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ABSTRACT

Multivariate time series data often face the challenge of missing values, which can impact the perfor-
mance of subsequent tasks. Although some deep learning-based imputation methods perform well,
they still struggle with insufficient training data due to high missing rate and long-term missing data.
To address these challenges, we propose a Historical Data-based Multivariate Time Series Diffusion
Imputation (HDDI) method. Unlike existing deep learning-based imputation methods, we design a
historical data supplement module to match and fuse historical data to supplement the training data.
Additionally, we propose a diffusion imputation module that utilizes the supplement training data to
achieve high-accuracy imputation even under high missing rate and long-term missing scenario. We
conduct extensive experiments on five public multivariate time series datasets, the results show that
our HDDI outperforms baseline methods across five datasets. Particularly, when the data missing
rate is 90%, HDDI improves accuracy by 25.15% compared to the best baseline method in the ran-
dom missing scenario, and by 13.64% in the long-term missing scenario. The code is available at
https://github.com/liuyu3880/HDDI project.

1 INTRODUCTION

1.1 BACKGROUND

Multivariate time series data is ubiquitous across various application domains, including transportation Liu et al. (2023);
Wu et al. (2019), industry Chang et al. (2024), and healthcare Li et al. (2023b). However, this data often suffers from
losses due to sensor failures, communication breakdowns, or unexpected malfunctions. Such missing data damages the
interpretability of data Silva et al. (2012); Chauhan et al. (2022) and severely affects the performance of subsequent tasks,
such as climate change research and patient monitoring. Therefore, accurate imputation of missing data is crucial.

To address the problem of missing data imputation, some studies propose algorithms based on statistics and classic
machine learning Kreindler & Lumsden (2016); Little & Rubin (2019); Basharat & Shah (2009); Wang et al. (2006);
Yu et al. (2016); Li et al. (2023a); Pujianto et al. (2019); Nelwamondo et al. (2007); Shu & Ye (2023). However, these
methods rely on specific data assumptions Liu et al. (2023). For instance, linear interpolation methods typically assume
a linear relationship between data points Kreindler & Lumsden (2016), while mean/median methods assume that the data
follows a uniform distribution Little & Rubin (2019). The K-Nearest Neighbors (KNN) methods assume that data points
have similar characteristics within their local neighborhoods Pujianto et al. (2019). When these assumptions do not hold,
the accuracy of data interpolation can be significantly affected.

In contrast to statistics and classic machine learning-based algorithms, some recent studies propose deep learning-based
imputation methods Cao et al. (2018); Yoon et al. (2017); Che et al. (2018); Cini et al. (2021); Suo et al. (2020). These
methods leverage neural network models to extract data features and perform the imputation of missing values without
relying on specific data assumptions. For example, some works use Recurrent Neural Networks (RNNs) Cao et al. (2018);
Yoon et al. (2017); Che et al. (2018) to capture temporal dependencies in the data and use these dependencies for imputing
missing values. Other methods Suo et al. (2020) capture dependencies between sequence elements through self-attention
mechanisms. However, these methods are prone to encountering the issue of error accumulation (i.e., inference of missing
values from inaccurate historical imputationLiu et al. (2019)).

Additionally, some research introduces imputation methods based on generative models. For example, methods Gong
et al.; Miao et al. (2021); Luo et al. (2018); Yoon et al. (2018a) based on Generative Adversarial Networks (GANs) use
the generator to estimate missing values and the discriminator to assess whether these estimates align with real data.
Variational Autoencoders (VAEs) Fortuin et al. (2020) map data to the latent space through an encoder and then gener-
ate imputation results from this latent space using a decoder. Through adversarial training, the generator progressively
improves the accuracy of missing data imputation, but they still suffer from training instability.

With the development of generative models, the study Sohl-Dickstein et al. (2015) proposes the diffusion model, which
is more robust to different types of noise and missing data compared to traditional generative models. The diffusion
model is applied to various applications, such as image processing Song et al. (2020), and audio signal processing Kong
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et al.. Morever, as the diffusion models can avoid the error accumulation issues in RNN-based imputation methods and
offer a more stable training process than generative adversarial networks, by using flexible architectures neural network
architecture, the diffusion model is also applied to the imputation problem to achieve higher performance. Such as, CSDI
Tashiro et al. (2021) is proposed to solve the data imputation problem based on the diffusion model. The diffusion model
starts with randomly sampled Gaussian noise and progressively removes noise to transform the noisy data into imputed
values.

1.2 CHALLENGES

Although a limited number of works begin to use diffusion models for data imputation and achieve promising results,
their effectiveness remains limited in scenarios with high missing rate and long-term missing data:

High missing rate data. Since these deep learning models rely on self-supervised learning, they need to select a subset
of the collected sparse measurement data as supervised data for training. This approach reduces the amount of extractable
information as the training data decreases. In scenarios with a high missing data rate, methods based on diffusion models
struggle to extract sufficient information, which affects the accuracy of imputing missing data.

Long-term missing data. Due to equipment failures or communication issues, data from certain devices may be missing
for extended periods, a situation known as long-term missing dataPark et al. (2023). On one hand, long-term missing data
leads to a high missing rate. On the other hand, the absence of data from faulty equipment may cause imputation results
to overfit data from non-faulty equipment while underfitting data from faulty equipment, results in lower imputation
accuracy.

1.3 CONTRIBUTIONS

To address the above challenges, we propose a novel imputation model: Historical Data-Based Multivariate Time Series
Diffusion Imputation (HDDI). Unlike existing methods based on diffusion models, HDDI fully utilizes historical features
by searching for similar data from historical records and combining it with current target observational data to create
new training data. By incorporating historical data, HDDI provides sufficient training data for diffusion-based imputation
algorithms, significantly improving the imputation accuracy of multivariate time series data in scenarios with high missing
rate and long-term missing scenario. Specifically, our contributions are as follows:

1) We propose HDDI based on a diffusion model: By matching historical data to supplement the target observational
data, HDDI addresses the challenges posed by high missing data rate and long-term missing scenarios. This approach
resolves the issue where insufficient data features hinder the accurate prediction of missing data, providing more valuable
information for model training and enhancing the accuracy of predicting missing data at the current time.

2) We design a sliding window-based historical data matching and combination scheme: By selecting multiple
segments of historical data that best match the current time segment to supplement training data, we tackle the problem
of insufficient training data in self-supervised learning. Additionally, we design a historical data fusion scheme, carefully
considering the similarity and temporal correlations between target observational data and historical data. We utilize
multiple historical data segments and fuse them with target observational data through normalization to ensure that the
distribution of the fused training data approximates the range of true values.

3) We design a diffusion-based imputation algorithm: The diffusion model primarily consists of two processes: the
diffusion process and the denoising process. The diffusion process trains a noise estimation model by simultaneously
inputting the fused training data and some observational data, which provides rich feature information for the model’s
training. The denoising process gradually removes the noise estimated by the noise estimation model from random noise
data, ultimately resulting in accurate imputed data.

4) HDDI demonstrates excellent performance in experiments: We evaluate the proposed HDDI with five state-of-
the-art baseline methods under five multivariate time series datasets. The experimental result indicates that our proposed
HDDI achieves the best performance compared to other baseline methods. Even in cases where 90% of the data was
missing, our HDDI outperformed the best baseline method by 25.15%.

