
Published as a conference paper at ICLR 2024

NEURON-ENHANCED AUTOENCODER MATRIX COM-
PLETION AND COLLABORATIVE FILTERING: THEORY
AND PRACTICE

Jicong Fan1,2 Rui Chen1,2 Zhao Zhang3∗ Chris H.Q. Ding1
1School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
2Shenzhen Research Institute of Big Data, Shenzhen, China
3School of Computer Science & Information Engineering, Hefei University of Technology, China
fanjicong@cuhk.edu.cn 116010018@link.cuhk.edu.cn
cszzhang@gmail.com chrisding@cuhk.edu.cn

ABSTRACT

Neural networks have shown promising performance in collaborative filtering and
matrix completion but the theoretical analysis is limited and there is still room for
improvement in terms of the accuracy of recovering missing values. This paper
presents a neuron-enhanced autoencoder matrix completion (AEMC-NE) method
and applies it to collaborative filtering. Our AEMC-NE adds an element-wise au-
toencoder to each output of the main autoencoder to enhance the reconstruction
capability. Thus it can adaptively learn an activation function for the output layer
to approximate possibly complicated response functions in real data. We provide
theoretical analysis for AEMC-NE as well as AEMC to investigate the general-
ization ability of autoencoder and deep learning in matrix completion, considering
both missing completely at random and missing not at random. We show that the
element-wise neural network has the potential to reduce the generalization error
bound, the data sparsity can be useful, and the prediction performance is closely
related to the difference between the numbers of variables and samples. The nu-
merical results on synthetic data and five benchmark datasets demonstrated the
effectiveness of AEMC-NE in comparison to many baselines.

1 INTRODUCTION

Recommendation systems (Adomavicius & Tuzhilin, 2005) aim to provide personalized recommen-
dations based on various information such as user purchase records, social networks, user features,
and item (or product) features. One important technique used by recommendation systems is collab-
orative filtering (Billsus & Pazzani, 1998; Mnih & Salakhutdinov, 2008; Koren et al., 2009; Zhang
et al., 2019) based on matrix factorization or matrix completion (Srebro & Shraibman, 2005; Candès
& Recht, 2009; Hu et al., 2012; Vandereycken, 2013; Shamir & Shalev-Shwartz, 2014; Chen et al.,
2014; Sun & Luo, 2015; Nie et al., 2015; Fan et al., 2019; Fan, 2022b). In collaborative filtering
(CF) problems or recommendation problems more generally, the rating matrices are usually highly
incomplete (Resnick et al., 1994; Breese et al., 1998; Koren et al., 2009) and the missing rates are
as high as 0.95, due to the naturally scarce interaction between users and items. Matrix factorization
or completion based CF methods usually exploit the potential low-rank structure of the incomplete
rating matrix to recover the missing values. The low-rankness can be obtained by low-rank factor-
ization (Koren et al., 2009), nuclear norm minimization (Candès & Recht, 2009), or Schatten-p quasi
norm minimization (Fan et al., 2019). Particularly, Lee et al. (2016) proposed a method LLORMA
that approximates the rating matrix as a weighted sum of a few low-rank matrices. LLORMA outper-
formed low-rank matrix completion methods in collaborative filtering, which indicates that rating
matrices in real applications may have more complicated structures rather than a single low-rank
structure. There have been a few works of high-rank matrix completion (Eriksson et al., 2012; Yang
et al., 2015; Elhamifar, 2016; Fan & Chow, 2017; Ongie et al., 2017; Fan & Udell, 2019; Fan et al.,
2020; Fan, 2022a). These works often assume that the columns of a given data matrix are generated
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from a union of subspaces or low-dimensional manifolds. However, these works haven’t shown the
effectiveness of high-rank matrix completion methods in CF.

The success of neural networks and deep learning in computer vision and natural language process-
ing inspired researchers to design neural networks for CF (Salakhutdinov et al., 2007; Dziugaite &
Roy, 2015; Sedhain et al., 2015; Wu et al., 2016; Zheng et al., 2016; He et al., 2017; van den Berg
et al., 2017; Fan & Cheng, 2018; Yi et al., 2020). For instance, Salakhutdinov et al. (2007) proposed
a restricted Boltzmann machines (Hinton et al., 2006) based CF method called RBM-CF, which
showed high performance in the Netflix challenge (Bennett & Lanning, 2007). Sedhain et al. (2015)
proposed AutoRec, an autoencoder (Hinton & Salakhutdinov, 2006; Bengio et al., 2007) based CF
method, which predicts unknown ratings by an encoder-decoder model x̂ = W2σ(W1x), where
x denotes the incomplete ratings on one item or of one user and W1,W2 are weight matrices to
optimize. AutoRec can be regarded as an autoencoder-based matrix completion (AEMC) method.
AutoRec, or AEMC equivalently, outperformed LLORMA slightly on several benchmark datasets
(Sedhain et al., 2015). Zheng et al. (2016) proposed a method called CF-NADE, in which parameters
are shared between different ratings, and it achieved promising performance in several benchmarks.
He et al. (2017) proposed to use a neural network to learn the interaction function or similarity
between users and items. The method showed some improved performance over the baselines in
the setting of implicit feedback (Rendle et al., 2009) but its performance in the setting of explicit
feedback of benchmark datasets is still unknown even today (Rendle et al., 2020; Xu et al., 2021).
Muller et al. (2018) proposed a kernel-based reparametrized neural network, in which the weight
between two units is set to be a weighted kernel function of the location vectors. The method works
well in data visualization and collaborative filtering. Interestingly, Yi et al. (2020) found that the ex-
pected value of the output layer of a neural network depends on the sparsity of the input data. They
proposed a simple yet effective method called sparsity normalization to improve the performance of
neural networks with sparse input data such as the highly incomplete rating matrices.

It is worth mentioning that existing autoencoder-based CF or matrix completion methods such as
(Sedhain et al., 2015; Wu et al., 2016; Muller et al., 2018; Yi et al., 2020) use linear activation
function in the output of the decoder, i.e., x̂ = WLhL−1, where WL denotes the weights of the
output layer and hL−1 denotes the features given by the last hidden layer. Thus, these methods are
under the assumption that the ratings are linear interactions between user features and item features,
though the features can be nonlinear. Such an assumption may not be true or not optimal in real
problems, especially when the data are bounded (e.g. images) or are collected by sensors (e.g.
medical and chemical sensors) with nonlinear response functions. We suspect that the rating values
given by users on items are from some nonlinear response functions because humans have complex
emotion or decision curves (LeDoux, 2000; Baker, 2001). A naive method to incorporate nonlinear
interaction is using nonlinear activation functions such as the sigmoid function (with rescaling) in
the output layer of the decoder, which however has much lower performance than using a linear
activation function. That’s why existing autoencoder-based CF methods use only linear activation
function. Note that a pre-specified activation function for the output layer of the decoder may work
on specific data but may be far away from the possible optimal choice.

Note that collaborative filtering is a special case of the general missing data imputation problem
that also covers many other tasks such as image or video inpainting and missing value imputation
as a preprocessing step for further data analysis. Although neural networks and deep learning have
shown promising performance in collaborative filtering and other missing data imputation tasks
(Yoon et al., 2018; Mattei & Frellsen, 2019), the theoretical analysis is very limited. It is very
necessary and crucial to provide theoretical guarantees for neural networks and deep learning based
collaborative filtering and missing data imputation.

Contribution. We present a novel matrix completion method AEMC-NE, which is an enhanced
autoencoder approach to matrix completion and collaborative filtering. AEMC-NE is composed of
two different neural networks, one is an autoencoder to reconstruct the incomplete rating matrix,
while the other is an element-wise neural network to learn an activation function adaptively for the
output layer of the first autoencoder. We provide theoretical analysis for AEMC-NE as well as
AEMC, considering both missing completely at random and missing not at random. Specifically,
we prove that the element-wise neural network has the potential to reduce the upper bound of the
prediction error for the unknown ratings. We also prove that the data sparsity is not problematic
but useful. Further, we demonstrate the effectiveness of our AEMC-NE on synthetic data and five
benchmarks including MovieLens-100k, MovieLens-1M, MovieLens-10M, Douban, and Flixster.
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2 NEURON-ENHANCED AEMC

Suppose we have an incomplete data matrix X = (x1,x2, . . . ,xn) ∈ Rm×n (e.g. a rating matrix),
where m is the number of variables, n is the number of samples, and the index set of observed
entries is denoted as S. Our goal is to predict the missing entries of X , i.e., {Xij : (i, j) ∈
[m] × [n]\S}. One approach is to fill the missing entries with some values (e.g., mean or zero)
temporarily and then construct an imputation model. Specifically, let X̃ be the temporarily imputed
matrix, where X̃ij = Xij for all (i, j) ∈ S, we learn a nonlinear function f : Rm → Rm such that∑n

i=1

∥∥si ⊙ (x̃i − f(x̃i)
)∥∥2 is as small as possible, where si is a binary vector denoting whether

the corresponding element in xi is observed or not. The problem is formulated as

minimize
f∈F

∥∥S ⊙
(
X̃ − f(X̃)

)∥∥2
F

(1)

where S = (s1, s2, . . . , sn), ⊙ denotes the Hadamard product, f is performed on each column of
X̃ separately, and F denotes a hypothesis set of functions. We have infinite choices for F . For
example, F can be a set of functions in the form of neural network with some parameters W ∈ W ,
where W denotes a set of matrices under some constraints. In this case, problem (1) defines a
denoising autoencoder or stacked denoising autoencoders (Vincent et al., 2010), where the noises
are introduced by filling the missing ratings with zeros. Note that f can be a general neural network
and is not necessarily an encoder-decoder architecture.

