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