2 RELATED WORK

In this section, we introduce some existing deep learning-based time series imputation methods.

1) Temporal Feature Extraction-Based Methods: When handling time series data with Recurrent Neural Networks
(RNNs), the study Che et al. (2018) proposes GRU-D, which estimates time series using a deep learning model and
introduces the concept of time lag by employing hidden state decay to capture past features. M-RNN Yoon et al. (2018b)
and BRITS Cao et al. (2018) both use bidirectional RNNs to incorporate bidirectional information flow, allowing them to
learn patterns from the context around missing data and perform imputation. However, RNNs are prone to compounded
errors Liu et al. (2019) during training, which accumulates with increasing sequence length, leading to reduced imputation
accuracy.
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To address these limitations, some research shifts to methods based on self-attention mechanisms, such as SAITS Du
et al. (2023). These methods use self-attention mechanisms to directly model dependencies between sequence elements,
reducing the impact of compounded errors and improving the model’s ability to handle long sequences. However, such
a method requires a large amount of high-quality training data. When the training data is insufficient, this model cannot
achieve satisfactory imputation results.

2) Generative-Based Methods: Imputation methods based on generative models are gaining increasing popularity. For
example, GP-VAE Fortuin et al. (2020) utilizes a deep variational autoencoder (VAE) to obtain latent representations
and employs Gaussian processes in latent space to capture the global dynamics and structure of time series, providing an
advantage in handling continuous missing data. Even in long-term missing scenarios, GP-VAE leverages its understanding
of global dynamics to generate reasonable imputations. Similarly, SS-GAN Miao et al. (2021) employs semi-supervised
learning mechanisms to guide the learning process of generators and discriminators. Nevertheless, these methods often
face issues with interpolation accuracy caused by unstable training.

Thanks to the introduction of diffusion model Ho et al. (2020); Song et al. (2020), the study proposes CSDI Tashiro
et al. (2021) which learns data distribution through conditional score-based diffusion model, gradually transforming noise
into reasonable time series via denoising processes. CSDI improves imputation accuracy by incorporating observational
information into the diffusion model using conditional data, achieving better performance compared to other existing time
series imputation methods. However, practical scenarios often provide limited observational data, and a low sampling rate
may hinder the effectiveness of missing data imputation.

Different from the aforementioned methods, our imputation model HDDI supplements training data by identifying and
matching historical data with current target imputation data to address issues related to low sampling rate. Building
on this, we propose a novel diffusion model that fuses target imputation data with matched historical data to achieve
high-precision imputation of missing data.

3 PROBLEM FORMULATION

Figure 1: Sparse multivariate time series data
tensor X and its imputation results Xresult.

Multivariate time series data is represented as a three-dimensional ten-
sor X ∈ RI×J×K , where I denotes the number of features, J repre-
sents the number of time points, and K indicates the number of data
samples. For example, in air quality data, I denotes the number of
metrics, e.g., NO2, PM2.5, and CO, and K denotes the number of
sensing devices. In medical data, I denotes the number of physiolog-
ical indicators of ICU patients, e.g., Lactate, PaO2, and Glucose, and
K denotes the number of patients. However, due to cost reduction,
equipment failures, or human errors, the recorded data tensor is highly
sparse, as shown in Fig.1(a).

To indicate the positions of observed data, we define a mask tensor M
as follows:

mi,j,k =

{
0, if xi,j,k is missing;
1, if xi,j,k is observed,

(1)

where mi,j,k = 0 indicates that the data point xi,j,k is missing, while mi,j,k = 1 signifies that the data point xi,j,k exists,
with 0 ≤ i < I , 0 ≤ j < J , and 0 ≤ k < K.

Figure 2: Self-supervised learning methods un-
der low sampling rate.

In this paper, we primarily focus on the multivariate time series impu-
tation problem, aiming to accurately impute missing data in the target
observational data X using an imputation model. This process involves
treating the missing data as the imputation target to obtain complete
imputation results Xresult, as illustrated in Fig.1(b).

Since the true missing values are unknown, we lack supervised data
to guide the training of the imputation model. Therefore, we adopt a
self-supervised learning approach by dividing the target observational
data into training data and supervised data. Through supervised data
providing true values, the model is guided in learning how to estimate
missing values during the training process. Specifically, we randomly
sample a portion of the target observational data X to serve as su-
pervised data Xsup, while the remaining data is used as training data
Xtrain. Thus, X = Xsup + Xtrain.

For multivariate time series data, there are typically two scenarios of
data missing:

3



180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

Under review as a conference paper at ICLR 2025

1) Random Missing (RM) Scenario: Due to occasional communication failures (e.g., UDP packet loss) during data
transmission, any sensor may experience data loss for one or multiple consecutive time points. In this scenario, the
distribution of the missing data is random and unstructured.

Figure 3: The Long-term Missing (LM) scenario
leads to extended periods of missing data for cer-
tain attributes within the data tensor.

2) Long-term Missing (LM) Scenario: In practical applications, sen-
sor failures due to component malfunctions, battery interruptions, or
exposure to harsh weather conditions and dust are common. As a re-
sult, there can be long-term missing data. As shown in Fig.3, all de-
vices are operational before time t1, allowing the initial data matrix X
to collect monitoring data from all devices. However, at time t1, de-
vices 2 and 4 fail, causing their data to become uncollectible thereafter,
leading to missing entries in the corresponding row of matrix X after
time t1.

In summary, the training imputation model in the two main missing
data scenarios mentioned above typically presents the following issues:

1) Both data-missing scenarios often involve excessively high missing
data rate, leading to a severe shortage of training data. Specifically, the
self-supervised learning approach reduces the amount of observational data used for model training, which negatively
impacts the accuracy of data imputation.

2) In the LM scenario, during the training process of the imputation model, the model can only learn data distribution
characteristics from the non-faulty devices and cannot capture data features from the faulty devices. This results in the
imputation model overfitting to the data distribution of the non-faulty devices while underfitting the data feature of the
faulty devices, leading to significant long-term missing data issues. Consequently, the imputation accuracy for data from
faulty devices suffers.

To address these issues during the training of the imputation model, we seek supplementary training data from historical
records.

Figure 4: Illustration of the correlation of time series data over history.

Fig.4 shows a visualization of a multivariate
time series sample (e.g., sensor data collected
from a device). The three differently colored
curves represent the values of three features
over time, with the dashed portions indicating
missing values for those features at specific
times. We observe that a sequence segment
with missing data in the current time period
often finds one or more similar historical seg-
ments (highlighted in blue boxes). Additionally, we note that the positions with missing data in the current time segment
may not necessarily be missing in the historical data, allowing historical data to provide supplementary features for the
current target observational data.

Inspired by this observation, our HDDI aims to identify information from historical data that is similar to the target
observational data and combine them with the training data Xtrain to create a more comprehensive training data X fu for
training subsequent diffusion imputation model. By fully utilizing historical data, the method provides more data features
for the diffusion model, addressing issues of insufficient training data and long-term missing data, thereby enhancing
imputation accuracy.

In the following sections, to facilitate the description of our proposed HDDI, we use a sample (e.g., the sensor data
collected by a device) as an example, which can be represented as X ∈ RI×J . Symbolic expressions are shown in Table 1
of Appendix 7.1 for clarity.