Let f be an autoencoder with linear activation function in the output layer. Then (1) becomes

minimize
W1,W2

∥∥S ⊙
(
X̃ −W2σ(W1X̃)

)∥∥2
F
+ λ

(
∥W1∥2F + ∥W2∥2F

)
, (2)

where W1 ∈ Rd×m and W2 ∈ Rm×d are weights matrices to learn and λ is a nonnegative constant
to control the strength of regularization. We have omitted the bias terms for simplicity. σ denotes an
activation function such as ReLU σ(x) = max(x, 0) and Sigmoid σ(x) = 1/(1 + exp(−x)).

Note that (2) is exactly the basic model considered by (Sedhain et al., 2015; Wu et al., 2016; Muller
et al., 2018; Yi et al., 2020). Once (2) is used and d is much smaller than min(m,n), the following
assumption is made implicitly: X̃ can be well approximated by the low-rank matrix W2σ(W1X̃).
However, this assumption does not always hold in real applications. Consider a data generating
model X = h(A′B′), where h : R1 → R1 is an element-wise nonlinear function and A′ ∈ Rm×d,
B′ ∈ Rd×n may be generated by some nonlinear functions. If the nonlinearity of h is high, X
cannot be well approximated by a rank-d matrix. This analysis indicates that if the element-wise
nonlinearity in generating X is strong, (2) should use a large d to ensure a small training error.

The element-wise nonlinearity widely exists in real data. For example, in imaging science, the
intensity of pixels are nonlinear responses of photoelectric element to the spectrum. In chemical
engineering, many sensors have nonlinear responses. In biomedical engineering, the dose-responses
are often nonlinear curves. Hence, in collaborative filtering, the ratings may be nonlinear responses
to some latent values, according to the studies on response curves in neuroscience and psychology
(LeDoux, 2000; Baker, 2001). Therefore, instead of (2), one may consider the following problem

minimize
W1,W2

∥∥S ⊙
(
X̃ − h

(
W2σ(W1X̃)

))∥∥2
F
+ λ

(
∥W1∥2F + ∥W2∥2F

)
, (3)

where h should be determined beforehand. A naive approach to determining h is choosing a bounded
or partially bounded nonlinear function according to the range of the data. For example, if the data
are image pixels within [0, 1], one may use Sigmoid. If the data are nonnegative, one may use
ReLU. However, such choices only considered the range of the data, which is just a small portion of
the nonlinearity. Within the range, the true response functions are not necessarily linear (ReLU) or
related to exponential (Sigmoid), and can be much more complicated.

As it is difficult to determine h in advance, we propose to learn h from the data adaptively. We have
different approaches to learning h. The first approach is combining various activation functions, i.e.,
hθ(z) =

∑k
i=1 θiσi(z), where σi(·) are different activation functions and θ = (θ1, . . . , θk)

⊤ are
parameters to estimate. However, it is not clear whether this is able to approximate a wide range of
nonlinear functions. The second approach is using polynomial functions, i.e., hθ(z) =

∑k
i=1 θz

k.
It is a k-order polynomial function and can well approximate any smooth functions provided that k
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Figure 1: Example schematic of AEMC-NE with one hidden layer in each of the two networks.
Users (variables) and items (samples) are represented by rows and columns of the matrix, in which
observed ratings are colored and unobserved ratings are left white. Each target rating being predicted
is marked with a question mark. The element-wise network is shared for all output nodes. The roles
of users and items can be exchanged, namely, users could be samples and items could be variables.

is sufficiently large. Another approach is using a neural network, i.e.,
hΘ(z) = ΘLΘ(σΘ(ΘLΘ−1σΘ(· · ·σΘ(Θ1z) · · · ))), (4)

where Θ1,ΘLΘ are vectors, Θ2, . . . ,ΘLΘ−1 are matrices, and σΘ is a fixed activation function. Ac-
cording to the universal approximation theorems (Pinkus, 1999; Sonoda & Murata, 2017; Lu et al.,
2017), (4) can approximate any continuous functions when the network is wide or deep enough. As
(4) is more flexible than other choices in function approximation, we propose to solve

minimize
W,Θ

∥∥S ⊙
(
X̃ − hΘ

(
gW (X̃)

))∥∥2
F
+ λW

LW∑
l=1

∥Wl∥2F + λΘ

LΘ∑
l=1

∥Θl∥2F , (5)

where W = {W1, . . . ,WLW
}, Θ = {Θ1, . . . ,ΘLΘ

}, and

gW (X̃) = WLW

(
σW

(
WLW−1σW (· · ·σW (W1X̃) · · · )

))
. (6)

In addition, we assume Wl ∈ Rdl×dl−1 , l ∈ [LW ], and Θl ∈ Rpl×pl−1 , l ∈ [LΘ]. Note that
d0 = dLW

= m and p0 = pLΘ = 1. Comparing (5) with (1), we see that we have replaced f
by hΘ ◦ gW with Frobenius-norm constrained weight matrices. Model (5) is exactly our neuron-
enhanced autoencoder-based matrix completion (AEMC-NE) method. There are two different neu-
ral networks. The first one is an autoencoder defined by hΘ ◦ gW , which is to learn a contraction
map from the incomplete data matrix X̃ to itself or its observed entries more precisely. The second
neural network is performed in an element-wise manner to learn an activation function h adaptively
for the output layer of the autoencoder. Figure 1 shows an example schematic of AEMC-NE.

It is worth noting that, shown in Figure 1, the network architecture of the proposed method cannot
be easily adapted for new users because we need to, at least, change the size of the output layer
of the main neural network. In the output layer of the main network, we add one node for each
new user and train the weights between the last but one layer and the new output nodes using the
ratings of these new users, where we are not considering the cold-start problem. It is also worth
noting that (5) does not make any assumption or take advantage of the prior knowledge about the
missing mechanism of X . When the mechanism is missing not at random, supposing the entries are
observed with different probabilities (e.g., pij for Xij , (i, j) ∈ S), a better approach is to replace S

with Q, where Qij = p̂
−1/2
ij and p̂ij denotes an estimation for pij .

Optimization and complexity analysis AEMC-NE (5) can be solved by various optimizers such
as gradient descent and Adam (Kingma & Ba, 2015). We analyze the time and space complexity
of AEMC-NE with a gradient-based optimizer. In each iteration (suppose the batch size is b), the
time complexity is O

(
b
∑LW

l=1 dldl−1 + mb
∑LΘ

l=1 plpl−1

)
, in which the first part is from the main

neural network and the second part is from the element-wise neural network. The space complexity
is O

(
b
∑LW

l=0 dl +
∑LW

l=0 dldl−1 +mb
∑LΘ

l=1 pl +
∑LΘ

l=0 plpl−1

)
. The element-wise neural network

increased the time and space complexity to some extent. Considering the single hidden layer spe-
cial case, the time and space complexity of AEMC-NE are O

(
dmb + pmb

)
and O

(
mb + pmb

)
respectively. Note that p is usually much smaller than d, then the element-wise neural network just
increased the time complexity slightly. Although the space complexity became p times of the main
network, it is still acceptable as b ≪ n. See the time costs in Table 6.
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3 THEORETICAL GUARANTEE

3.1 MISSING COMPLETELY AT RANDOM

In this section, we analyze the capability of AEMC-NE in predicting the missing values of X . Note
that 1

|S|∥S ⊙ (X − X̂)∥2F = 1
|S|∥S ⊙ (X̃ − X̂)∥2F ≜ LS , where X̂ = hΘ(gW (X̃)). We have

LS =
1

|S|
∑

(i,j)∈S ℓ(Xij , X̂ij), where ℓ(Xij , X̂ij) = (Xij−X̂ij)
2. Note that instead of the square

loss, we may use other functions such as |Xij − X̂ij |. In the remainder of this paper, ℓ(Xij , X̂ij)
denotes a general loss. Let Sc be the set of missing values of X , i.e., Sc = [m] × [n]\S. The

generalization error is quantified by LSc =
1

|Sc|
∑

(i,j)∈Sc ℓ(Xij , X̂ij). We have1.

Theorem 3.1. Suppose a set S of elements of X ∈ Rm×n are observed uniformly and randomly,
which results in an incomplete matrix X̃ with unknown ratings replaced by some values such as
zero. Let X̂ = hΘ(gW (X̃)), where hΘ is defined by (4) and gW is defined by (6). Suppose
∥Wl∥2 ≤ al, ∥Wl∥2,1 ≤ a′l, l ∈ [LW ], d̄ := max(d1, . . . , dLW−1

) < m, and ∥Θl∥2 ≤ bl,
∥Θl∥F ≤ b′l, l ∈ [LΘ]. Suppose the Lipschitz constants of σW and σΘ are ρ and ϱ respectively.
Suppose supi,j |ℓ(Xij , X̂ij)| ≤ τℓ, ℓ is ηℓ-Lipschitz, and max(∥X̃∥∞, ∥X̂∥∞) ≤ µ. Then with
probability at least 1− δ over the random sampling S,

LSc − LS ≤C1ηℓv1mn ln (mn)

|S||Sc|
+

C2ηℓµ(mn)3/2
√
v2 ln v3

|S||Sc|

+
11τℓmn

√
min(|S|, |Sc|)

|S||Sc|
+ 3τℓ

√
mn

|S||Sc|
ln

1

δ
,

(7)

where v1 = ϕ
√
lnm

(∑LW

l=1

(a′l
al

)2/3)3/2
, v2 =

∑LΘ

l=1 plpl−1, v3 = ϕLΘµ
−1 maxl

b′l
bl

> 1, ϕ =

ρLW−1ϱLΘ−1∥X̃∥F
(∏LW

l=1 al
)(∏LΘ

l=1 bl
)
, and C1, C2 are some absolute constants.

