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Supplementary Material

A DATASET SUPPLEMENTALS

Telescope Dataset ID Location
Central

Wavelength (Å)
Bandpass

Filter
Resolution

(arcsec / pix)
Image Sizes

(pix×px)
Total #
Arrays

Total Dataset
Size (GB)

Approx.
Total Pixels

LCO GBI-16-2D-Legacy multiple sites
Earth varies B, V , rp, ip 0.58 3136× 2112 9 0.1 5.5× 107

Keck GBI-16-2D
HI,

USA,
Earth

varies,
4500–8400 B, V , R, I 0.135 2248×2048;

3768 × 2520 137 1.5 7.4× 108

Hubble SBI-16-2D LEO,
Space 5926 F606W 0.05 4144 × 2068 2140 69 1.8× 1010

JWST SBI-16-3D L2,
Space 19840 F200W 0.031 2048×2048

× #Groups 1273 90 7.0× 109

SDSS GBI-16-4D
NM,
USA,
Earth

3543,
4770,
6231,
7625,
9134

all of
[u, g, r, i, z] 0.396 800×800×5

× #Timesteps 500 158 1.6× 1010

Table 4: Datasets summary. Total pixels computed using each 16-bit data point as one “pixel.”

A.1 NAMING CONVENTIONS

Throughout this work, the data are referred to in three different ways depending on the context; we
elucidate the reference conventions here.

A.1.1 DATASET ID

The adopted Dataset ID naming convention provides a shorthand description of the origin and form
of the data:

(origin)(data taking mode)-(number of bits per pixel)-(dimensionality),

where origin is either space-based (SB) or ground-based (GB), and data taking mode refers to the
primary objective of the exposure, only I (imaging1). -2D implies each instance is a 2-dimensional
array. -3D may be thought of as a temporal sequence of images (ie., movie) taken in roughly the
same portion of the sky. -4D may be thought of as a temporal sequence of images taken in the same
portion of the sky at different wavelengths. Clearly, -3D and -4D may be decomposed into individual
2D images. All data in the corpus are uint16 but future datasets may be added with different bit
depths.

This is a standardized way of naming our datasets that include functional details, allowing one to
quickly search for or identify the kind of data from the name alone.

A.1.2 TELESCOPE OR SURVEY NAME

For brevity and ease of reading, we use the “telescope” column as nicknames to refer to each of our
published datasets throughout our paper.

A.1.3 EXPERIMENTAL DATASET NAMES

For several reasons, some of our benchmark models were trained on a subset of a dataset. To this end,
we added additional descriptors to the dataset nicknames as a way to describe these subselections.
LCO, Keck, and Hubble were unchanged and used fully. JWST was used in two forms: a first frame
model from JWST-2D (jwst[t=0] for every image cube), and JWST-2D-Res (we used all of the
residual images to train a separate residual coding model, i.e., jwst[t=i+1]− jwst[t=i] for

1Other data taking modes such as spectroscopy may be added in future work.

17



Published as a conference paper at ICLR 2025

all i, for every image cube). SDSS was split into three datasets: SDSS-2D (sdss[t=0][λ=2]),
SDSS-3Dλ (sdss[t=0][λ=1,2,3]), SDSS-3DT (sdss[t=0,1,2][λ=2]).

A.2 ACCESSIBILITY

All datasets herein are released under the AstroCompress project as HuggingFace datasets and
may be accessed as numpy nd-arrays in Python:

import numpy as np
from datasets import load_dataset

dataset = load_dataset(f"AstroCompress/{name}", config, split=split, \
streaming=True, trust_remote_code=True)

ds = dataset.with_format("np", columns=["image"], dtype=np.uint16)
ds[0]["image"].shape # −> ( tup le with shape of the numpy array )

Here name is one of the five datasets described below, config is either "tiny" (small number of
files for code testing purposes; default value) or "full" (full dataset), and split is one of "train" or
"test". To use the datasets with pytorch:

import torch
from torch.utils.data import DataLoader

dataset = load_dataset(f"AstroCompress/{name}", config, split=split, \
streaming=True, trust_remote_code=True)

dst = dataset.with_format("torch", columns=["image"], dtype=torch.uint16, \
device=device)

dataloader = DataLoader(dst, batch_size=batch_size , num_workers=num_workers)
next(iter(dataloader)) # −> y i e l d s the f i r s t batch of images

where device is the pytorch device to use (e.g., "gpu", "mps:0").