4 PROPOSED METHOD

Figure 5: Graphical overview of the HDDI Model, demonstrating the two
main modules: the Historical Data Supplement Module and the Diffusion
Imputation Module.

Our proposed HDDI consists mainly of the
Historical Data Supplement Module and the
Diffusion Imputation Module as shown in
Fig.5.

Historical Data Supplement Module: To
address the issue of insufficient training data
in high missing rate scenarios, we design a
Historical Data supplement module. This
module matches data from the historical data
stream that is most similar to the target obser-
vational data and performs fusion to generate
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fused training data X fu. This fused data can provide more comprehensive training data for training imputation model for
missing data.

Diffusion Imputation Module: The diffusion imputation module takes both the target observational data X and the fused
data X fu as inputs. It consists of two main components: the diffusion process and the denoising process. The diffusion
process begins with the supervised data Xsup and progressively adds noise until the data becomes pure noise. This process
trains a noise estimation model. The denoising process starts with random noise data and applies the noise estimation
model to estimate and gradually remove the noise, generating new imputed data. This imputed data is then combined with
the target observational data to produce the final imputation results Xresult. Next, we detail the design of each module.

4.1 HISTORICAL DATA SUPPLEMENT MODULE

Due to the high missing rate often encountered in multivariate time series data, which results in insufficient training
data from random missing and long-term missing data problems, it is necessary to search historical data for segments
that match the current target observational data X . This approach aims to provide more sufficient training data for
subsequent imputation module. Therefore, we design the historical data supplement module to extract sufficient and
useful information from historical data, ensuring adequate and accurate training data for the imputation module.

However, extracting sufficient and effective information from high missing rate data remains a challenging task. In
practical applications, historical data also experiences a high missing rate. Consequently, merely extracting a segment
of data from historical records to supplement the target observational data does not completely resolve the issues of
insufficient training data and long-term missing data.

Therefore, we design a Historical Data Matching Process to match K segments of data from historical records and a
Fusion Process to fuse the selected segments of data with the train data Xtrain divided from X . Among these, the K is a
hyperparameter.

Figure 6: Matching historical data based on sparse historical data matri-
ces.

Historical Data Matching Process: To ob-
tain sufficient supplement data, we need to
identify K historical data segments that best
match the target observation data among the
entire historical data stream. Therefore, we
designed the Historical Data Matching Pro-
cess based on the sliding window strategy.

As illustrated in Fig.6(a), given a current tar-
get observational data, denoted as X ∈ RI×J ,
we slide a matching window across the histor-
ical data stream to find the most similar his-
torical data segments. The sliding window
starts from the first time slot and slides with
the step size of 1. Therefore, for a histori-
cal data stream with T time slots, the current
target observational data will match with data
from T − J + 1 historical time segments.

During this process, we need to compute the similarity st between the target observational data X and each historical data
segment Ht selected by the sliding window, where t = {1, 2, ..., T − J + 1}.

However, due to the high missing rate of the target observed data and historical data segments, their observed data
positions may not fully align, which severely affects the calculation of similarity between datasets. To avoid inaccuracies
in matching due to missing values, we calculate similarity only for the data points that are present in both the target
observational data X ∈ RI×J and the historical data segments Ht ∈ RI×J .

First, we identify their common sampling positions by calculating their intersection mask matrix as follows:

M inter t = M ∩M t, (2)

where M and M t represent the mask matrices for the target observational data X and the historical data segment Ht,
respectively. The mask matrix M inter t indicates which positions have observed values in both the target observational data
X and the historical data segment Ht. If both Xi,j and Hi,j have valid observations at position (i, j), then M inter t

i,j = 1;
otherwise, M inter t

i,j = 0.

Additionally, since the missing patterns in the historical data are completely random, the amount of observational data
in the matched historical segments varies, impacting the fairness of similarity comparisons. To address this, we compute
the mean Frobenius norm distance based on the available data in both the target observational data and the historical data
segments as follows:
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ft =

I∑
i

J∑
j

M inter t
i,j

√(
Xi,j −Ht

i,j

)2
∥M inter t∥1

, (3)

where
∥∥M inter t

∥∥
1

denotes the number of intersecting elements between X and Ht.

Note that a smaller mean Frobenius norm distance ft indicates a higher similarity between the historical data segment
Ht and the target observational data X . By comparing the mean Frobenius norm distance ft of T − J + 1 historical
data segments Ht with the target observational data X , we identify the top K most similar historical data segments
[Ht1 , . . . ,Htk , . . . ,HtK ] for each sample, where k = {1, 2, ...,K}.

Then, we design a Fusion Process to fuse the selected K best match historical data segments with the training data Xtrain
more accurately.

Fusion Process: In the Fusion Process, we need to consider the following two factors:

• Distance similarity. The distance similarity between each selected historical data segment and the current target
observational data varies. We believe that historical data segments with smaller mean Frobenius norm distance
ft should be more important and apply higher weight in the Fusion Process.

• Temporal proximity. The closer the starting time slot of a historical data segment is to the current time slot, the
more significant its data becomes. Therefore, we analyze the weight that should be assigned to each historical
data segment during the Fusion Process, considering both distance similarity and temporal proximity.

Therefore, we design the Fusion Process based on the similarity and temporal proximity between the match historical
data segments Ht and current target observational data X .

Distance similarity: To further measure the similarity between the selected K historical data segments Ht and the target
observational data X , we define a distance similarity score sk as follows:

sk = 1− ftk
ft1 + ft2 + · · ·+ ftK

, (4)

where sk reflects how closely the historical data segment matches the target observational data, the larger sk means the
k-th selected historical data segments Htk is more similar to the current target observational data X .

Temporal proximity: To measure temporal proximity between the selected K historical data segments Ht and the target
observational data X , we define a temporal distance score dk as follows:

dk = tk/T , (5)

where tk is the start time slot of the k-th selected historical data segments Htk , and T is the latest time slot (i.e., the largest
time slot in the historical data stream). The larger dk means the k-th selected historical data segments Htk is closer to the
current target observational data X .

Fusion weight: To consider both the similarity and temporal proximity between the match historical data segments Ht

and current target observational data X , we defined the weight λk as follows:

λk =
µdk + (1− µ)sk

µ
∑K

i=1 di + (1− µ)
∑K

j=1 sj
, (6)

where µ ∈ (0, 1) is a learnable hyperparameter used to adjust the weight between the similarity score sk and the temporal
distance score dk. The larger λk means the k-th selected historical data segments Htk is more similar and closer to the
current target observational data X , thus we need to apply larger weight to this historical data segment in the Fusion
Process.

Fusion process: Since our goal is to supplement the training data Xtrain with historical data segments, we tend to trust the
data from Xtrain rather than the data from historical data segments. Moreover, to avoid overwriting the supervised data
Xsup, we need to ensure the locations where Xsup has observational data are set to zero in fused data. Thus, we formulate
the Fusion Process as follows:

X fu
i,j =


Xtrain(i,j), Xtrain(i,j) is observed;
0, Xsup(i,j) is observed;

λn

λn + ...+ λm
Htn

i,j + ...+
λm

λn + ...+ λm
Htm

i,j , otherwise,

(7)
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where Xtrain(i,j) and Xsup(i,j) denote the values at position (i, j) in the training data Xtrain and the supervised data Xsup,
respectively. The set {Htn

i,j , . . . ,H
tm
i,j } includes the historical data segments among the K matched segments that contain

observed values at position (i, j).