First, let’s show that the bound is non-trivial. Since activation functions are often at most 1-Lipschitz,
we let ρ = ϱ = 1. Suppose a1 = · · · = aLW

= 1 and b1 = · · · = bLΘ
= 1. Since a′l/al ≤ dl−1, we

have
(∑LW

l=1

(
a′la

−1
l

)2/3)3/2 ≤ L
3/2
W maxl a

′
la

−1
l ≤ L

3/2
W d̄. In addition, maxl b

′
l/bl ≤ maxl

√
pl.

For convenience, hereinafter, we assume that |Sc| ≥ |S|. Then the bound in Theorem 3.1 becomes

LSc ≤LS + Õ

(
ηℓmnL

3/2
W d̄∥X̃∥F

|S||Sc|

)
+ Õ

(
ηℓµ(mn)3/2

√∑LΘ
l=1 plpl−1

|S||Sc|

)
+∆δ, (8)

where ∆δ = 11τℓmn

|Sc|
√

|S|
+ 3τℓ

√
mn

|Sc||S| ln
1
δ . Note that ∥X̃∥F ≤

√
mnmaxij |X̂ij |. If |S||Sc| >

C3 max
(
L
3/2
W d̄(mn)3/2 maxij |X̂ij |, (mn)3/2

√∑LΘ

l=1 plpl−1

)
holds for some constant C3, the

bound is non-trivial. Obviously, the condition holds if d is not too large and |S| is close to |Sc|.
Particularly, Theorem 3.1 provides the following results.

A. The element-wise network is helpful.

Let L0
S = 1

|S|∥S ⊙ (X̃ − gW (X̃))∥2F and LS = 1
|S|∥S ⊙ (X̃ − hΘ(gW (X̃)))∥2F be the training

errors of AEMC (AEMC-NE with the element-wise network ablated) and AEMC-NE respectively.
hΘ can be reformulated as hΘ(z) = z + rΘ̄(z), where rΘ̄ is a suitable neural network. Then
LS = 1

|S|∥S ⊙ (X̃ − gW (X̃) − rΘ̄(gW (X̃)))∥2F . Thus, we always have ∆TE := LS − L0
S ≤ 0

theoretically, though it is difficult to quantify ∆TE because it depends on unknown data generating
model. According to Theorem 3.1, the increase of complexity, denoted by ∆cpl, introduced by the

element-wise network of AEMC-NE depends on ϱLΘ−1,
∏LΘ

l=1 bl, and C2ηℓµ(mn)3/2
√
v2 ln v3

|S||Sc| , which

1Given a matrix Z, we use ∥Z∥2, ∥Z∥2,1 :=
∑

i ∥zi∥, and ∥Z∥∞ := maxij |Zij | to denote the spectral
norm, ℓ21 norm, and ℓ∞ norm respectively.
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are small. Suppose the nonlinearity of the response function existing in X is strong enough, we have
∆TE +∆cpl < 0. It means AEMC-NE guarantees a tighter upper bound of test error than AEMC.

On the other hand, suppose we add more (LΘ, to be more precise) layers to the de-
coder of AEMC and obtain an AEMC+ that has the same expressive ability as AEMC-NE.
Then AEMC+ and AEMC-NE have the same training error and we only need to compare
the model complexity. As explained in Appendix B, compared with AEMC-NE, AEMC+
has 2m(m − 1)p1 + (LΘ − 2)m(m − 1)p2 ≜ ∆par more parameters, where p =
min1≤l≤LΘ−1 pl. Obviously, ∆par is a large number. More formally, for AEMC+, in Theo-
rem 3.1, ϕ becomes ϕ′ = ρLW−1ρLΘ−1∥X̃∥F

(∏LW

l=1 al
)(∏LW+LΘ

l=LW+1 al
)

and v1 becomes v′1 =

ϕ′
√
lnm

(∑LW+LΘ

l=1

(a′
l

al

)2/3)3/2
. Since the element-wise network (width p) in AEMC-NE is much

smaller than the added layers (width pm, see Figure 3) in AEMC+, we have v′1 > v1, which means
AEMC+ has a looser generalization error bound than AEMC-NE.

B. Filling the missing values with zeros is helpful.
Suppose we have two methods to fill the unknown ratings, one is zero filling and the other is a
method different from zero filling (e.g. random filling or mean filling). Suppose based on the two
methods, we get the same training errors, i.e., Lzero

S = Lother
S . Using Theorem 3.1 and the fact

∥X̃zero∥F < ∥X̃other∥F , we conclude that the upper bound of Lzero
Sc is less than the upper bound of

Lother
Sc . This result has been empirically verified by many previous work (e.g., (Sedhain et al., 2015;

Muller et al., 2018; Yi et al., 2020)) in which the missing values are filled by zeros rather than the
means or other values. It is worth noting that although the zero-filling, compared with some other
weak imputation methods, may lead to a larger training error Lzero

S , the v1 in equation 7 can be much
smaller, which finally leads to a tighter bound of Lzero

Sc . However, if we have a perfect imputation
(e.g., filling the missing values with the true values), the training error Lother

S can be very small,
though the corresponding v1 is larger, which eventually leads to a tight bound of Lother

Sc .

C. Increasing n reduces the upper bound.

Let the sampling rate |S|
mn ≜ ζ and network structures be fixed. Then (8) becomes

LSc ≤LS + Õ
(

ηℓL
3/2
W maxij |X̃ij |
ζ(1−ζ)mn/d̄

)
+ Õ

(
ηℓµ

√∑LΘ
l=1 plpl−1

ζ(1−ζ)
√
mn

)
+ 11τℓ√

(1−ζ)ζ2mn
+ 3τℓ

√
1

(1−ζ)ζmn ln
1

δ
.

Therefore, when n increases, the bound becomes tighter. In addition, LSc ≤ LS when n → ∞.
In real applications, if there are more users than items, we construct a neural network such that the
input is a vector of each user’s rating, where items correspond to features and users correspond to
samples. In other words, a larger difference between the number of users and the number of items
(or the number of variables and the number of samples more generally) leads to a tighter upper
bound, because we can construct the autoencoder along the smaller size of the matrix.

3.2 MISSING NOT AT RANDOM

It should be pointed out that Theorem 3.1 is based on the assumption of missing completely at ran-
dom (MCAR). The MCAR assumption has been widely used in previous work of matrix completion
(Srebro & Shraibman, 2005; Candès & Recht, 2009; Shamir & Shalev-Shwartz, 2014; Fan et al.,
2019) and missing data imputation (Yoon et al., 2018; Mattei & Frellsen, 2019). However, it has
been found that in collaborative filtering, the data entries may be missing not at random (MNAR)
(Marlin et al., 2007; Marlin & Zemel, 2009; Schnabel et al., 2016; Wang et al., 2019; Ma & Chen,
2019). Hence, in addition to Theorem 3.1, we propose a generalization error bound under the as-
sumption of MNAR, in which the entries of the matrix are observed with different probabilities.
Theorem 3.2. Suppose a set S of elements of X ∈ Rm×n are observed, where Xij is observed with
probability pij , ∀(i, j) ∈ S. Let X̂ = hΘ(gW (X̃)). Based on the same definitions of X̃ , hΘ, gW ,
τℓ, ηℓ, v1, v2, v3 used in Theorem 3.1, with probability at least 1− 2

mn ,
1

mn

∑
(i,j)∈[m]×[n]

ℓ(Xij , X̂ij)−
1

mn

∑
(i,j)∈S

p−1
ij ℓ(Xij , X̂ij)

≤
√∑

(i,j)∈S p−2
ij

mn

(
C ′

1ηℓv1 + C ′
2τℓ
√
v2 ln v3

)
+ τℓ

(
1√
mn

+

√∑
(i,j)∈S p−2

ij

mn

)
,

(9)
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where C ′
1 and C ′

2 are some absolute constants.

In the theorem,
√∑

(i,j)∈S p−2
ij /(mn) is at the scale of 1/

√
|S|, provided that the variance of pij

is not too large. The RHS of the bound is comparable to that in Theorem 3.2. Therefore, the
conclusions A, B, C for Theorem 3.1 also hold for Theorem 3.2. In reality, pij are unknown but
can be estimated via some approaches (Schnabel et al., 2016; Wang et al., 2019; Ma & Chen, 2019).
Based the estimation (denoted by p̂ij), we can obtain a bound for 1

mn

∑
(i,j)∈[m]×[n] ℓ(Xij , X̂ij)−

1
mn

∑
(i,j)∈S p̂−1

ij ℓ(Xij , X̂ij), which is shown by Theorem A.1 in the supplementary material.