A.3 DATASET COLLECTION AND SCIENTIFIC DETAILS

A.3.1 DATASET COLLECTION OVERVIEW

All of the data that we have pulled is public data from various astronomical archives. The specific
licenses under which the data have been released are noted in the acknowledgment section. Here we
detail the selection and curation process for each dataset. Table 4 provides a broad overview of the
corpus.

At a high level: for each dataset, we generally come up with a set of logical filters and pull a list
of observations via API and/or direct download from the archives where the data are disseminated.
An observation refers to one telescope’s “visit” to a certain place in the sky, integrated over a short
period of time (typically less than 20 min). Each observation can result in multiple versions of that
observation in the archives, as many archives store various processed versions of observations along
with the associated calibration data used. For a given observation, we download the one file in raw
form (uint16; processed data is usually float32). Finally, we select a subset of the downloaded
data that contains no pairwise overlapping of the image footprint on the sky. This ensures that
compression models trained on the training set do not overfit on regions of the sky present in the test
data. It also allows users to safely create their own validation sets from subsets of our training sets.

A.3.2 GBI-16-2D (KECK)

This is a 2-D optical imaging dataset from the ground-based W. M. Keck Observatory, obtained in
a variety of observing conditions, filters, and across exposure times from 30 seconds to >10 min.
The data are all selected from the Low Resolution Imaging Spectrometer (LRIS; Oke et al. (1995))
and are from scientific observations (as opposed to calibration exposures) obtained by one of the
co-authors of this paper (J.S.B.) from 2005 to 2010. Since LRIS has a dichroic optical element, which
splits the incoming beam at a designated wavelength, the data are obtained either with the blue or
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red side camera. Each camera has its own filter wheel allowing for imaging in a variety of different
bandpasses. The raw data of a given observation are stored in FITS format (Pence et al., 2010). The
LRIS CCDs are readout using 2 amplifiers which are stored in distinct logical and memory sections
(called Header Data Units; HDUs) within the FITS files. The blue side camera has two CCDs and
the redside camera had 1 CCD before June 2009 and 2 thereafter (Rockosi et al., 2010). In addition
to storing the light-exposed regions, LRIS FITS files usually include small regions of virtually read
pixels, called overscan regions, which aid image processing.

Collection

We used the Keck Observatory Archive (KOA) to identify raw LRIS science images obtained under
the principal investigator program by J.S.B. These data were then downloaded and checked for
potential footprint overlaps using the positional information of the telescope pointings from the FITS
header. The data assembly code for the HuggingFace GBI-16-2D dataset handles the variety of FITS
formats and emits 2D images of size 2248×2048 or 3768×2520 pix2. An example image from this
dataset, with two amplifier reads, is shown in Fig. 1.

A.3.3 SBI-16-2D (HUBBLE)

This dataset is based on data from the Wide Field Channel (WFC) instrument of the Advanced Camera
for Surveys (ACS) onboard the Hubble Space Telescope (HST). Unlike the GBI-16-2D dataset, all
observations in SBI-16-2D are obtained in space and with the same bandpass filter (F606W), providing
a more uniform point-spread function across the dataset. Our goal with assembling SBI-16-2D is
two-fold. First, we aim to provide a large (> 50 GB), raw 2-D optical imaging dataset from space.
Second, space-based CCD imaging, unlike ground based imaging, suffers significantly from charge
particle collisions with the detectors (called “cosmic-ray [CR] hits”). Such random hits add spurious
counts to the affected pixels, corrupting the scientific utility of the observations. WFC CCDs also
demonstrate large amounts of charge transfer inefficiency leading to correlated streaks in the vertical
direction (see Fig. 1).

