
Symbol Meaning

d Dimension of environment
T Time horizon
L Number of phases
θ∗ True Reward Function Parameter
θ Demonstrator’s Reward Function Parameter
θ̂ Inverse Estimator’s Estimated Reward Parameter
γ Closeness parameter of action set
at Action taken by demonstrator at time t
xt Reward seen by demonstrator at time t
ηt Noise in reward function seen at time t
µ∗ Reward of optimal arm
a∗ Optimal action with the highest reward
Aℓ Set of remaining arms at phase ℓ
Aℓ \ Aℓ−1 Set of eliminated arms before phase ℓ
ϵℓ 2−ℓ used as criteria for elimination
νℓ Error parameter for G-Optimal Design
δ Probability Parameter for G-Optimal Design

A NOTATION TABLE

B TECHNICAL LEMMAS

B.1 PROOF OF LEMMA B.1

Lemma B.1. Given two arms a, b that are γ-close, i.e. ∥a− b∥2 ≤ γ, the difference in their rewards is bounded by

⟨a, θ∗⟩ − ⟨b, θ∗⟩ ≤ γ∥θ∗∥2.

Proof. Simply,

⟨a, θ∗⟩ − ⟨b, θ∗⟩ = ⟨a− b, θ∗⟩
≤ ∥a− b∥2∥θ∗∥2
≤ γ∥θ∗∥2

C PHASED ELIMINATION PROOFS

We first prove that the estimate of the reward parameter for the forward algorithm is an accurate estimate of θ∗. The central
intuition behind this is that the G-Optimal design is chosen to ensure the forward algorithm explores each dimension in Rd.
This exploration helps ensure that the demonstrator’s estimate of θ accurately predicts the sample mean rewards for any
arm in the active set, not just ones that point in specific favorable directions. Formally, it ensures that the demonstrator’s
estimate of the reward of any arm in the remaining active set of any phase ℓ is bounded by a νℓ. This lemma is similar to that
of Lemma 6.1 in Esfandiari et al. [2019].

Lemma C.1 (Demonstrator’s Estimation Error). From Esfandiari et al. [2019], given arms pulled in phase ℓ according
to Algorithm 1, with probability at least 1− |A|Lδ, for every a ∈ Aℓ, we have

|⟨a, θℓ − θ∗⟩| ≤ νℓ.

Here, θℓ estimates the forward algorithm reward parameter after the lth phase.
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Proof. From Lemma 6.1 of Esfandiari et al. [2019], for any δ, νℓ ≥ 0, we know that we can find a multiset where after
playing the multiset in batched bandits fashion, the least-squares estimate error for any arm a is |⟨a, θℓ − θ∗⟩| ≤ νℓ with
probability 1− δ. Therefore, we know that we can form a multiset such that for every arm a ∈ A and all phases l,

|⟨a, θℓ − θ∗⟩| ≤ νℓ.

To get a lower bound on the probability that this event occurs, we need to find the probability of the union of all these events
not happening. We can upper bound this by taking the union bound of all events. For all |A| arms and L phases, we get that
the probability of any of these events not happening is upper bounded by |A|Lδ.

This accuracy of the forward algorithm’s θℓ helps maintain its low regret properties. Given the accuracy of its reward
parameter, it is intuitive that with high probability, the forward algorithm knows which arms are suboptimal and which are
not. This intuition should include that of the optimal arm A∗, which is not suboptimal by definition. Therefore, with high
probability, the forward algorithm does not eliminate the optimal arm.

Corollary C.1. With probability 1− |A|Lδ, for every phase l, a∗ ∈ Aℓ.

Proof. From Lemma C.1, for any suboptimal arm a,

⟨a, θℓ⟩ − ⟨a∗, θℓ⟩ ≤ (⟨a, θ∗⟩+ νℓ)− (⟨a∗, θ∗⟩ − νℓ) ≤ 2ιϵℓ ≤ 2ϵℓ.

The event from Lemma C.1 occurs with probability 1− δ, so this result also happens with probability 1− δ.