Noted that, in Eq.(7), the λn

λn+...+λm
+ ...+ λm

λn+...+λm
= 1, ensuring that the data remains within a reasonable range after

fusion.

We present fusion examples in Appendix 7.2.

Based on our proposed historical data supplement module, our training data first identifies the most matching historical
data segments through a matching process. Next, through a well-designed Fusion Process, the matched historical data
segments are effectively fused with Xtrain. This process ensures that our training data is effectively supplemented with
historical data, providing ample training data for the subsequent imputation module.

4.2 DIFFUSION IMPUTATION MODULE

Figure 7: Visualization process of Diffusion Imputation Module.

The HDDI model proposed in this paper pri-
marily relies on the diffusion model for data
imputation. As illustrated in Fig.7, the HDDI
model comprises two main stages: the diffu-
sion process (training) and the denoising pro-
cess (imputation).

In the diffusion process, fused training data
X fu and supervised data Xsup are used as in-
puts. We progressively add Gaussian noise
into Xsup, eventually transforming it into pure
noise XN

sup. During this process, we train a
noise estimation model ϵθ by comparing the
Gaussian noise ϵ added to the supervised data
at each step with the noise ϵθ(X

n
sup, X

fu, n)
estimated by ϵθ.

The denoising process begins with initializing
random Gaussian noise X̃N and target obser-
vational data X , which serves as input. We
estimate the noise at each step using the noise
estimation model ϵθ and progressively remove the noise from X̃N . Based on it, we can transforms X̃N into the denoising
result X̃0.

Finally, we can obtain the imputed result Xresult based on the target observational data X and denoising result X̃0.

Diffusion Process: The diffusion process aims to train the noise estimation model ϵθ. During this process, noise is
progressively added to the target observational data, gradually transforming it into pure noise. The optimization of the
noise estimation model is achieved by minimizing the discrepancy between the noise added at each step and the noise
estimated by the model. The specific process is detailed below.

We add the Gaussian noise ϵ into the supervised data Xsup incrementally to produce noisy data Xn
sup at each step, where

n = 1, 2, ..., N as follows:

Xn
sup =

√
1− βnX

n−1
sup + βnϵ, (8)

where ϵ ∼ N (0, 1) and βn ∈ (0, 1) denotes the level of noise.

Noted that, when n is small, a smaller βn ensures that less Gaussian noise is added to Xn−1
sup at step n. With the increase

of n, the βn gradually increases. Thus, in the diffusion process, Xsup undergoes N steps of Gaussian noise addition to
eventually result in a pure noise XN

sup.

Since the process of adding noise is iterative after we unfold Eq.(8), we derive the formula directly from Xsup to obtain
Xn

sup:

Xn
sup =

√
α̃nXsup +

√
1− α̃nϵ, (9)

where α̃n := Πn
i=1αi and αi := 1− βi.

Since we input the noisy supervised data Xn
sup in the n-th iteration and the fused training data X fu into the model, we can

obtain the corresponding estimated noise: ϵθ(Xn
sup, X

fu, n).
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Then we can train the noise estimation model ϵθ by minimizing the loss between the Gaussian noise ϵ added at each step
and the noise ϵθ estimated by the model as follows:

min
θ

L(θ) := min
θ

EXsup,ϵ,n||ϵ− ϵθ(X
n
sup, X

fu, n)||22, (10)

where θ is the trainable parameters in the noise estimation model ϵθ.

Algorithm 1 Diffusion Process

Input: Supervised data Xsup , fused training data X fu, the
number of diffusion step N .

Output: Noise estimation model ϵθ.
1: repeat
2: Sample the diffusion step n ∼ Uniform({1, ..., N}).
3: Generate the Gaussian noise ϵ ∼ N (0, 1).
4: Calculate noisy data Xn

sup based on Eq.(9).
5: Train the noise estimation model based on Eq.(10).
6: until converged

We organize the entire diffusion process as Algorithm 1.
First, we randomly sample an n from the set total diffu-
sion steps N as the diffusion step for the current iteration.
As shown in Fig.8, during the process of adding noise in
any arbitrary n-th iteration, we calculate the noisy super-
vised data Xn

sup based on Eq.(9) and input it along with the
fused training data X fu into the noise estimation model to
obtain the estimated noise results ϵθ(Xn

sup, X
fu, n). Next,

we can train the noise estimation model by minimizing the
loss function Eq.(10). Iterating this process until the model
converges.

Denoising process: With the noise estimation model ϵθ trained in the previous section, we now initialize Gaussian noise
data X̃N randomly and use target observational data as conditional data for the noise estimation model. By inputting the
randomly generated Gaussian noise X̃N along with the noise estimation model ϵθ, we perform denoising to obtain the
denoised result X̃0. The specific process is as follows:

Figure 8: The n-th step of the diffusion process.

The denoising process consists of N steps. As shown in
Fig.9, the n-th step of the denoising process involves the
following two steps:

• Step 1: Input the target observational data X and
the denoised noisy data X̃n in the n-th iteration,
estimate the noise based on the noise estimation
model, which can be denoted as ϵθ(X̃n, X, n).

• Step 2: Remove the noise estimated by the noise
estimation model ϵθ(X̃

n, X, n) from the noisy
data X̃n to obtain X̃n−1, which represents the
noisy data at step n− 1.

The denoising process in the n-th iteration can be repre-
sented as:

X̃n−1 =
1

√
αn

(
X̃n − βn√

1− α̃n

ϵθ(X̃
n, X, n)

)
+ σ2

nI,

(11)
where I ∼ N (0, 1), and σ2

n is defined as follows:

σ2
n =

{
1−α̃n−1

1−α̃n
βn, for n > 1;

β1, for n = 1.
(12)

Figure 9: The n-th step of the denoising process.

We organize the entire denoising process as Algorithm 2.
The imputation process starts by denoising from a random
Gaussian noise X̃N , with the number of steps n decreas-
ing from N to 1. In the n-th iteration of the step-by-step
imputation process, the noise estimation model utilizes the
current noisy data X̃n and target observational data n to
estimate the noise ϵθ(X̃

n, X, n) for the current step. Sub-
sequently, the next noisy data X̃n−1 for the next step is
computed using Eq.(11) and Eq.(12). This process iterates
until n = 1 to obtain the imputation result X̃0.

Xresult = M ⊙X + (1−M)⊙ X̃0, (13)

where M represents the mask of the target observational data X .
Imputation process: After we obtain the final denoised result by de denoising process, we fuse the denoised result X̃0

with the target observational data X to obtain the imputation result Xresult:

8
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Algorithm 2 Denoising Process

Input: Target observational data X , the number of diffu-
sion step N , randomly initialize Gaussian noise data
X̃N ∼ N (0, 1) where the dimension of X̃N corre-
sponds to X .

Output: Denoising result X̃0.
1: for n = N, ..., 1 do
2: I ∼ N (0, 1) if n > 1 else I = 0.
3: Compute the estimated noise ϵθ(X̃

n, X, n) using
the noise estimation model ϵθ.

4: Calculate the denoising result X̃n−1 according to
Eq.(11) and Eq.(12).

5: end for
6: return denoising result X̃0.

Algorithm 3 HDDI

Input: target observational data X , historical data streams
X hist, the number of matched history data K, the num-
ber of diffusion step N .