Collection

We first compile a list of observations that fit our criteria, including instrument, filter choice,
and integration time ranges. This data was then downloaded from the Mikulski Archive for
Space Telescopes (MAST): https://mast.stsci.edu/search/ui/#/hst. For repro-
ducibility, we provide a script that performs this in our HuggingFace repository located at
SBI-16-2D/utils/pull_hubble_csv.py. Explanations for each filtering process can be
found in the code comments therein. Each FITS file contains two images each of size 4144× 2068;
these images are stored in the 1st and 4th headers in the FITS files. After removing overlapping
regions in the sky, the final dataset amounts to 4282 images of size 4144× 2068.

A.3.4 SBI-16-3D (JWST)

This dataset comes from the NIRCAM instrument on the James Webb Space Telescope (JWST).
NIRCAM conducts up-the-ramp imaging of various objects in several infrared wavelengths. During
up-the-ramp sampling, the aperture is exposed to a region in space, and light continuously accumulates
charge on the array. The array repeatedly measures this cumulative charge for multiple frames, thus
creating a 3-D time-series image tensor. Every N frames is averaged to create a "group", each of
which is stored in our arrays in the T dimension (where N is determined by the “read pattern”). We
strongly encourage interested readers to learn more about the JWST readout patterns on the official
documentation page 2. It is worth noting that the time gap between subsequent observations varies,
depending on readout pattern, but is roughly in the realm of twenty seconds to two minutes. For
this reason, we expect that most physical conditions present in the field of view should remain static
across time steps.

Collection

Similar to Hubble, we pulled the JWST observations list from the JWST section of MAST. A script
version of this can be found at SBI-16-3D/utils/pull_jwst_csv.py. Explanations for

2https://jwst-docs.stsci.edu/jwst-near-infrared-camera/
nircam-instrumentation/nircam-detector-overview/nircam-detector-readout-patterns
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each filtering process can be found in the code comments there. We provide 1273 images of size
2048 by 2048 by T , where T represents time, under the F200W wavelength filter.

A.3.5 GBI-16-4D (SDSS)

This dataset is assembled from “Stripe 82” of the Sloan Digital Sky Survey (SDSS; York et al. (2000)).
Stripe 82, a ∼250 sq. deg. equatorial region was repeatedly imaged in 5 optical bandpasses with
30 total CCDs over the course of many months for several years, with supernova discovery as the
main science objective (Sako et al., 2018). Images are obtained in drift scan mode by fixing the
telescope in declination and letting the sky naturally move across the field of view as the CCDs are
readout at the sidereal rate. For a given nightly “run” across Stripe 82, the SDSS image reduction
pipeline (Stoughton et al., 2002) creates (for each of the 6 camera columns, “camcols”) “field”
images spanning a similar declination (ie., north-south) and right ascension (RA; ie., east-west). The
images served by the legacy SDSS archive3 are 2048×1489 uint16 pixels, calibrated with a world
coordinate system (WCS) that maps pixel location to sky position.

In total, we release 500 GBI-16-4D cubes as part of this dataset, with an uncompressed size of 158GB.
At a fixed wavelength, the images in time mimic the raw uint16 time sequence produced by imaging
satellites, like Kepler, TESS, and CuRIOS (Gulick et al., 2022). Exploiting the correlations in time
(and wavelength) should improve the effective compression compared to the single-slice capabilities.

We note that the gap in time between subsequent timestep images may be many nights, resulting
in very different background sky conditions. While the background sky levels across nights are
relatively uncorrelated, the pixels containing astrophysical sources exhibit significant correlation.

Collection

We queried the SDSS Stripe 82 database to assemble a table of 160k unique Stripe 82 field images
deemed to be of top quality (quality flag = 3) and then randomly sampled fields and determined
the center of the field sky positions. For each such field, we queried the SDSS Stripe 82 database for
other images (regardless of quality) that overlap the field center and downloaded those images.
Since field images from different runs are not aligned in RA, we also downloaded the two fields
immediately adjacent and created a stitched-together mosaic of those three images. We then used the
WCS in each mosaic image to cut out the same position across all available runs across all available
filters.