4 CONNECTION WITH PREVIOUS WORK

The element-wise neural network of AEMC-NE can be regarded as an activation function adaptively
learned from data. It is related to the previous work on adaptive activation functions such (Lin
et al., 2013; Agostinelli et al., 2014; Hou et al., 2017; Goyal et al., 2019). For instance, Hou et al.
(2017) showed that applying adaptive activation functions in the regression (second-to-last) layer of
a neural network can significantly decrease the bias. Their adaptive activation function is in the form
of piece-wise polynomials. We found that, empirically, in AEMC-NE, the improvement given by
polynomials (Hou et al., 2017) is not significant, possibly due to the unboundedness of polynomials.

The theoretical study for autoencoder and deep learning based collaborative filtering is very limited.
Recently a few researchers studied the generalization ability or sample complexity of deep neural
networks (Bartlett et al., 2017; Neyshabur et al., 2018; Golowich et al., 2018) but their results do not
apply to autoencoder-based CF or missing data imputation as well as our AEMC-NE.

Shamir & Shalev-Shwartz (2014) provided the following generalization bound for nuclear norm
minimization based CF: LSc ≤ LS + O

(
ηℓ∥X̂∥∗(

√
m+

√
n)

|S|

)
+ R, where X̂ denotes the recovered

matrix given by nuclear norm minimization and R stands for the remainder of their result (Theorem
6). Suppose the rank of X̂ is d̄. Then the term related to the nuclear norm can be as large as

O
(

ηℓ

√
d̄∥X̂∥F (

√
m+

√
n)

ζmn

)
or O

(
ηℓµ
√

d̄
ζ2m

)
, where we have assumed m < n. According to the

result C of Theorem 3.1, the dominating term in our bound can be Õ
(
ηℓµ
√

d̄
ζ2m

√
L3

W ζd̄

n

)
. Note that

with the same d̄, the training error of our AEMC-NE is less than the training error of nuclear norm
minimization because we are using neural networks. Now we conclude that when n is sufficiently
large (compared to L3

W ζd̄), our bound is tighter than that of (Shamir & Shalev-Shwartz, 2014).

5 NUMERICAL RESULTS

5.1 EXPERIMENTS ON SYNTHETIC DATA

We generate a synthetic data matrix X of size 300 × 3000 using a latent (10 dimension) variable
model with a nonlinear response function (detailed in Appendix C). We randomly drop a certain
portion of the elements of X and aim to recover the missing values. This setting is MCAR. We
compare our AEMC-NE with AEMC as well as its variants under the evaluation of the following
metric relative recovery error = ∥(X− X̂)⊙ S∥F /∥X⊙ S∥F . The results (average of 10 runs)
are reported in Figure 2. We see that, in Figure 2(a), AEMC-NE outperforms AEMC and its variants
(with more hidden layers) in all cases when the missing rate increases from 0.1 to 0.8 and the
superiority of AEMC-NE is significant when the missing rate is not too high. Importantly, this
result is consistent with the conclusion A given by Theorem 3.1. Figure 2(b) shows that AEMC-NE
is not sensitive to the size of the element-wise network provided that it is not too small. Figure 2(c)
shows that both AEMC and AEMC-NE are not sensitive to the width of the middle layer of the
autoencoder. Figure 2(d) indicates that relatively small weight decays have little impact.
Besides MCAR, we also conduct some experiments of MNAR. The relative recovery errors (over
five runs) are reported in Table 1, where the missing probability varies along the locations of the en-
tries in the matrix. The detailed setting is in Appendix C. We see that our AEMC-NE outperformed
the baseline AEMC significantly in all cases. We can compare this table (MNAR) with the results in
Figure 2 (MCAR) and find that the performances are similar. These results verify that our method
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Figure 2: Recovery performance on synthetic data in the setting of MCAR. (a) Influence of miss-
ing rate. Network structure: AEMC 300-100-30-100-300; AEMC+ 300-100-30-100-100-300;
AEMC++ 300-100-30-100-100-100-300; AEMC-NE 300-100-30-100-300 for the main network
and 1 − w − w − 1 for the element-wise network, where w = 20. (b) AEMC-NE with differ-
ent width (w) of the hidden layers in the element-wise network. (c) Influence of the width (middle
layer) of the main network. The missing rate is 0.5 and w = 20. (d) Influence of the weight decay
(λW = λΘ). The missing rate is 0.5 and w = 20.

works well for both MCAR and MNAR, AEMC-NE outperforms AEMC, and the element-wise
network of AEMC-NE is indeed effective in improving recovery accuracy.

Table 1: Rcovery performance on synthetic data in the setting of MNAR
Missing rate 0.2 0.3 0.4 0.5 0.6 0.7

AEMC 0.170±0.002 0.171±0.001 0.180±0.003 0.187±0.002 0.211±0.003 0.268±0.004

AEMC-NE 0.101±0.002 0.106±0.003 0.109±0.004 0.124±0.004 0.153±0.005 0.243±0.006

5.2 EXPERIMENTS ON MOVIELENS DATASETS

In this section, we evaluate the proposed method AEMC-NE on Movielens-100K, Movielens-1M,
and Movielens-10M (Harper & Konstan, 2015). These datasets contain real-world ratings for 1682,
3900, and 10000 movies given by 943, 6040, and 72000 users respectively. We randomly sample
90% of the known ratings as training set, leaving the remaining 10% as the test set. Among the
training set, 5% are held out for hyperparameter tuning. The model performance is evaluated by the

root mean squared error defined as RMSE =
√

1
|Sc|
∑

(i,j)∈Sc(Xij − X̂ij)2, where Sc denotes the
set of test ratings. In our AEMC-NE, the main neural network has one hidden layer. The numbers
of hidden units are 500, 900, and 1000 for MovieLens-100k, MovieLens-1M, and MovieLens-10M
respectively. The element-wise neural network has one hidden layer, of which the size is 200. The
regularization parameters λW and λΘ were chosen from {0.01, 0.1, 1, 10, 50, 100, 200, 500}. The
optimizer for AEMC-NE is Adam (Kingma & Ba, 2015).

In Table 2, we report the mean RMSE of our AEMC-NE in comparison to a few baselines based on
20 random splits. Our AEMC-NE outperformed all baselines on MovieLens-100k and MovieLens-
1M. We have tried to increase the depth of the main neural network and the element-wise neural
network, but the improvements in terms of RMSE are not significant.

5.3 EXPERIMENTS ON DOUBAN AND FLIXSTER

We use the preprocessed subsets and splits provided by Monti et al. (2017). The datasets both
contain 3000 users and 3000 items. Douban contains 136,891 ratings with density 0.0152 on a
rating scale {1, 2, 3, 4, 5}. Flixster contains 26,173 ratings with density 0.0029 on a rating scale
{0.5, 1, 1.5, ..., 5}. Five percent of the training samples are used for hyperparameter tuning. In
AEMC-NE, the main network has one hidden layer, of which the size is 500, for both datasets. The
structure of the element-wise network is the same as that used for the MovieLens datasets. In Table
3, we show the mean RMSE on 5 repeated experiments. AEMC-NE outperforms other baselines on
both datasets. Note that some compared methods include extra content like the side information of
users and items into the model, while AEMC-NE does not require extra content.
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Table 2: RMSE results on the three MovieLens datasets
Model ML-100k ML-1M ML-10M
BiasMF (Koren et al., 2009) 0.911 0.845 0.803
NNMF (Dziugaite & Roy, 2015) 0.903 0.843 -
LLORMA (Lee et al., 2016) 0.8881 0.833 0.782
GC-MC (van den Berg et al., 2017) 0.905 0.832 0.777
AutoSVD++ (Zhang et al., 2017) 0.904 0.848 -
AutoSVD (Zhang et al., 2017) 0.901 0.86 -
CF-NADE (Zheng et al., 2016) - 0.829 0.771
DMF+ (Yi et al., 2019) 0.8889 0.8321 -
IMC-GAE (Shen et al., 2021) 0.897 0.829 -
GHRS (Zamanzadeh Darban & Valipour, 2022) 0.8887 0.833 0.782
AEMC (AutoRec) (Sedhain et al., 2015) - 0.831± 0.003 0.782± 0.003
AEMC (AutoRec, reproduced) 0.8818 ± 0.0082 0.8291± 0.0021 0.7780± 0.0024
AEMC (ReLU output) 0.8807 ± 0.0092 0.8276± 0.0025 0.7851 ± 0.0029
AEMC-NE (ours) 0.8767 ± 0.0089 0.8248 ± 0.0024 0.7723 ± 0.0025

Table 3: RMSE result of AEMC-NE and compared methods on Douban and Flixster dataset
Model Douban Flixster
PMF (Mnih & Salakhutdinov, 2008) 0.7492 0.9809
GRALS (Rao et al., 2015) 0.8326 1.245
sRGCNN (Monti et al., 2017) 0.801 0.926
GC-MC (van den Berg et al., 2017) 0.734 0.917
Factorized EAE (Hartford et al., 2018) 0.738 0.908
GRAEM (Strahl et al., 2020) 0.7497 0.8857
AEMC (AutoRec, reproduced) 0.7325± 0.0009 0.957± 0.0003
AEMC (ReLU output) 0.7306 ± 0.0010 0.9610 ± 0.0005
AEMC-NE (ours) 0.7286± 0.0007 0.8816± 0.0003

5.4 ADDITIONAL ANALYSIS FOR CF EXPERIMENTS

Note that in Tables 2 and 3, the improvement given by AEMC-NE is not very significant compared
with the linear models such as LLORMA. The reason is that the rating matrices of these datasets
are square or nearly square. Our theoretical results have shown that the superiority of AEMC-NE is
more significant when the rating matrix is very fat or tall. Here we consider a subset of MovieLens-
1M consisting of only 500 users who rated most. Then the size of the rating matrix is 3706×500 and
the train-test ratio is 9 : 1. The RMSEs (average of 10 runs) of SVD, SVD++, AEMC, AEMC+,
AEMC++ (one or two more hidden layers compared to AEMC) and AEMC-NE are reported in
Table 4. AEMC-NE outperformed the three baselines largely, especially when compared to the
results in Tables 2 and 3. This result is consistent with our theoretical analysis.