Output: Imputation results X result.
1: Search the top-K matching history data

[Ht1 , ...,Htk , ...,HtK ] from X hist by Historical
Data Matching Process.

2: Fuse the training data Xtrain and
[Ht1 , ...,Htk , ...,HtK ] using Eq.(7), to obtain
the fused training data X fu.

3: Train the noise estimation model ϵθ by Algorithm 1.
4: Generate the denoising result X̃0 by Algorithm 2.
5: Calculate imputation results

X result = M ⊙X + (1−M)⊙ X̃ 0.

6: return Imputation results X result.

Finally, our HDDI can be organized in Algorithm 3. We first select the K historical data segments most similar to the
current target observational data X based on the Historical Data Matching Process. Then, using the Fusion Process, we
fuse these historical data segments with the training data Xtrain in appropriate proportions to obtain the fused training data
X fu, which is supplemented with historical data.

Next, the supervised data Xsup and the fused training data X fu are input into the diffusion imputation module for training
the noise estimation model ϵθ. Using this noise estimation model, we progressively remove noise from pure Gaussian
noise X̃N to generate the denoised result X̃0, thereby obtaining the final imputation result X result.

In summary, utilizing the fused training data X fu obtained from the historical data supplement module can provide more
comprehensive training data for model training, leading to improved imputation accuracy in both high missing rate and
long-term missing data scenarios, as demonstrated in the experimental section.

5 EXPERIMENT

In this section, we evaluate our proposed HDDI by comparing it with five state-of-the-art baseline methods under five
multivariate time series datasets. The dataset, baseline methods, and evaluation metrics used in the experiment are detailed
in Appendix 7.3. In addition, we simulated two data missing scenarios (including random missing and long-term missing)
to validate the robustness and effectiveness of our algorithm. In summary, we will investigate the following questions
through experiments:

RQ1: Can our HDDI effectively handle the high missing rate? RQ2: If our HDDI is effective in the long-term missing
data scenario? RQ3: Can our HDDI achieve better performance compared to existing state-of-the-art (SOTA) methods?
RQ4: Is the Historical Data Matching Process effective? RQ5: Is the Fusion Process effective?

5.1 COMPARED WITH OTHER SOTA BASELINE METHODS

To address RQ1, we conducted experiments under the RM scenario to demonstrate the effectiveness of our imputation
algorithm in high missing rate scenarios. As shown in Table 2 of Appendix 7.4, by comparing with five SOTA baseline
methods, we can observe:

With the increase of missing rate, the imputation accuracy of all methods decreases. As the missing rate increases,
the training data gradually becomes insufficient, leading to a decrease in imputation accuracy.

Compared with other SOTA baseline methods, our method achieves the highest accuracy across all missing rates
in random missing scenarios. With the data missing rate increases, the gap between our proposed method and other
baselines increases, because our method supplements training data with similar data from historical records, addressing
the issue of insufficient training data caused by a low sampling rate.

To address RQ2 and validate the effectiveness of our imputation algorithm in LM scenarios, we compare our HDDI with
five baseline methods. As shown in Table 3 of Appendix 7.4, we can observe:

With the increase of missing rate, the imputation accuracy of all methods decreases. As the missing rate increases,
the training data gradually becomes insufficient, leading to a decrease in imputation accuracy.

Compared with other SOTA baseline methods, our HDDI achieves the highest accuracy across all missing rates
in long-term missing data scenarios. Since our HDDI approach uses historical data segments similar to the target
observational data to supplement the training data, the long-term missing data segments are supplemented by historical
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data segments. As a result, the model can resolve the underfitting problem associated with undamaged equipment, thereby
enhancing the accuracy of missing data imputation.

Based on the results of the comparative experiments on the two missing scenarios described above, we can answer RQ3:
Our imputation scheme achieves higher accuracy and greater reliability compared to existing SOTA methods. This demon-
strates that our HDDI approach effectively identifies historical data most similar to the current target observational data,
thereby providing sufficient and reliable training data. This capability enables our model to handle diverse and complex
time series missing scenarios, including both random and long-term missing.

Even in scenarios with high missing rate data, our HDDI still achieves excellent imputation performance. For instance,
when the data missing rate reaches 90%, HDDI achieves an average MAE of 0.3758 across five datasets in the random
missing scenario, which represents a 25.15% improvement in accuracy compared to the best baseline method (CSDI). In
long-term missing scenarios, HDDI has an average MAE of 0.4635, which is a 13.64% accuracy improvement over the
best baseline method (GP-VAE).

5.2 ABLATION STUDIES

To prove the effectiveness of the Historical Data Matching Process and the Fusion Process in our HDDI, we conduct
ablation studies as follows:

Firstly, to address RQ4 and validate the effectiveness of the Historical Data Matching Process, we randomly select 10%,
30%, 50%, 70%, and 90% of observations as missing values from two datasets: ETT and Air-Quality. We design three
sets of experiments for comparison:

1) The first set uses the nearest historical data segments as the data source for fusion from the history data stream, which
is denoted as HDDI(near-match).

2) The second set randomly selects historical data segments as the data source for fusion from the history data stream,
which is denoted as HDDI(rand-match).

3) The third set does not use data from the history data stream as a supplement, instead directly training the diffusion
process with only target observational data, which is denoted as HDDI(no-history).

After the Historical Data Matching Process, we proceed with the remaining steps as described in this paper to evaluate
the imputation results. As shown in Table 4 of Appendix 7.4, we can observe:

Our designed historical data matching scheme achieves better performance compared to all other three matching
methods. Due to the Historical Data Matching Process we designed, which finds historical data most similar to the current
target observation data using a sliding window-based approach, the supplemented historical data has features closer to the
current imputation data. This ensures that they provide more accurate information for the diffusion imputation module
and achieve higher imputation performance.

To address RQ5 and validate the effectiveness of the Fusion Process, we use the same random missing scenario on the
ETT and Air Quality datasets with 10%, 30%, 50%, 70%, and 90% missing rates. We conduct a comparison experiment
called HDDI(aver-fusion), where, after identifying historical data segments similar to the current target observational
data, the fusion stage does not consider the similarity and temporal correlation scores. Instead, it uses a simple averaging
method to fuse the data, using the average of historical data as supplementary data for training the model. As shown in
Table 5 of Appendix 7.4, we can observe:

Our designed fusion scheme consistently outperforms the averaging fusion scheme across various missing rates.
Due to the design of our Fusion Process, which thoroughly considers the similarity in distance and temporal proximity
between historical data and current target observational data, we place more trust in historical data that is closer in both
time and distance to the current moment. As a result, our fused outcome is more accurate compared to simply taking the
average value and achieves higher accuracy imputation.

These ablation studies highlight the significance of both the Historical Data Matching Process and the Fusion Process in
our framework, demonstrating their contributions to achieving accurate and reliable imputation results.

6 CONCLUSION

To ensure high-precision imputation of missing data in multivariate time series under scenarios of high missing rate
or long-term data absence, we propose the HDDI model. By designing a historical data supplementation module, we
select multiple historical data segments which most similar to the current target observation data from the historical
data stream and fuse them with the current training data. To fully utilize the supplemented training data, we design a
diffusion imputation module to achieve high-accuracy imputation in scenarios of high missing rate and long-term missing.
Extensive experimental results demonstrate that our method outperforms in both high missing rate and long-term missing
scenarios across five multivariate time series datasets.
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Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilistic time series imputa-
tion. In International conference on artificial intelligence and statistics, pp. 1651–1661. PMLR, 2020.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E
Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank, physiotoolkit, and physionet: com-
ponents of a new research resource for complex physiologic signals. circulation, 101(23):e215–e220, 2000.