The assembled data are 4-D cube representations of the same 800×800 pix2 portion of the sky
observed from t=1 up to ∼90 times in f=5 filters (u, g, r, i, z). Given the excellent but inherently
noisy process of WCS fitting, the t× f image slices in a given cube are spatially aligned to <1 pix.
As a result, for a fixed pixel location in a given cube there are high correlations in the pixel value
across time and wavelength. While the effective integration time is identical across all image slices,
there are slices that are of higher signal-to-noise than others in the same cube and all have varying
background levels. In the few cases where an image slices does not fully overlap the central region of
the anchor field, we fill the missing region with values of zero.

A.3.6 GBI-16-2D-LEGACY

This small ground-based dataset obtained on multiple CCDs across many different telescopes is
reproduced from the public corpus released by Maireles-González et al. (2023) and assembled by us
in HuggingFace dataset format. Our experiments only made use of the subset of data from the
Las Cumbres Observatory (LCO).

Collection

We retrieved all of these files from a download page of Maireles-González et al. (2023) in a .raw
format and used a script (GBI-16-2D-Legacy/raw_to_fits.py in HuggingFace) to convert
the images to FITS format. Unlike in the other datasets, we did not check for nor remove potential
overlapping images.

3These images are from the reduction pipeline 40/41 (“rerun”) and were part of data release 7 from SDSS.
Newer reductions of the same raw data were released with different calibrations in float32 format.
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A.4 DATASET ASSEMBLY

Rejection of overlapping images After the initial download of these raw images from various
astronomy databases, a significant portion of the necessary data curation is to ensure that the imagery
does not overlap on the sky. It is particularly essential to ensure that the spatial footprint of all data in
the train set does not overlap with that of the test set. Because we anticipate that future use of this
data will split it into validation sets as well, we conservatively ensure that all of our images have
pairwise zero overlap.

This was done in two stages, the implementations for which can be found in the utils/

Stage 1. Before downloading raw imagery, we first download a metadata file that contains a list
of observations and the right ascension (RA) and declination (DEC) of each observation. These
are akin to standard spherical coordinates θ and ϕ. The corresponding pixel for the given RA and
DEC varies depending on the data source; it can be the image center pixel, the RA and DEC of the
target celestial object of interest, or some other pixel within the image entirely. In order to filter
out images in this overlapping set, we ran a hierarchical agglomerative clustering (HAC) algorithm
via sklearn.cluster.AgglomerativeClustering on a matrix of precomputed pairwise
angular distance matrix via astropy.coordinates.angular_separation. We made a
small modification to the astropy source code in order to allow numpy vectorization. The threshold for
clustering was selected as 2*FOV, where FOV was the field of view of any given telescope. Within
each cluster, a subset of well-separated images was downloaded.

Stage 2. After downloading the data, we were able to use the World Coordinate System (WCS)
of each image to map any given pixel in an image to an RA and DEC, using astropy.wcs.
The Python library spherical-geometry is used to compute spherical polygons from the four
corners of the image in RA/DEC, and computes overlaps between these polygon objects. In some
cases, such as for Hubble, there are two images contained within a single FITS file, so we need
to compute spherical polygons for both and then use the union of those two polygons for overlap
calculations. Using these algorithms, we further filter out overlapping images within each cluster.

Code to download raw data from source and filter it can be found in the utils folder of each
HuggingFace dataset. We hope these files, in combination with the observation list assembly code
will facilitate efforts for future experts to expand on our dataset from the astronomy data sources
themselves.

Disclaimers: Because the Keck dataset did not have WCS information, we did not run stage 2, and
instead used a more stringent clustering threshold in stage 1 and took only one image from each
cluster. No filtering was done on the very small Legacy dataset; it also contained no WCS, RA or
DEC data.

B BASELINE ALGORITHMS AND IMPLEMENTATION

From any dataset parent folder on HuggingFace, run python utils/eval_baselines.py
2d to get 2D evaluations of all algorithms. For JWST and SDSS, this 2d argument may be changed
to several other options that can be found in the command arguments help docstring. These options
allow for JWST residual ("diffs", as stated in the code) compression, compressing entire 3D tensors
for JWST and SDSS, as well as some unique SDSS experiments in which we compressed the top 8
bits and bottom 8 bits separately (2d_top and 2d_bottom). We also attempted with poor results
to compress 2D SDSS arrays composed of a single spatial pixel, but all wavelengths and timesteps
(tw). The exact functionalities are documented in the script.