Table 4: RMSEs on MovieLens-1M subset
Method SVD SVD++ AEMC AEMC+ AEMC++ AEMC-NE AEMC+-NE
RMSE 0.8713 0.8591 0.8265 0.8294 0.8308 0.8182 0.8207

More results The time cost comparison, results of NDCG metric, experiments of CF in the case of
MNAR, and missing data imputation on UCI datasets are in Appendices E, F, and G respectively.

6 CONCLUSION

This paper presented a novel collaborative filtering method called AEMC-NE, which is composed
of two neural networks: one is a layer-wise network and the other is an element-wise network that
is able to learn an activation function for the output layer adaptively. We also analyzed the gener-
alization error bounds for AEMC-NE, which verified the effectiveness of AEMC-NE theoretically.
AEMC-NE outperformed many baselines on a few benchmark datasets of collaborative filtering.
Note that our method can be extended to the scenarios of implicit feedback if we use negative sam-
pling and ranking loss functions such as the BPR loss (Rendle et al., 2009). In addition, AEMC-NE
is applicable to more general missing data imputation problems.
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A MORE THEORETICAL RESULT

The following theorem provides a generalization error bound for missing data imputation when the
missing pattern is missing not at random and the propensities are estimated.

Theorem A.1. Suppose a set S of elements of X ∈ Rm×n are observed, where Xij is observed
with probability pij , ∀(i, j) ∈ S. Suppose the estimated propensities are p̂ij , ∀(i, j) ∈ S. Let
X̂ = hΘ(gW (X̃)). Based on the same conditions or definitions of X̃ , hΘ, gW , τℓ, ηℓ, v1, v2, v3
used in Theorem 3.1, with probability at least 1− 2

mn ,

1

mn

∑
(i,j)∈[m]×[n]

ℓ(Xij , X̂ij)−
1

mn

∑
(i,j)∈S

p̂−1
ij ℓ(Xij , X̂ij)

≤

√∑
(i,j)∈S p̂−2

ij

mn

(
C ′

1ηℓv1 + C ′
2τℓ
√
v2 ln v3

)
+ τℓ

 1√
mn

+

√∑
(i,j)∈S p̂−2

ij

mn


+

τℓ
mn

∑
(i,j)∈[m]×[n]

∣∣∣∣1− pij
p̂ij

∣∣∣∣ ,
(10)

where C ′
1 and C ′

2 are some absolute constants.
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B CONNECTION BETWEEN THE NETWORK STRUCTURES OF AEMC AND
AEMC-NE

Figure 3 shows an example of the network architecture of AEMC-NE. We see that adding the orange
connections forms a new neural network without an element-wise network. The new network can be
regarded as an extension of AEMC (denoted by AEMC+), of which the decoder has more layers. It
indicates that adding more layers to the decoder of AEMC and ensuring sparse and shared weights
yield AEMC-NE.

In Figure 3, intuitively, the number of orange connections is much larger than the number of black
connections. To be more precise and general, suppose the element-wise network of AEMC-NE has
k hidden layers of width p and the decoder of AEMC+ has k additional hidden layers, then AEMC+
has 2m(m− 1)p+ (k− 1)m(m− 1)p2 more parameters than AEMC-NE. Compared with AEMC,
AEMC+ introduces an additional multiplication ρk+1

∏LW+k+1
l=LW+1 al (which could be much larger

than one) to the ϕ in Theorem 3.1. Thus, AEMC+ has a higher generalization error bound than
AEMC-NE.

Figure 3: Network structure of AEMC-NE or AEMC (with more layers in the decoder)

C EXPERIMENTAL SETTING ABOUT THE SYNTHETIC DATA

We generate synthetic data using the following nonlinear latent variable model

X = W3Tanh(W2Tanh(W1Z)),

X = (Cosine(X) +X),

where W1 ∈ R50×10,W2 ∈ R100×50,W3 ∈ R300×100 are drawn from the uniform distribution of
[−1, 1], and Z ∈ R10×3000 is random Gaussian matrix.

For MNAR, we partition the data matrix into four blocks, i.e., X =

[
X1 X2

X3 X4

]
. In block Xi,

the elements are missing with probability pi, i = 1, 2, 3, 4. We let p1 < p2 < p3 < p4. The
correspondence between the total missing rate and pi is in Table 5. We see that the differences
between the missing rates are large. For instance, when the total missing rate is 0.2, p4/p1 = 21.

Table 5: Details of MNAR setting on the synthetic data
total missing rate 0.2 0.3 0.4 0.5 0.6 0.7

p1, p2
p3, p4

0.02, 0.13
0.23, 0.43

0.12, 0.22
0.33, 0.53

0.23, 0.33
0.43, 0.62

0.33, 0.42
0.52, 0.72

0.42, 0.53
0.63, 0.83

0.53, 0.63
0.73, 0.93

p4/p1 21.5 4.42 2.70 2.28 1.98 1.75

D THE INFLUENCE OF HIDDEN UNITS NUMBER IN AEMC-NE

Figure 4 shows the influence of the number of hidden units in each of the neural networks of NE-
AEMC on MovieLens-1M. In the left plot, the number of hidden units of the element-wise neural
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network is fixed as 200. In the right plot, the number of hidden units of the main neural network
is fixed as 900. We see that in NE-AEMC, the main neural network with 900 hidden units and the
element-wise neural network with 200 hidden units provide the best performance.

Figure 4: Influence of the number of hidden units in each of the two neural networks of NE-AEMC
on MovieLens-1M.

E TIME COSTS COMPARISON AND NDCG RESULTS

We compare the time costs of AEMC-CF and AEMC (Sedhain et al., 2015) in Table 6. On each
of the five datasets, the time cost of our NE-AEMC is sligtly higher than that of AEMC, which is
consistent with the theoretical time complexity we analyzed at the end of Section 2.

Table 6: Running time (second) of AEMC and NE-AEMC
Dataset AEMC AEMC-NE
Douban 12.1 17.8
Flixster 10.0 15.1
ML-100k 1.2 2.5
ML-1M 11.1 21.0
ML-10M 1820 2135

Besides RMSE results reported in the main paper, here we show the results in terms of the Nor-
malized Discounted Cumulative Gain (NDCG) accumulated at a particular rank position k, which is
defined as

NDCG@k =
DCGk

IDCGk
, (11)

where DCGk =
∑k

i=1
reli

log2(i+1) , IDCGk is the ideal discounted cumulative gain, and reli is the
graded relevance of the result at position i. It is obvious that

RMSE = 0 =⇒ NDCG@k = 1 ∀k. (12)

This implies that a good RMSE often corresponds to a good NDCG. In recommendation systems,
one may concern more about the top k recommendations. That’s why here we consider NDCG, in
addition to RMSE.

The results of NDCG@k (k = 1, 5, 10, 50) are reported in Table 7. We see that the proposed AEMC-
NE outperformed AEMC in all cases. The improvement given by AEMC-NE is more significant
when k is smaller.

Table 7: Results of NDCG@10 and NDCG@50 on ML-100k and ML-1M.
NDCG@1 NDCG@5 NDCG@10 NDCG@50

ML-100k AEMC 0.9059±0.0041 0.9313±0.0020 0.9451±0.0013 0.9678±0.0010
AEMC-NE 0.9106±0.0054 0.9328±0.0025 0.9462±0.0014 0.9686±0.0009

ML-1M AEMC 0.9197±0.0019 0.9325±0.0009 0.9441±0.0006 0.9678±0.0004
AEMC-NE 0.9222±0.0013 0.9339±0.0007 0.9446±0.0006 0.9681±0.0003

It should be pointed out that in this paper, we are considering explicit feedback (ratings range from
1 to 5 or 10) rather than implicit feedback (binary feedback 0 or 1). So our results of NDCG cannot
be compared with the results reported by many previous papers.
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F EXPERIMENTS ABOUT MISSING NOT AT RANDOM

We also test AEMC (AutoRec) and AEMC-NE in the case of MNAR in comparison to MCAR. For
MCAR, we follow the definition such that each element has 10% probability of being missing. For
MNAR, we consider that higher ratings are more likely to be missing. The missing probability is set
as p(r) = Sigmoid(r) − 0.15, where r is the rating value. The results (a single trial) are reported
in Table 8. We see our AEMC-NE outperforms AEMC in all cases.

Table 8: MCAR vs MNAR on MovieLens datasets
data missing

mechanism AEMC AEMC-NE

ML-100K MCAR 0.886 0.878
ML-100K MNAR 0.988 0.920
ML-1M MCAR 0.828 0.825
ML-1M MNAR 0.902 0.853
ML-10M MCAR 0.780 0.773
ML-10M MNAR 0.830 0.815

G EXPERIMENTS OF MISSING DATA IMPUTATION ON UCI DATASETS

Here we consider general missing data imputation on four UCI2 datasets, “Breast” 3, “Letter”4,
“Credit”5, and “News”. The results are reported in Table 9, where the missing rate is 20% and the
results of MissForest, MICE, EM, Auto-encoder, and GAIN are all from (Yoon et al., 2018).