Given the event that the optimal arm remains in the active set, we can state with a high probability that suboptimal arms will
be eliminated. This is clear from the elimination criteria; if an arm’s reward is much worse than the best-estimated reward
for any arm in the active set, it will be eliminated. Given that the optimal arm is still in the active set and the reward estimate
is accurate, arms with a true reward much worse than the optimal arm will most likely also have an estimated reward worse
than the optimal arm. This will lead to the elimination of that arm. We formalize this in Lemma 4.1.

Lemma 4.1. Any arm a satisfying
2(1− ι)ϵℓ < ⟨a∗ − a, θ∗⟩ ≤ 4(1− ι)ϵℓ

will be in Aℓ \ Aℓ−1 with probability at least 1− |A|Lδ. Therefore, with probability at least 1− |A|Lδ, the mean reward of
any arm a ∈ AL \ AL−1 is bounded as

µ∗ − 4(1 + ι)ϵℓ ≤ ⟨a, θ∗⟩ ≤ µ∗.

Proof. Let bℓ−1 be the arm that maximizes the reward bℓ−1 = argmax
b∈Aℓ−1

⟨b, θℓ−1⟩.

⟨bℓ−1 − a, θℓ1⟩ ≤ ⟨bℓ−1 − a, θ∗⟩+ 2νℓ−1 (2)
≤ ⟨a∗ − a, θ∗⟩+ 2νℓ−1

≤ 4(1− ι)ϵℓ + 2ιϵℓ−1

≤ 2(1− ι)ϵℓ−1 + 2ιϵℓ−1

= 2ϵℓ−1

Here, Equation (2) comes from Lemma C.1 which happens with probability 1− |A|Lδ. Therefore, arm a will not be deleted
in phase ℓ− 1. Moreover, let bℓ be the arm that maximizes the reward bℓ = argmax

b∈Aℓ

⟨b, θℓ⟩.

⟨bℓ − a, θℓ⟩ = ⟨bℓ, θℓ⟩ − ⟨a, θℓ⟩
≥ ⟨a∗, θℓ⟩ − ⟨a, θℓ⟩
≥ ⟨a∗ − a, θ∗⟩ − 2νℓ (3)
= ⟨a∗ − a, θ∗⟩ − 2ιϵℓ

≥ 2(1− ι)ϵℓ − 2ιϵℓ

= 2ϵℓ
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Here, Equation (3) comes from Lemma C.1, which again happens with the same probability. Therefore, arm a will be
deleted in phase ℓ with probability 1− |A|Lδ.

By the definition of µ∗,
⟨a, θ∗⟩ ≤ µ∗.

Given arm ai is inAℓ\Aℓ−1, it was not eliminated in the previous phase. For notational ease, let b = argmaxb∈Aℓ−1
⟨b, θℓ−1⟩.

Therefore,

2ϵl−1 ≥ ⟨b− a, θℓ−1⟩
= ⟨b, θℓ−1⟩ − ⟨a, θℓ−1⟩
= ⟨b, θℓ−1⟩ − ⟨a, θℓ−1 − θ∗⟩ − ⟨a, θ∗⟩
≥ ⟨b, θℓ−1⟩ − νℓ−1 − ⟨a, θ∗⟩ (4)
≥ ⟨a∗, θℓ−1⟩ − νℓ−1 − ⟨a, θ∗⟩ (5)
= ⟨a∗, θℓ−1 − θ∗⟩+ ⟨a∗, θ∗⟩ − νℓ−1 − ⟨a, θ∗⟩
≥ ⟨a∗, θ∗⟩ − 2νℓ−1 − ⟨a, θ∗⟩ (6)

Here, Equation (4) comes from Lemma C.1, which happens with probability at least 1− |A|Lδ. Equation (5) comes from
the fact that b achieves the maximum reward in Al−1 and a∗ ∈ Al−1 with the same probability according to Corollary C.1.
Also, Equation (6) comes from applying Lemma C.1 again. Therefore, we have

⟨a, θ∗⟩ ≥ µ∗ − 2ϵℓ−1 − 2νℓ−1

= µ∗ − 4ϵℓ − 4ιϵℓ

= µ∗ − 4(1 + ι)ϵℓ

Corollary C.2. Given an arm a that is γ-close to arm b that has suboptimality

µ∗ − 4(1− ι)ϵℓ + γ∥θ∗∥22 ≤ ⟨a∗ − b, θ∗⟩ ≤ µ∗ − 2(1− ι)ϵℓ − γ∥θ∗∥22,

arm a will be eliminated before phase ℓ, i.e. a ∈ AL \ AL−1 with probability at least 1− |A|Lδ.