The script also saves the compression ratio, read time, and write time for every single image into
a .csv file. We have already performed this and uploaded the CSV files for each dataset to the
HuggingFace parent repository. Additionally, running statistics on mean values are printed to the
console.

Implementations for all the non-neural baseline algorithms were adapted from the Python li-
brary imagecodecs=2024.1.1. All codecs in this library call the native C codec, specifically:
JPEG-XL via libjxl, JPEG-LS via charls, JPEG-2000 via OpenJPEG, and RICE forked from
cfitsio=3.49.
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All the non-neural baseline algorithms natively support 16-bit inputs.

JPEG-XL and JPEG-2000 both use "reversible color transforms" to decorrelate different channels
from each other before compressing a multi-channel image. JPEG-LS can only compress each channel
as an independent 2D image. RICE is a simple histogram-based codec that flattens N-dimensional
arrays before encoding.

In our specific implementations, JPEG-XL and JPEG-2000 supported multi-channel compression
directly. To evaluate multichannel arrays using JPEG-LS and RICE, we applied .reshape((H,
-1)) to convert them to single-channel. This was performed only on SDSS data, which resulted in an
image height of H = 800. For reporting compression ratio, we did not consider the bit-rate cost of
transmitting the data shape needed for decoding, as this overhead is negligible for even the smallest
image in our dataset.

Compute hardware was used as following: We ran classical compression codecs on a single
thread with a Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz processor and neural
compression networks on a single NVIDIA RTX 6000 ADA.

C DETAILS ON NEURAL COMPRESSION METHODS

In this section, we provide an in-depth look at our experiments and modifications to existing neural
compression methods to work with our astronomical image data. Our implementation can be found
at https://github.com/tuatruog/AstroCompress.

C.1 DATA FORMAT

As mentioned in the main text, most neural image compression methods are designed to handle
3-channel 8-bit RGB images, so we made minor modifications to the neural compression methods to
handle the 16-bit data of AstroCompress.

At a high level, we experimented with two approaches: (1) adding support for 16-bit input directly;
(2) treating the 16-bit input as the concatenation of two 8-bit inputs – the most significant byte (MSB)
and least significant byte (LSB). We used the better of the two when reporting results, and generally
found approach (2) to perform similarly or better than approach (1). As an example, we list the
compression ratios obtained with either approach for PixelCNN++ in Table 5.

• To implement approach (1), we make the following modifications to support 16-bit input
directly: For IDF, we change the input scaling coefficient from 28 to 216, so that it models the
set Z/65536 (instead of Z/256). For L3C and PixelCNN++, which both use a discretized
logistic mixture likelihood model (Salimans et al., 2017), we increase the number of bins
from 28 − 1 to 216 − 1.

• To implement approach (2), we generally convert 16-bit input into 8-bit input while doubling
the number of channels. For a 2D (single-frame) image of shape 1×H×W , this corresponds
to treating it as an 8-bit tensor of shape 2×H ×W where the first channel contains the least
significant byte (LSB) and the second channel contains the most significant byte (MSB).
For a 3D (multi-frame) image of shape 3 ×H ×W , this corresponds to treating it as an
8-bit tensor of shape 6 ×H ×W , where the first three channels contain the LSBs of the
original input and the remaining channels contain the MSBs of the original input. The neural
compression models are modified accordingly to support the increased number of channels:

– For IDF, we simply doubled the number of input/output channels while keeping the
rest of the architecture the same;

– For L3C and PixelCNN++, we model 2-channel 8-bit images by using only the “R”
and “G” parts of the original RGB autoregressive logistic mixture likelihood model,
and we model 6-channel 8-bit images by performing the same autoregressive modeling
as the RGB case for the first 3 (LSB) channels, and similarly for the remaining 3 (MSB)
channels (so the LSB and MSB channels are modeled separately).
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Experiment 2-channel 8-bit 1-channel 16-bit
LCO 1.41 2.02
Keck 2.08 1.83
Hubble 3.13 2.71
JWST-2D 1.44 1.44
SDSS-2D 3.35 1.84

Table 5: Comparison of compression ratios for PixelCNN++ using the 2-channel 8-bit format v.s.
1-channel 16-bit format. The better result is highlighted in bold.