We see that our AEMC-NE outperforms all other methods on the Credit data and outperforms Auto-
encoder in all cases. Note that in this study, we just set the numbers of hidden units in the two neural
networks of AEMC-NE as 100 and 50 respectively and the data preprocessing is the same as that of
(Yoon et al., 2018). It is expected that the performance of AEMC-NE can be further improved by
tuning the numbers of hidden layers and hidden units.

Table 9: Experiment result on UCI datasets
RMSE Breast Letter Credit News
MissForest 0.0608 0.1605 0.1976 0.1623
MICE 0.0646 0.1537 0.2585 0.1763
EM 0.0634 0.1563 0.2604 0.1912
Auto-encoder 0.0697 0.1351 0.2388 0.1667
GAIN (Yoon et al., 2018) 0.0546 0.1198 0.1858 0.1441
AEMC-NE 0.0634 0.1328 0.1775 0.1551

H PROOF FOR THEOREM 3.1

First of all, we give the following lemmas.
Lemma H.1. Let H = {H ∈ Rm×n : hij = ΘLΘσ (ΘLΘ−1(· · ·σ(Θ1zij) · · · )) ,∀(i, j) ∈ [m] ×
[n]; Θl ∈ Rpl×pl−1 , ∥Θl∥2 ≤ bl, ∥Θl∥F ≤ b′l,∀l ∈ [LΘ];Z ∈ Z, ∥Z∥F ≤ sz}, where the
Lipschitz constant of σ is ϱ. Suppose the covering number of Z with respect to ∥ · ∥F is upper-
bounded by κε and ε = ϵ

(
2ϱLΘ−1

∏LΘ

l=1 bl
)−1

. Then the cover covering number of H with respect
to ∥ · ∥F is bounded as

N (H, ∥ · ∥F , ϵ) ≤ κε

LΘ∏
l=1

(
3
√
2ϱLΘ−1(LΘ + 1)sz

∏LΘ

l=1 bl
ϵ

)plpl−1

.

2https://archive.ics.uci.edu/ml/index.php
3https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
4https://archive.ics.uci.edu/ml/datasets/letter+recognition
5https://archive.ics.uci.edu/ml/datasets/credit+approval
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Proof. See Section K.1.

Lemma H.1 provides an upper bound of the covering number of the element-wise neural network.
The following lemma shows an upper bound of the covering number of the main neural network.
Lemma H.2 (Theorem 3.3 of (Bartlett et al., 2017), reformulated). Let Z =

WLW
σ
(
WLW−1

(
· · ·σ(W1X̃) · · ·

))
, where Wl ∈ Rdl+1dl , l ∈ [LW ], and

max(m, d1, . . . , dLW
) ≤ D. Denote the Lipschitz constant of σ by ρ. Suppose the reference

matrices (M1, . . . ,MLW
) are given. Define

C = {FW(X̃) : W = (W1, . . . ,WLW
) , ∥Wl∥σ ≤ al, ∥Wl −Ml∥σ ≤ a′l,∀ ∈ [LW ]}.

The for any ϵ > 0,

lnN (C, ϵ, ∥ · ∥F ) ≤
∥X̃∥2F ln 2D2

ϵ2

(
ρ2(LW−1)

LW∏
l=1

a2l

)(
LW∑
l=1

(
a′l
al

)2/3
)3

.

Now we can get an upper bound for the covering number of the entire neural network in NE-AEMC.
Lemma H.3. The covering number of HW,Θ = {HΘ

(
FW(X̃)

)
} with respect to ∥ · ∥F satisfies

lnN (H, ∥ · ∥F , ϵ) ≤
4ϱ2(LΘ−1)ρ2(LW−1)∥X̃∥2F ln 2D2

ϵ2

(
LW∏
l=1

a2l

)(
LΘ∏
l=1

b2l

)(
LW∑
l=1

(
a′l
al

)2/3
)3

+

(
LΘ∑
l=1

plpl−1

)
ln

6LΘϱ
LΘ−1ρLW−1∥X̃∥F

(∏LW

l=1 al

)(∏LΘ

l=1 bl

)
maxl

b′l
bl

ϵ

 .

Proof. See Section K.2.

Now we can calculate the upper bound of the Rademacher complexity of HW,Θ via using Lemma
H.3 and Dudley entropy integral bound.

Lemma H.4. Let v1 = 4ρ2(LW−1)ϱ2(LΘ−1)∥X̃∥2F ln 2D2
(∏LW

l=1 a
2
l

)(∑LW

l=1

(
a′l
al

)2/3
)3 (∏LΘ

l=1 b
2
l

)
,

v2 =
∑LΘ

l=1 plpl−1, and v3 = 6LΘρ
LW−1ϱLΘ−1∥X̃∥F

(∏LW

l=1 al

)(∏LΘ

l=1 bl

)
maxl b

′
lb

−1
l . Sup-

pose ∥hΘ

(
gW (X̃)

)
∥∞ ≤ µ. The Rademacher complexity of HW,Θ is bounded as

RS(HW,Θ) ≤
4µ

S
+

12
√
v1 + µ2v2 lnS

S
+

12µ
√

v2 lnµ−1v3√
S

. (13)

Proof. See Section K.3.

Collaborative filtering is a transductive learning problem. The following lemma provides a sample
complexity bound for transductive learning, which is consistent with the objective function and
evaluation metric (RMSE) widely used in collaborative filtering.
Lemma H.5 (Theorem 1 of (El-Yaniv & Pechyony, 2009), reformulated). Let H be a fixed hypoth-
esis set and suppose supi,j|X∈H |ℓ (Yij , Xij) | ≤ τℓ. Suppose a fixed set S of distinct indices is
uniformly and randomly split to two subsets Strain and Stest. Then with probability at least 1− δ over
the random split, we have

1

|Stest|
∑

(i,j)∈Stest

ℓ (Yij , Xij) ≤
1

|Strain|
∑

(i,j)∈Strain

ℓ (Yij , Xij) +R|Strain|+|Stest|(ℓ ◦ H)

+
11τℓ (|Strain|+ |Stest|)

√
min(|Strain|, |Stest|)

|Strain||Stest|

+ 3τℓ

√
(|Strain|+ |Stest|)

|Strain||Stest|
ln

1

δ

(14)
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It should be pointed out that according to (El-Yaniv & Pechyony, 2009), the transductive
Rademacher complexity R|Strain|+|Stest| has the following relationship with the inductive complex-
ity RS (to be computed later)

R|Strain|+|Stest|(ℓ ◦ H) =
(|Strain|+ |Stest|)2

|Strain||Stest|
RS(ℓ ◦ H). (15)

Then Theorem 3.1 can be proved as follows.

Proof. Accoding to the Rademacher contraction property, we have RS(ℓ ◦ H) ≤ ηℓRS(H), where
ηℓ denotes the lipschitz constant of ℓ. Using Lemma H.5 with a slightly different notation and
Lemma H.4 (let S = mn) where µ2v2 ≪ v1 provided that the element-wise neural network is small
enough, we have

1

|Sc|
∑

(i,j)∈Sc

ℓ
(
Xij , X̂ij

)
≤ 1

|S|
∑

(i,j)∈S

ℓ
(
Xij , X̂ij

)

+ ηℓϑ

(
4µ

mn
+

12
√
v1 + µ2v2 ln (mn)

mn
+

12µ
√

v2 lnµ−1v3√
mn

)

+
11τℓ (|S|+ |Sc|)

√
min (|S|, |Sc|)

|S||Sc|
+ 3τℓ

√
(|S|+ |Sc|)

|S||Sc|
ln

1

δ

≤ 1

|S|
∑

(i,j)∈S

ℓ
(
Xij , X̂ij

)
+

C1ηℓv
′
1mn ln (mn)

|S||Sc|
+

C2ηℓµ(mn)3/2

|S||Sc|
√
v2 ln v′3

+
11τℓmn

√
min (|S|, |Sc|)

|S||Sc|
+ 3τℓ

√
mn

|S||Sc|
ln

1

δ
,

(16)
where C1 and C2 are some fixed constants,

v′1 = ρ(LW−1)ϱ(LΘ−1)∥X∥F
√
lnD

(
LW∏
l=1

al

)(
LW∑
l=1

(
a′l
al

)2/3
)3/2(LΘ∏

l=1

bl

)
,

v′3 = LΘµ
−1γρLW−1ϱLΘ−1∥X∥F

(∏LW

l=1 al

)(∏LΘ

l=1 bl

)
maxl

b′l
bl

, and ϑ =
(|S|+ |Sc|)2

|S||Sc|
=

m2n2

|S||Sc|
. Note that v′3 > 1 holds trivially because ∥X̃∥F

(∏LW

l=1 al
)(∏LΘ

l=1 bl
)
/µ > 1. Rename

v′1 and v′3 as v1 and v3 respectively, we finish the proof.