Proof. We have that |⟨b− a, θ∗⟩| ≤ γ∥θ∗∥2 according to Lemma B.1. Therefore,

⟨a∗ − b, θ∗⟩ ≤ ⟨a∗ − a, θ∗⟩+ γ∥θ∗∥2
≤ µ∗ − 4(1− ι)ϵℓ

Moreover,

⟨a∗ − b, θ∗⟩ ≥ ⟨a∗ − a, θ∗⟩ − γ∥θ∗∥2
≥ µ∗ − 2(1− ι)ϵℓ

According to Lemma 4.1, which happens with probability at least 1− |A|Lδ, arm a will be deleted.

Moreover, for simplicity, throughout this paper, we will do most of our calculations based on phase numbers, including L,
the last phase number. However, given that the last phase is technically a random variable based on the G-optimal design,
we provide a lower bound on the phase L in terms of T . Here, we see that L is lower bounded by the logarithm of T up to
constants.

Lemma C.2. The number of rounds that Phased Elimination takes and the total number of phases L exhibit the relationship

log(T ) ≤ log(2ι−2dJ) + 2 log(2L) + log (2) .

Here, J is a constant defined as J :=
(

|A|L(L+1)
δ

)
.
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Proof. Let Nℓ be the number of arms played in phase ℓ. From Lattimore and Szepesvári [2020], we have that any

Nℓ −
d(d+ 1)

2
≤ 2d

ν2ℓ
log

( |A|l(l + 1)

δ

)
(7)

≤ 2ι−2d · 22l
( |A|l(l + 1)

δ

)

where the first equality comes from Lattimore and Szepesvári [2020]. We will call J :=
(

|A|L(L+1)
δ

)
for notational ease.

log

(
L−1∑
ℓ

Nℓ

)
≤ log

(
L−1∑
ℓ

2ι−2d · 22l · (J) + d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l +

L−1∑
ℓ

d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l +
L−1∑
ℓ

d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log

( ∑L−1
ℓ

d(d+1)
2

2ι−2d (J)
∑L−1

ℓ 22l)

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log

(
1 +

∑L−1
ℓ

d+1
4

2ι−2d (J)
∑L−1

ℓ 22l)

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log (2)

= log
(
2ι−2d (J) (4L − 4)

)
+ log (2)

≤ log(2ι−2dJ) + log(4L) + log (2)

≤ log(2ι−2dJ) + 2 log(2L) + log (2)

We have arrived at our final claim.

D INVERSE ESTIMATOR PROPERTIES

We restate a lemma connecting the error of our inverse estimate with the condition of matrix A and the reward estimates b̂.

Lemma D.1. Suppose r and r̂ are vectors of the true rewards and estimated rewards for Ae. The solution to θ̂ =
argmin

∑
ai∈Ae(r̂i − ⟨θ, ai⟩)2) where r̂i is the estimate reward of ai satisfies the bound the error in estimation of θ via∥∥∥θ̂ − θ∗

∥∥∥
2

∥θ∥2
≤ cond(Ae)

∥r̂ − r∥2
∥r∥2

.

Lemma 4.3. Let r denote the vector of true rewards
{
Rθ∗(ai)

}d
i=1

and r̂ denote a vector of our estimated rewards given by

{µ∗ − 2(1 + ι)ϵℓ}di=1. Then, we have∥r−r̂∥2

∥r∥2
≤ 4ϵL

µ∗−8ϵL
= O

(
2−L

)
with probability at least 1− |A|Lδ.