C.2 ARCHITECTURE AND TRAINING DETAILS

IDF We adopted the implementation from Hoogeboom et al. (2019) at https://github.com/
jornpeters/integer_discrete_flows. The network and training hyper-parameters are
also set to be consistent with the default configurations from (Hoogeboom et al., 2019), which we
find to yield the best results. We train on patches of 32 × 32 with a batch size of 256. We use a
learning rate of 1× 10−3 and an exponential decay scheduler with rate 0.999.

L3C We adopted the implementation from Mentzer et al. (2019) at https://github.com/
fab-jul/L3C-PyTorch. We largely followed the default model configuration provided by
(Mentzer et al., 2019) to train the model on 2D image data across all datasets. For 3D experiments, we
increased the base convolution filter size and adjusted the latent channel size to 96 and 8, respectively.
We trained on 32 × 32 patches, with a learning rate of 1× 10−4 and an exponential decay scheduler
with rate 0.9.

PixelCNN++ We adopted the implementation from https://github.com/pclucas14/
pixel-cnn-pp and adopted the same model architecture as in the default configuration (5 resnet
blocks, 160 filters, 12 logistic mixture components, and a learning rate of 2 × 10−4). We also
explored different ways of formatting/modeling 8-bit data (converted from 16-bit input), such as
training two separate models for the LSB and MSB, or concatenating the LSB and MSB across
the width dimension instead of channel dimension, but did not observe significant improvements
compared to the basic approach of stacking the LSB and MSB along the channel dimension (as
described in Section C.1).

VDM We adopt our implementation from https://github.com/addtt/
variational-diffusion-models/tree/main which is directly based on the official im-
plementation from Kingma et al. (2021) at https://github.com/google-research/vdm.
We use a scaled-down version of the denoising network from the VDM paper (Kingma et al., 2021),
using a U-Net of depth 4, consisting of 4 ResNet blocks in the forward direction and 5 ResNet blocks
in the reverse direction, with a single attention layer and two additional ResNet blocks in the middle.
We keep the number of channels constant throughout at 128. We train on patches of size 64 × 64
(using Adam and a learning rate of 2× 10−4) and evaluate on patches of size 256 × 256 to give our
model additional context at test time.

D ADDITIONAL DATA EXPLORATIONS

What determines how easily images can be compressed? We answer this question via inspiration
from a study by Pence et al. 2009, who suggested that the compressibility of astronomy imagery is
largely determined by the noise level of background pixels, which are not part of "source" objects
such as stars and galaxies. The majority of pixels in our images are background pixels.

Shannon’s source coding theorem establishes that the entropy of a data source defines the lower
bound for the optimal bitrate. Pence et al. 2009 show that if we assume that background pixels are
drawn from a Gaussian distribution N (µ, σ2), then the corresponding per-pixel entropy in bits is
proportional to log2(σ). We plot this quantity below, against JPEG-LS bits per pixel.

While background pixels are not exactly drawn from a Gaussian, and JPEG-LS is not a perfect codec,
the linear relationship on this plot suggests that background noise levels significantly influence an

23

https://github.com/jornpeters/integer_discrete_flows
https://github.com/jornpeters/integer_discrete_flows
https://github.com/fab-jul/L3C-PyTorch
https://github.com/fab-jul/L3C-PyTorch
https://github.com/pclucas14/pixel-cnn-pp
https://github.com/pclucas14/pixel-cnn-pp
https://github.com/addtt/variational-diffusion-models/tree/main
https://github.com/addtt/variational-diffusion-models/tree/main
https://github.com/google-research/vdm


Published as a conference paper at ICLR 2025

Figure 5: Correlation between background noise variation and compressibility. Each point represents
a full-size image. Horizontal axis: log standard deviation of the lower 99 percent of pixel values in a
given image. Vertical axis: JPEG-LS bits per pixel, as a representative codec. Single-frame datasets
only.

image’s compressibility. Moreover, Figure 2 reinforces this insight: as exposure time increases, the
number of noise bits in background pixels rises, thereby reducing the image’s compression potential.