Yifan Gong, Zheng Zhan, Qing Jin, Yanyu Li, Yerlan Idelbayev, Xian Liu, Andrey Zharkov, Kfir Aberman, Sergey
Tulyakov, Yanzhi Wang, et al. E2gan: Efficient training of efficient gans for image-to-image translation. In Forty-first
International Conference on Machine Learning.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion model for audio
synthesis. In International Conference on Learning Representations.

David M Kreindler and Charles J Lumsden. The effects of the irregular sample and missing data in time series analysis. In
Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data, pp. 149–172. CRC Press, 2016.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with
deep neural networks. In The 41st international ACM SIGIR conference on research & development in information
retrieval, pp. 95–104, 2018.

Xiao Li, Huan Li, Hua Lu, Christian S Jensen, Varun Pandey, and Volker Markl. Missing value imputation for multi-
attribute sensor data streams via message propagation. Proceedings of the VLDB Endowment, 17(3):345–358, 2023a.

Yan Li, Xinjiang Lu, Haoyi Xiong, Jian Tang, Jiantao Su, Bo Jin, and Dejing Dou. Towards long-term time-series
forecasting: Feature, pattern, and distribution. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE), pp. 1611–1624. IEEE, 2023b.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John Wiley & Sons, 2019.

Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. Pristi: A conditional diffusion framework for
spatiotemporal imputation. In 2023 IEEE 39th International Conference on Data Engineering (ICDE), pp. 1927–1939.
IEEE, 2023.

Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. Naomi: Non-autoregressive multiresolution sequence
imputation. Advances in neural information processing systems, 32, 2019.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with generative adversarial
networks. Advances in neural information processing systems, 31, 2018.

11



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

Under review as a conference paper at ICLR 2025

Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei Yin. Generative semi-supervised learning
for multivariate time series imputation. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021, pp. 8983, 2021.

Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing data: A comparison of neural network and
expectation maximization techniques. Current Science, pp. 1514–1521, 2007.

Jangho Park, Juliane Müller, Bhavna Arora, Boris Faybishenko, Gilberto Pastorello, Charuleka Varadharajan, Reetik
Sahu, and Deborah Agarwal. Long-term missing value imputation for time series data using deep neural networks.
Neural Computing and Applications, 35(12):9071–9091, 2023.

Utomo Pujianto, Aji Prasetya Wibawa, Muhammad Iqbal Akbar, et al. K-nearest neighbor (k-nn) based missing data
imputation. In 2019 5th International Conference on Science in Information Technology (ICSITech), pp. 83–88. IEEE,
2019.

Xiaoling Shu and Yiwan Ye. Knowledge discovery: Methods from data mining and machine learning. Social Science
Research, 110:102817, 2023.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital mortality of icu patients:
The physionet/computing in cardiology challenge 2012. In 2012 computing in cardiology, pp. 245–248. IEEE, 2012.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on Learning Representa-
tions, 2020.

Qiuling Suo, Weida Zhong, Guangxu Xun, Jianhui Sun, Changyou Chen, and Aidong Zhang. Glima: Global and local
time series imputation with multi-directional attention learning. In 2020 IEEE International Conference on Big Data
(Big Data), pp. 798–807. IEEE, 2020.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion models for
probabilistic time series imputation. Advances in Neural Information Processing Systems, 34:24804–24816, 2021.

Jun Wang, Arjen P De Vries, and Marcel JT Reinders. Unifying user-based and item-based collaborative filtering ap-
proaches by similarity fusion. In Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 501–508, 2006.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-temporal graph
modeling. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1907–1913, 2019.

Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. St-mvl: Filling missing values in geo-sensory time series data. In
Proceedings of the 25th international joint conference on artificial intelligence, 2016.

Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Multi-directional recurrent neural networks: A novel method
for estimating missing data. In Time series workshop in international conference on machine learning, 2017.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative adversarial nets. In
International conference on machine learning, pp. 5689–5698. PMLR, 2018a.

Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in temporal data streams using
multi-directional recurrent neural networks. IEEE Transactions on Biomedical Engineering, 66(5):1477–1490, 2018b.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization for high-dimensional time
series prediction. Advances in neural information processing systems, 29, 2016.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond
efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 11106–11115, 2021.

12



720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

Under review as a conference paper at ICLR 2025

7 APPENDIX

7.1 NOTATIONS

We organize the meanings of the symbolic expressions in this paper in Table 1.

Table 1: Important notations for the HDDI Model

Notations Descriptions

X Target observational data
M Mask matrix for target observational data
X fu Fused training data

Xresult Imputation results
Ht Historical data segments
Htk Selected historical data segments

M inter t Intersection mask matrix
Xtrain Training data (a portion of X)
Xsup Supervised data (a portion of X)
X1:N

sup Results of each step in the diffusion process
X̃N Randomly generated Gaussian noise

X̃1:N−1 Results of each step in the denoising process
X̃0 Denoising result
K The number of selected historical data segments
T Length of historical data stream
N The total number of diffusion steps

7.2 FUSION EXAMPLES

More specifically, as shown in Fig.6(b), we selected three historical data segments: Ht1 , Ht2 , and Ht3 . The Fusion
Process can be divided into three scenarios:

1) Taking the X fu
3,3 as an example, if position (i, j) has observational data in the training data Xtrain, the corresponding

position in the fused training data can be represented as X fu
3,3 = Xtrain(3,3).

2) Taking the X fu
4,4 as an example, if position (i, j) has observational data in the supervised data Xsup, the corresponding

position in the fused training data can be represented as X fu
4,4 = 0.

3) Taking the X fu
1,1 as an example, if position (i, j) only has observational data in the historical data segments Ht1 and

Ht2 , the corresponding position in the fused training data can be represented as X fu
1,1 = λ1

λ1+λ2
Ht1

1,1 +
λ2

λ1+λ2
Ht2

1,1.

7.3 DATASET, BASELINE METHODS, AND EVALUATION METRICS

Datasets: Electricity Transformer Temperature (ETT) Zhou et al. (2021): The ETT dataset, collected from power trans-
formers from July 1, 2016, to June 26, 2018, contains 69,680 samples, each featuring seven features, including oil tem-
perature and six types of external power load characteristics. We use the last 2 hours as target observational data, while
the first 22 hours are used as historical data.

Beijing Multi-Site Air-Quality (Air-Quality) Yi et al. (2016): The Air-Quality dataset includes PM2.5 measurements from
36 stations in Beijing, sampled hourly over 12 months. Each sequence consists of 36 consecutive time steps. The dataset
itself contains approximately 13% missing data. We use the last 6 hours as target observational data, while the first 42
hours are used as historical data.

Chicago Crime Dataset (Chicago-Crime) Aldossari et al. (2020): The Chicago-Crime dataset spans from January 1, 2001,
to December 11, 2017. It provides information on crime time, location, and type. We process the dataset into a three-
dimensional structure with 32 crime types, 200 months, and 77 locations. We use the last 10 months to serve as target
observational data, while the first 180 months are used as historical data.