I PROOF FOR THEOREM 3.2

Proof. For convenience, let L(X̂) = 1
mn

∑
(i,j)∈[m]×[n] ℓ(Xij , X̂ij), LP

S (X̂) =
1

mn

∑
(i,j)∈S p−1

ij ℓ(Xij , X̂ij), L(X̂ ′) = 1
mn

∑
(i,j)∈[m]×[n] ℓ(Xij , X̂

′
ij), and LP

S (X̂
′) =

1
|S|
∑

(i,j)∈S
|S|

mnpij
ℓ(Xij , X̂

′
ij) =

1
mn

∑
(i,j)∈S p−1

ij ℓ(Xij , X̂
′
ij).
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|L(X̂)− L(X̂ ′)|

=

∣∣∣∣∣∣ 1

mn

∑
(i,j)∈[m]×[n]

(
ℓ(Xij , X̂ij)− ℓ(Xij , X̂

′
ij)
)∣∣∣∣∣∣

≤ 1

mn

∑
(i,j)∈[m]×[n]

∣∣∣ℓ(Xij , X̂ij)− ℓ(Xij , X̂
′
ij)
∣∣∣

≤ ηℓ
mn

∑
(i,j)∈[m]×[n]

∣∣∣X̂ij − X̂ ′
ij

∣∣∣
≤ ηℓ√

mn
∥X̂ − X̂ ′∥F

(17)

|LP
S (X̂

′)− LP
S (X̂)|

=

∣∣∣∣∣∣ 1

mn

∑
(i,j)∈S

p−1
ij

(
ℓ(Xij , X̂

′
ij)− ℓ(Xij , X̂ij)

)∣∣∣∣∣∣
≤ 1

mn

∑
(i,j)∈S

p−1
ij

∣∣∣ℓ(Xij , X̂
′
ij)− ℓ(Xij , X̂ij)

∣∣∣
≤ ηℓ
mn

∑
(i,j)∈S

p−1
ij

∣∣∣X̂ ′
ij − X̂ij

∣∣∣
≤ ηℓ
mn

√√√√√
 ∑

(i,j)∈S

p−2
ij

 ∑
(i,j)∈S

∣∣∣X̂ ′
ij − X̂ij

∣∣∣2


≤
ηℓ

√∑
(i,j)∈S p−2

ij

mn
∥X̂ ′ − X̂∥F

(18)

According to the definitions of LP
S (X̂

′) and L(X̂ ′), we have ES

[
LP
S (X̂

′)
]
= L(X̂ ′). We also

have
∣∣∣ |S|
mnpij

ℓ(Xij , X̂ij)
∣∣∣ ≤ τℓ|S|

mnpij
≜ τij .

Lemma I.1 ((Hoeffding, 1963)). Let X = (x1, x2, . . . , xN ) be a finite population of N points and
X1, X2, . . . , Xn be a random sample drawn without replacement from X , where ai ≤ Xi ≤ bi,
i = 1, 2, . . . , n. Then for all ε ≥ 0,

P

[
1

n

n∑
i=1

Xi − µ ≥ ε

]
≤ exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
(19)

where µ = 1
N

∑N
i=1 xi is the mean of X .

According to Lemma I.1, we have

P
[∣∣∣L(X̂ ′)− LP

S (X̂
′)
∣∣∣ ≥ ε

]
≤ 2 exp

(
− |S|2ε2

2
∑

(i,j)∈S τ2ij

)
. (20)

Using union bound for all X̂ ′ ∈ S ′, we get

P

[
sup

X̂′∈S′

∣∣∣L(X̂ ′)− LP
S (X̂

′)
∣∣∣ ≥ ε

]
≤ 2|S ′| exp

(
− |S|2ε2

2
∑

(i,j)∈S τ2ij

)
. (21)

Letting ε =

√
2
∑

(i,j)∈S τ2
ij

|S|2 ln(mn|S ′|), then with probability at least 1− 2
mn , we have

sup
X̂′∈S′

∣∣∣L(X̂ ′)− LP
S (X̂

′)
∣∣∣ ≤

√
2
∑

(i,j)∈S τ2ij

|S|2
ln(mn|S ′|). (22)
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Now with probability at least 1− 2
mn , we have

sup
X̂∈S

∣∣∣L(X̂)− LP
S (X̂)

∣∣∣
≤ sup

X̂∈S

∣∣∣L(X̂)− L(X̂ ′)
∣∣∣+ ∣∣∣L(X̂ ′)− LP

S (X̂
′)
∣∣∣+ ∣∣∣LP

S (X̂
′)− LP

S (X̂)
∣∣∣

≤ sup
X̂∈S

ηℓ√
mn

∥X̂ − X̂ ′∥F +

√
2
∑

(i,j)∈S τ2ij

|S|2
ln(mn|S ′|) + sup

X̂∈S

ηℓ

√∑
(i,j)∈S p−2

ij

mn
∥X̂ ′ − X̂∥F

≤ηℓϵ

 1√
mn

+

√∑
(i,j)∈S p−2

ij

mn

+
τℓ

√∑
(i,j)∈S p−2

ij

mn

√
2 ln(mn|S ′|).

(23)

Note that ln |S ′| = lnN (H, ∥ · ∥F , ϵ), then ln |S ′| ≤ v1
ϵ2

+ v2 ln
v3
ϵ

, where

v1 = 4ρ2(LW−1)ϱ2(LΘ−1)∥X̃∥2F ln 2D2
(∏LW

l=1 a
2
l

)(∑LW

l=1

(
a′l
al

)2/3
)3 (∏LΘ

l=1 b
2
l

)
, v2 =∑LΘ

l=1 plpl−1, and v3 = 6LΘρ
LW−1ϱLΘ−1∥X̃∥F

(∏LW

l=1 al

)(∏LΘ

l=1 bl

)
maxl b

′
lb

−1
l . Then we ar-

rive at

sup
X̂∈S

|L(X̂)− LP
S (X̂)|

≤ηℓϵ

 1√
mn

+

√∑
(i,j)∈S p−2

ij

mn

+
τℓ

√∑
(i,j)∈S p−2

ij

mn

√
2 ln(mn) +

2v1
ϵ2

+ 2v2 ln
v3
ϵ

≤ηℓϵ

 1√
mn

+

√∑
(i,j)∈S p−2

ij

mn

+
τℓ

√∑
(i,j)∈S p−2

ij

mn

(√
2 ln(mn) +

√
2v1
ϵ

+

√
2v2 ln

v3
ϵ

)

≤ηℓϵ

 1√
mn

+

√∑
(i,j)∈S p−2

ij

mn

+
τℓ

√∑
(i,j)∈S p−2

ij

mn

(
C ′

1

√
v1

ϵ
+ C ′

2

√
v2 ln

v3
ϵ

)

≤τℓ

 1√
mn

+

√∑
(i,j)∈S p−2

ij

mn

+
C ′

1ηℓ

√∑
(i,j)∈S p−2

ij

√
v1

mn
+

C ′
2τℓ

√∑
(i,j)∈S p−2

ij

mn

√
v2 ln

ηℓv3
τℓ

≤τℓ

 1√
mn

+

√∑
(i,j)∈S p−2

ij

mn

+
C ′′

1 ηℓ

√∑
(i,j)∈S p−2

ij v′1

mn
+

C ′′
2 τℓ

√∑
(i,j)∈S p−2

ij

mn

√
v2 ln

ηℓv
′
3

τℓ
,

(24)
where we have let ϵ = τℓ

ηℓ
, C ′

1, C ′′
1 , C ′

2, and C ′′
2 are some numerical constants, v′1 =

√
v1, v′3 =

µ−1v3. Then we rename v′1, v′3, C ′′
1 , and C ′′

2 as v1, v3, C ′
1, and C ′

2 respectively. This finished the
proof.

J PROOF FOR THEOREM A.1

Proof. Note that

|L(X̂)− LP̂
S (X̂)| ≤ |L(X̂)− ES [LP̂

S (X̂)]|+ |LP̂
S (X̂)− ES [LP̂

S (X̂)]|. (25)

Then we need to bound |L(X̂)− ES [LP̂
S (X̂)]| and |LP̂

S (X̂)− ES [LP̂
S (X̂)]| respectively.
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We have

|L(X̂)− ES [LP̂
S (X̂)]|

=

∣∣∣∣∣∣ 1

mn

∑
(i,j)∈[m]×[n]

ℓ(Xij , X̂ij)−
1

mn

∑
(i,j)∈[m]×[n]

pij
p̂ij

ℓ(Xij , X̂ij)

∣∣∣∣∣∣
=

1

mn

∣∣∣∣∣∣
∑

(i,j)∈[m]×[n]

(
1− pij

p̂ij

)
ℓ(Xij , X̂ij)

∣∣∣∣∣∣
≤ τℓ
mn

∑
(i,j)∈[m]×[n]

∣∣∣∣1− pij
p̂ij

∣∣∣∣ .
(26)

It is worth noting that the procedures of bounding |LP̂
S (X̂) − ES [LP̂

S (X̂)]| are the same as that of
|L(X̂)− LP

S (X̂)| in the previous section. Therefore, we have

∣∣∣LP̂
S (X̂)− ES [LP̂

S (X̂)]
∣∣∣

≤

√∑
(i,j)∈S p̂−2

ij

mn

(
C ′

1ηℓv1 + C ′
2τℓ
√

v2 ln v3

)
+ τℓ

 1√
mn

+

√∑
(i,j)∈S p̂−2

ij

mn

 ,
(27)

where meanings of C ′
1, C ′

2, v1, v2, and v3 are the same as those in Theorem 3.2.