We note here that the SDSS and Keck datasets show a much tighter linear relationship than Hubble
images, suggesting that source pixels are more frequent and more relevant, since we have verified
that the background pixels appear quite Gaussian. This corresponds well with intuition, as Hubble
is known to sometimes take deep, long exposures of dense stellar fields. JWST images appear as
outliers, as it uses HgCdTe detectors for infrared bands, compared to the CMOS detectors for optical
imaging of all other telescopes.

E EVALUATING PRETRAINED MODELS

We briefly perform a preliminary exploration of how well a neural compression method trained on
RGB images generalizes to our astronomy data. Compression models designed for RGB images
cannot directly handle our 16-bit data; therefore, we implement a workaround by reformatting each
16-bit pixel as consisting of 3 channels of 8 bits like [MSB, MSB, LSB], where we duplicate the most
significant bits (MSB) across the first two channels and fill the last channel with the least significant
bits (LSB). As an alternative method, we also tried filling the last channel with only zeros [MSB,
LSB, 0]. We will call these workarounds “duplicated” and “zero-padded,” respectively.

We pretrained the L3C model on RGB images from OpenImages (generally around 500 pixels in
at least one dimension) and ImageNet64 datasets and evaluated on our single-frame datasets. We
also trained IDF on RGB images from Cifar10 dataset and evaluate in the same manner. Overall, we
found our RGB-pretrained model to give surprisingly robust performance on astronomy data. When
compared to the L3C model pre-trained on the respective astronomy datasets, the RGB-pretrained
model did worse by 15% - 25% on KECK, HST, and JWST-2D datasets but actually performed better
by 10% - 28% on LCO and SDSS datasets in terms of compression ratio. The detailed results are
shown in table 6.
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Model /
Dataset

L3C-OpenImages
(zero-padded)

L3C-ImageNet64
(zero-padded)

L3C-OpenImages
(duplicated)

L3C-ImageNet64
(duplicated)

IDF-Cifar10
(zero-padded)

IDF-Cifar10
(duplicated)

LCO 1.78 2.16 2.04 2.05 1.72 1.84
Keck 1.26 1.44 1.27 1.38 0.66 0.59
Hubble 1.77 2.18 1.88 1.90 0.59 1.08
JWST 1.08 1.19 1.06 1.18 0.62 0.58
SDSS 2.03 2.58 2.30 2.14 1.68 1.62

Table 6: Compression ratio of RGB-trained models across different astronomy datasets.

F FURTHER MOTIVATION

We present below a brief amount of quantitative evidence on the explosion of the astronomy data
scale and the need for advances in its processing:

Astronomy data volumes are growing at an apparently superexponential rate (see Figure 1 of (Maireles-
González et al., 2023)). A growth rate of about 10x every 10 years has become nearly 1000x every
10 years. The ability to transmit and store this data will become a massive burden preventing this
growth rate from continuing. We hope for advanced compression to alleviate some of this problem.

The current state-of-the-art supercomputers administered by the United States Department of Energy
were only recently made ready to handle exascale computing in 20234—specifically Frontier and
Aurora, the current two most powerful systems in the world according to top500.org. While this
"exascale" refers to exaflops rather than exabytes, the need for compute scale is built specifically to
address data scale.

In sum, we repeat the breadth of data sources that will soon reach exabyte scale: radio astronomy,
satellite imagery5, genomes, brain mapping and beyond. We note the massive economic potential
seen in some of these fields. Lossless methods can be applied without fear, but very carefully crafted
lossy designs may soon bring forth orders of magnitude more performant pipelines.

4https://science.osti.gov/-/media/bes/besac/pdf/202212/
7-Helland--BESAC-Panel.pdf

5https://www.earthdata.nasa.gov/s3fs-public/2022-02/ESDS_Highlights_
2019.pdf
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