Electricity Load Diagrams (Electricity) Lai et al. (2018): The Electricity dataset, sourced from UCI. It contains electricity
consumption data collected every 15 minutes from 370 customers over a period from January 1, 2011, to December 31,
2014 (48 months). We use the last 1 hour as target observational data, while the first 23 hours are used as historical data.

PhysioNet Challenge 2012 (PhysioNet-2012) Goldberger et al. (2000): The PhysioNet-2012 dataset includes 4,000 clini-
cal time series from intensive care units (ICUs) over 48 hours, with 35 variables. The dataset itself contains approximately
80% missing data. We use the last 6 hours as target observational data, while the first 42 hours are used as historical data.
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Baseline Methods: We implement five SOTA deep learning-based multivariate series imputation methods as follows:

• BRITS Cao et al. (2018): Based on the recurrent neural network model, BRITS uses bidirectional recurrent
neural networks to fuse bidirectional information flow, learning patterns from the context around missing data
for imputation.

• GP-VAE Fortuin et al. (2020): Based on the variational autoencoder model, GP-VAE utilizes a deep variational
autoencoder (VAE) to obtain latent representations and employs the Gaussian process in latent space to capture
the global dynamics and structure of time series.

• SS-GAN Miao et al. (2021): Combining RNN with a semi-supervised generative adversarial network model, SS-
GAN uses semi-supervised learning mechanisms to guide the learning process of generators and discriminators.

• SAITS Du et al. (2023): A model based on a self-attention mechanism, SAITS models dependencies between
sequence elements directly using self-attention mechanisms.

• CSDI Tashiro et al. (2021): Uses a conditional score-based diffusion model to estimate missing values by grad-
ually transforming noise into coherent time series.

Evaluation Metrics: We evaluate each method using the following metrics:

MAE = (

I∑
i

J∑
j

|(X result −X)⊙M test|)/
∥∥∥M test

∥∥∥
1
, (14)

RMSE =

√√√√(
I∑
i

J∑
j

((X result −X)⊙M test)
2
)/∥M test∥1. (15)

• Mean Absolute Error (MAE): Measures the average absolute difference between predicted value and ground-
truth values of missing data, providing an intuitive and interpretable error measure.

• Root Mean Square Error (RMSE): Measures the square root of the average squared difference between pre-
dicted and actual values. It is sensitive to larger errors, thus indicating significant deviations between predictions
and actual values.

The mathematical definition of the evaluation metric is as follows. Note that we set the mask for the test data as M test,
while ∥M test∥1 represents the number of test data.

Missing Data Scenarios:

Our experiment simulated two common missing data scenarios: Random Missing and Long-term Missing.

• Random Missing (RM): We randomly select γ% of the data as missing data, while the remaining data serves
as the target observational data X . To evaluate the accuracy of the imputation algorithm under different missing
rates, we set γ to 10, 30, 50, 70, and 90, respectively.

• Long-term Missing (LM): Due to the high level of missing data in the PhysioNet healthcare dataset, it is not
feasible to approximate the long-term missing scenario. Instead, we select the other four datasets to test the
long-term missing scenario. We randomly select γ% of the features from each sample to be damaged. For each
damaged feature, we set all data points at all time slots to be missing. Similar to the random missing scenario,
we set γ to 10, 30, 50, 70, and 90, respectively.

The HDDI epoch is set to 1000, the learning rate is 0.001, the batch size is 16, and the number of diffusion steps is 50.
All other baseline methods use their optimal parameters and are trained on a single NVIDIA GeForce RTX 3090 GPU.
All experimental results are averaged over five trials.
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7.4 EXPERIMENTAL RESULT

Table 2: Experimental Results in RM Scenarios.

Dataset: ETT Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.2060 0.3889 0.5911 0.7278 0.7602
GP-VAE 0.2325 0.3444 0.4882 0.6189 0.7237
SS-GAN 0.2252 0.3641 0.5403 0.7229 0.7602
SAITS 0.0984 0.1750 0.6285 0.7602 0.7644
CSDI 0.0887 0.1003 0.1311 0.2237 0.4530
HDDI 0.0718 0.0851 0.1035 0.1712 0.3609

RMSE

BRITS 0.3055 0.5352 0.7779 0.9180 0.9547
GP-VAE 0.3391 0.4599 0.6392 0.7868 0.9122
SS-GAN 0.3315 0.5022 0.7128 0.9144 0.9547
SAITS 0.1563 0.2861 0.8154 0.9547 0.9607
CSDI 0.1940 0.2041 0.2744 0.4590 0.6362
HDDI 0.1230 0.1613 0.1731 0.2920 0.5371

Dataset: Air-Quality Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.2643 0.3347 0.4759 0.6204 0.6508
GP-VAE 0.2803 0.3596 0.4472 0.5473 0.6283
SS-GAN 0.2590 0.3281 0.4212 0.5270 0.6259
SAITS 0.1696 0.2792 0.4256 0.5697 0.6654
CSDI 0.0920 0.1033 0.1272 0.1936 0.4907
HDDI 0.0887 0.0989 0.1186 0.1776 0.3022

RMSE

BRITS 0.4180 0.4720 0.6303 0.7403 0.7832
GP-VAE 0.4218 0.4823 0.5636 0.6641 0.7609
SS-GAN 0.4118 0.4720 0.5661 0.6516 0.7664
SAITS 0.3115 0.4153 0.5724 0.7077 0.8048
CSDI 0.1614 0.1772 0.2248 0.3394 0.6392
HDDI 0.1536 0.1650 0.2066 0.2974 0.4965

Dataset: PhysioNet-2012 Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.3102 0.4191 0.6530 0.6961 0.6984
GP-VAE 0.4313 0.4916 0.5590 0.6356 0.6967
SS-GAN 0.3306 0.4429 0.6169 0.6961 0.6974
SAITS 0.2512 0.3746 0.6961 0.6962 0.6972
CSDI 0.2617 0.3277 0.4078 0.5532 0.6415
HDDI 0.2407 0.2955 0.3617 0.4602 0.5936

RMSE

BRITS 0.5582 0.7096 0.9202 0.9675 0.9826
GP-VAE 0.6560 0.7704 0.8192 0.8950 0.9608
SS-GAN 0.5709 0.7290 0.8799 0.9674 0.9815
SAITS 0.4965 0.6776 0.9676 0.9701 0.9716
CSDI 0.5314 0.5623 0.7760 0.8363 0.9245
HDDI 0.4693 0.5500 0.6021 0.7234 0.8531

Dataset: Chicago-Crime Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.2613 0.3351 0.4115 0.5220 0.5422
GP-VAE 0.3071 0.3490 0.4063 0.4558 0.5179
SS-GAN 0.2697 0.3485 0.4236 0.5069 0.5417
SAITS 0.2461 0.2964 0.3728 0.5192 0.5425
CSDI 0.1994 0.2128 0.2277 0.2855 0.4526
HDDI 0.1857 0.1910 0.2275 0.2700 0.3014

RMSE

BRITS 0.7870 0.8863 0.9901 0.9672 0.9576
GP-VAE 0.9080 0.9338 0.9818 0.9341 0.9370
SS-GAN 0.7769 0.8849 0.9874 0.9519 0.9442
SAITS 0.7973 0.8837 0.9865 0.9738 0.9566
CSDI 0.3583 0.4944 0.4873 0.5152 0.7035
HDDI 0.3483 0.3515 0.4228 0.5051 0.5366