Now combining equation 26 and equation 27, we arrive at

|L(X̂)− LP̂
S (X̂)|

≤

√∑
(i,j)∈S p̂−2

ij

mn

(
C ′

1ηℓv1 + C ′
2τℓ
√
v2 ln v3

)
+ τℓ

 1√
mn

+

√∑
(i,j)∈S p̂−2

ij

mn


+

τℓ
mn

∑
(i,j)∈[m]×[n]

∣∣∣∣1− pij
p̂ij

∣∣∣∣ ,
(28)

which holds with probability at least 1− 2
mn . This finished the proof.

K PROOF FOR LEMMAS

K.1 PROOF FOR LEMMA H.1

Proof. Let SΘl
:= {Θl ∈ Rpl+1×pl : ∥Θl∥2 ≤ bl, ∥Θl∥F ≤ b′l}, ∀l ∈ [LΘ]. It is known that there

exists an ϵl-net S̄Θl
obeying

N (SΘl
, ∥ · ∥F , ϵl) ≤

(
3b′l
ϵl

)plpl−1
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such that ∥Θl − Θ̄l∥F ≤ ϵl. We have

|hij − h̄ij | = ∥hij − h̄ij∥F
=
∥∥ΘLΘσ (ΘLΘ−1(· · ·σ(Θ1zij) · · · ))− Θ̄LΘσ

(
Θ̄LΘ−1(· · ·σ(Θ̄1z̄ij) · · · )

)∥∥
F

=
∥∥ΘLΘ

σ (ΘLΘ−1(· · ·σ(Θ1zij) · · · ))− Θ̄LΘ
σ (ΘLΘ−1(· · ·σ(Θ1zij) · · · ))

+ Θ̄LΘσ (ΘLΘ−1(· · ·σ(Θ1zij) · · · ))− Θ̄LΘσ
(
Θ̄LΘ−1(· · ·σ(Θ1zij) · · · )

)
+ · · ·

+ Θ̄LΘ
σ
(
Θ̄LΘ−1(· · ·σ(Θ1zij) · · · )

)
− Θ̄LΘ

σ
(
Θ̄LΘ−1(· · ·σ(Θ̄1zij) · · · )

) ∥∥
F

+ Θ̄LΘ
σ
(
Θ̄LΘ−1(· · ·σ(Θ̄1zij) · · · )

)
− Θ̄LΘ

σ
(
Θ̄LΘ−1(· · ·σ(Θ̄1z̄ij) · · · )

) ∥∥
F

≤
∥∥ΘLΘσ (ΘLΘ−1(· · ·σ(Θ1zij) · · · ))− Θ̄LΘσ (ΘLΘ−1(· · ·σ(Θ1zij) · · · ))

∥∥
F

+
∥∥Θ̄LΘ

σ (ΘLΘ−1(· · ·σ(Θ1zij) · · · ))− Θ̄LΘ
σ
(
Θ̄LΘ−1(· · ·σ(Θ1zij) · · · )

) ∥∥
F
+ · · ·

+
∥∥Θ̄LΘσ

(
Θ̄LΘ−1(· · ·σ(Θ1zij) · · · )

)
− Θ̄Lσ

(
Θ̄LΘ−1(· · ·σ(Θ̄1zij) · · · )

) ∥∥
F

+
∥∥Θ̄LΘ

σ
(
Θ̄LΘ−1(· · ·σ(Θ̄1zij) · · · )

)
− Θ̄LΘ

σ
(
Θ̄LΘ−1(· · ·σ(Θ̄1z̄ij) · · · )

) ∥∥
F

(a)

≤ϱLΘ−1 |zij |
∥∥ΘLΘ

− Θ̄LΘ

∥∥
F

LΘ−1∏
l=1

∥∥Θl

∥∥
2

+ ϱLΘ−1 |zij |
∥∥Θ̄LΘ

∥∥
2

∥∥ΘLΘ−1 − Θ̄LΘ−1
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F

LΘ−2∏
l=1

∥Θl∥2 + · · ·

+ ϱL−1 |zij |
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LΘ∏
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∥∥Θ̄l
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2

)∥∥Θ1 − Θ̄1
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+ ϱLΘ−1 ∥zij − z̄ij∥F
LΘ∏
l=1

∥Θ̄l∥2

≤ϱLΘ−1

szij ϵLΘ

∏
l ̸=LΘ

bl + szij ϵLΘ−1

∏
l ̸=LΘ−1

bl + szij ϵ1

LΘ∏
l ̸=1

bl + · · ·+ ∥zij − z̄ij∥F
LΘ∏
l=1

bl

 .

(29)
In (a), we used the facts ∥Xy∥F ≤ ∥X∥2∥y∥F and ∥σ(X)−σ(Y )∥F ≤ ϱ∥X−Y ∥F recursively.
It follows that

∥H − H̄∥F =

√∑
ij

(hij − h̄ij)2

(a)

≤ϱLΘ−1

√√√√√√∑
ij

2

s2zij

ϵLΘ

∏
l ̸=LΘ

bl + ϵLΘ−1

∏
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LΘ∏
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bl

2

+ ∥zij − ẑij∥2F

(
LΘ∏
l=1

bl

)2


=
√
2ϱLΘ−1

√√√√√ϵLΘ

∏
l ̸=LΘ

bl + ϵLΘ−1
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l ̸=LΘ−1

bl + · · ·+ ϵ1

LΘ∏
l ̸=1

bl

2

∥Z∥2F +

(
LΘ∏
l=1

bl

)2

∥Z − Z̄∥2F

≤
√
2ϱLΘ−1

√√√√√ϵLΘ

∏
l ̸=LΘ

bl + ϵLΘ−1

∏
l ̸=LΘ−1

bl + · · ·+ ϵ1

LΘ∏
l ̸=1

bl

2

s2z +

(
LΘ∏
l=1

bl

)2

ϵ2z.

(30)

In (a), we used the fact (x + y)2 ≤ 2(x2 + y2). Let ϵl =
ϵ/(

√
2LΘ)√

2ϱLΘ−1sz
∏

k ̸=l bk
, ∀l ∈ [LΘ]. Let

ϵz =
ϵ/
√
2

√
2ϱLΘ−1

∏LΘ

l=1 bl
. We arrive at

∥H − H̄∥F ≤ ϵ. (31)
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It means that H̄ is an ϵ-cover of H . Then the covering number of H is bounded as

N (H, ∥ · ∥F , ϵ)

≤N (Z, ∥ · ∥F , ϵz)
LΘ∏
l=1

N (SΘl
, ∥ · ∥F , ϵl)

≤κε

LΘ∏
l=1

(
6ϱLΘ−1LΘszb

′
l

∏
k ̸=l bk)

ϵ

)plpl−1

=κε

LΘ∏
l=1

(
6ϱLΘ−1LΘszb

′
lb

−1
l

∏LΘ

k=1 bk
ϵ

)plpl−1

≤κε

(
CΘ

ϵ

)∑LΘ
l=1 plpl−1

,

(32)

where CΘ = 6ϱLΘ−1LΘszγ
∏LΘ

l=1 bl and γ = maxl b
′
lb

−1
l . This finished the proof.

K.2 PROOF FOR LEMMA H.3

Proof. It is easy to show that sz can be determined by the following derivation

∥Z∥F =
∥∥∥WLW

(
σW

(
WLW−1σW (· · ·σW (W1X̃) · · · )

))∥∥∥
F

(33)

≤ ρLW−1∥X∥F
LW∏
l=1

al ≜ sz. (34)

Combining Lemma H.1 and Lemma H.2, we have
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plpl−1
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ϵ
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(35)

K.3 PROOF FOR LEMMA H.4

Before proof, we give the following lemma, which is a variant of the Dudley entropy integral bound
on Rademacher complexity. Before proof, we give the following lemma, which is a variant of the
Dudley entropy integral bound on Rademacher complexity.
Lemma K.1 (Theorem 3 of (Schreuder, 2020)). Let F ⊂ {f : X 7→ R} be any class of measurable
functions containing the uniformly zero function and let BS(F) = supf∈F ∥f∥L2(PS). Then

RS(F) ≤ inf
α>0

(
4α+

12√
S

∫ BS(F)

α

√
logN (F , L2(PS), ζ)dζ

)
. (36)

In (Schreuder, 2020), ∥f∥L2(PS) is defined as
√

∥f∥L2(PS) =
1
S

∑S
i=1 f(Xi)2, which implies

N (F , L2(Pn), ζ) = N (F , ∥ · ∥F ,
√
nζ). (37)
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It follows that

RS(F) ≤ inf
α>0

(
4α+

12√
S

∫ BS(F)

α

√
logN (F , ∥ · ∥F ,
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Sζ)dζ
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α
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)
.

(38)

Now we prove Lemma H.4.

Proof. For convenience, let

v1 = 4ρ2(LW−1)ϱ2(LΘ−1)∥X∥2F ln 2D2
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)(
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l . Then

lnN (H, ∥ · ∥F , ϵ) ≤ v1
ϵ2

+ v2 ln
(v3
ϵ

)
from (35). Let µ = maxH∈H ∥H∥∞. According to equa-

tion 38, we have
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S
+
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v1 + µ2v2
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lnS +
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√
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≤4µ

S
+
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v1 + µ2v2 lnS
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v2 lnµ−1v3√

S
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(39)

In (a), we used the fact ln 1
x ≤ 1

x2 . The inequality (b) holds according to
√
x+ y ≤

√
x +

√
y. In

(c), we have let α = µ√
S

, which though may not be the best choice. We arrive at

RS(HW,Θ) ≤
4µ

S
+

12
√
v1 + µ2v2 lnS

S
+

12µ
√

v2 lnµ−1v3√
S

.
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