Dataset: Electricity Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.1468 0.2236 0.4752 0.7979 0.8079
GP-VAE 0.1787 0.2999 0.4427 0.5876 0.7347
SS-GAN 0.1427 0.2590 0.4747 0.7942 0.7976
SAITS 0.1273 0.2086 0.5106 0.7947 0.8004
CSDI 0.1174 0.1290 0.1497 0.2247 0.4060
HDDI 0.1109 0.1215 0.1461 0.1835 0.3209

RMSE

BRITS 0.2626 0.3487 0.6284 0.9417 0.9418
GP-VAE 0.2670 0.3933 0.5481 0.7064 0.8711
SS-GAN 0.2382 0.3766 0.6280 0.9380 0.9416
SAITS 0.2282 0.3375 0.6551 0.9381 0.9446
CSDI 0.1913 0.2106 0.2491 0.3666 0.5485
HDDI 0.1842 0.2044 0.2479 0.3005 0.5030

15



900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

Under review as a conference paper at ICLR 2025

Table 3: Experimental Results in LM Scenarios.

Dataset: ETT Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.5146 0.7278 0.7327 0.7474 0.7692
GP-VAE 0.1905 0.3717 0.4268 0.4816 0.5905
SS-GAN 0.5606 0.7594 0.7731 0.7288 0.7254
SAITS 0.0986 0.3226 0.3478 0.3972 0.8258
CSDI 0.1429 0.3481 0.4174 0.5881 0.8065
HDDI 0.0970 0.2919 0.3074 0.3622 0.4810

RMSE

BRITS 0.5146 0.7278 0.7327 0.7474 0.7692
GP-VAE 0.2596 0.3770 0.4746 0.4835 0.6980
SS-GAN 0.8119 0.9466 0.9545 0.9584 0.9800
SAITS 0.2236 0.4854 0.5315 0.5362 1.1157
CSDI 0.2514 0.4749 0.5667 0.8636 1.0237
HDDI 0.2052 0.4592 0.4634 0.5783 0.6361

Dataset: Air-Quality Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.3307 0.6221 0.6273 0.6368 0.6675
GP-VAE 0.3007 0.3543 0.3677 0.4250 0.5473
SS-GAN 0.4430 0.6245 0.6250 0.6414 0.6699
SAITS 0.1831 0.3927 0.5482 0.6097 0.6924
CSDI 0.1410 0.1954 0.4298 0.4744 0.6471
HDDI 0.1382 0.1909 0.3075 0.3877 0.4511

RMSE

BRITS 0.4681 0.7976 0.7991 0.8137 0.8393
GP-VAE 0.4403 0.5422 0.5437 0.6402 0.7820
SS-GAN 0.6290 0.7980 0.8007 0.8129 0.8368
SAITS 0.3112 0.6771 0.8572 0.9116 0.9159
CSDI 0.2207 0.3261 0.6279 0.6678 0.8267
HDDI 0.2192 0.3181 0.5005 0.6218 0.7490

Dataset: Chicago-Crime Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.3020 0.3823 0.4391 0.4501 0.4612
GP-VAE 0.2853 0.2896 0.2914 0.3228 0.4135
SS-GAN 0.2268 0.2371 0.2607 0.3147 0.3950
SAITS 0.3476 0.4259 0.4332 0.4478 0.4559
CSDI 0.1979 0.2284 0.3046 0.4334 0.4784
HDDI 0.1904 0.2253 0.2302 0.2729 0.3581

RMSE

BRITS 0.8723 0.9590 0.9590 1.0144 1.0369
GP-VAE 0.8990 0.9133 0.9292 0.9382 0.9974
SS-GAN 0.7715 0.8675 0.8836 0.8902 0.9230
SAITS 0.8881 0.9293 0.9587 1.0131 1.0362
CSDI 0.3605 0.4905 0.7422 0.8517 0.9830
HDDI 0.3359 0.3585 0.4088 0.4935 0.6809

Dataset: Electricity Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

BRITS 0.2932 0.6841 0.7756 0.7710 0.7931
GP-VAE 0.1661 0.1686 0.2127 0.4107 0.6200
SS-GAN 0.5781 0.7065 0.7789 0.7860 0.7879
SAITS 0.1576 0.2806 0.3286 0.3550 0.7794
CSDI 0.1136 0.2413 0.2826 0.4129 0.7223
HDDI 0.1073 0.1674 0.2033 0.2825 0.5636

RMSE

BRITS 0.3876 0.8520 0.9204 0.9347 0.9365
GP-VAE 0.2474 0.2719 0.3309 0.4103 0.8294
SS-GAN 0.7244 0.8655 0.9315 0.9320 0.9350
SAITS 0.2454 0.3994 0.4573 0.5237 0.9684
CSDI 0.1781 0.3484 0.3692 0.5418 0.8820
HDDI 0.1703 0.2658 0.3038 0.4045 0.7350
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Table 4: Ablation studies of Historical Data Matching Process.

Dataset: ETT Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

HDDI(near-match) 0.0765 0.0905 0.1392 0.2118 0.4012
HDDI(rand-match) 0.0735 0.0873 0.1058 0.1779 0.3858
HDDI(no-history) 0.0887 0.1003 0.1311 0.2237 0.4530

HDDI 0.0718 0.0851 0.1035 0.1712 0.3609

RMSE

HDDI(near-match) 0.1322 0.1684 0.2366 0.3400 0.6431
HDDI(rand-match) 0.1282 0.1648 0.1822 0.3022 0.6200
HDDI(no-history) 0.1940 0.2041 0.2744 0.4590 0.6362

HDDI 0.1230 0.1613 0.1731 0.2920 0.5371

Dataset: Air-Quality Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE

HDDI(near-match) 0.0899 0.1018 0.1288 0.1983 0.3457
HDDI(rand-match) 0.0909 0.1019 0.1260 0.2034 0.3860
HDDI(no-history) 0.0920 0.1033 0.1272 0.1936 0.4907

HDDI 0.0887 0.0989 0.1186 0.1776 0.3022

RMSE

HDDI(near-match) 0.1555 0.1703 0.2274 0.3337 0.5407
HDDI(rand-match) 0.1600 0.1723 0.2211 0.3767 0.6887
HDDI(no-history) 0.1614 0.1772 0.2248 0.3394 0.6392

HDDI 0.1536 0.1650 0.2066 0.2974 0.4965

Table 5: Ablation studies of Fusion Process.

Dataset: ETT Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE HDDI(aver-fusion) 0.0765 0.0905 0.1392 0.2118 0.4012
HDDI 0.0718 0.0851 0.1035 0.1712 0.3609

RMSE HDDI(aver-fusion) 0.1300 0.1684 0.1874 0.3049 0.6101
HDDI 0.1230 0.1613 0.1731 0.2920 0.5371

Dataset: Air-Quality Missing Rate

Metrics Model 10% 30% 50% 70% 90%

MAE HDDI(aver-fusion) 0.0912 0.1012 0.1205 0.1995 0.4596
HDDI 0.0887 0.0989 0.1186 0.1776 0.3022

RMSE HDDI(aver-fusion) 0.1623 0.1655 0.2107 0.3285 0.7859
HDDI 0.1536 0.1650 0.2066 0.2974 0.4965
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