Proof. r is a vector of rewards of arms inAL \AL−1. Therefore, for an element ra associated with an arm a ∈ AL \AL−1,
we know a /∈ AL−1 \ AL−2. Via Lemma 4.1, for any element ri in r,

µ∗ − 4(1 + ι)ϵL ≤ ri ≤ µ∗.
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We remind the reader that r̂ is the vector of all µ∗ − 2(1 + ι)ϵL from Algorithm 2. Therefore, the worst case error is
when the true reward is exactly ri = µ∗, µ∗ − 4(1 + ι)ϵL. In this, the error in the estimation of r is upper bounded by
|ri − r̂i| ≤ 2(1 + ι)ϵL. Therefore, the maximum of the ℓ2 norm of the difference vector is

∥r̂ − r∥2 ≤ 2(1 + ι)ϵL
√
d.

For calculating ∥r∥2, we acknowledge that the smallest ra for any i can be is µ∗ − 4(1 + ι)ϵL. Thus, ℓ2 norm of the reward
of true vectors is lower bounded by ∥r∥2 ≥

√
d(µ∗ − 4(1 + ι)ϵL). We have our final result with

∥r − r̂∥2
∥r∥2

≤ 2(1 + ι)ϵL
µ∗ − 4(1 + ι)ϵL

.

Since ι ≤ 1 from Assumption 4.1, we have that

2(1 + ι)ϵL
µ∗ − 4(1 + ι)ϵL

≤ 4ϵL
µ∗ − 8ϵL

= O
(
2−L

)
.

Lemma 4.2 (Condition Number of Ae). Let χ2 and χ1 be defined as χ2 = max
a∈A
∥a∥2, χ1 = min

a∈A
∥a∥2. Suppose that As-

sumption 4.1 holds, and we can select the action subset Ae according to Steps 4-6 of Algorithm 2. Then, with probability at
least 1− |A|Lδ, the condition number of the matrix whose rows are elements of Ae satisfies

cond(Ae) ≤ χ2 + γ
√
d

χ1

[
(2d)−

1
2 β

1
ω

]
− γ
√
d

.

Proof. We can now prove the original claim. For the help of this proof, we will denote A as the matrix version of Ae, i.e.

A =


a1

a2

...
ad

 where a1, . . . , ad ∈ Ae. We will break down the proof of the bound of the condition number into two parts.

Decomposing A yields
A = DÃ+N.

Here, D is a diagonal matrix where the value of Di,i is the ℓ2 norm of the ith row of A. Also, Ã is a matrix where the ith
row of A, call it vi, is vi =

proj(ai,i)
∥ proj(ai,i)∥2

. N is a matrix where the ith row is the vector ai − proj(ai, i). Now, we need to
lower bound σmin(A) and upper bound σmax(A). We begin with lower bounding σmin(Aℓ).

σmin(A) = σmin(DÃ+N)

≥ σmin(DÃ)− σmax(N) (8)

Here, Equation (8) comes from Loyka [2015]. We upper bound the σmax(N) term via the following

σmax(N) =
√
∥N⊤N∥2 (9)

=
√

max
x s.t. ∥x∥2=1

x⊤N⊤Nx

≤
√

dγ2

= γ
√
d

Here, Equation (9) comes from noticing that the rows of N have ℓ2 norm at most γ. We can now move on to bounding
σmin(DÃ) ≥ σmin(D)σmin(Ã).

By design, D is a diagonal matrix where the ith entry is ℓ2 norm of the ith row. Therefore, the minimum singular value of D
is lower bounded by the shortest arm in the action set, defined as constant χ1. Therefore, we have

σmin(D) ≥ min
a∈A
∥a∥2 → χ1.
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We now have that
σmin(A) ≥ χ1σmin(Ã)− γ

√
d.

We now do the upper bound for the maximum singular value.

σmax(A) = σmax(DÃ+N)

≤ σmax(DÃ) + σmax(N)

≤ σmax(DÃ) + γ
√
d

where the inequality comes from the Courant-Fischer min-max theorem, and the second inequality comes from the above
analysis. Similarly, the maximum singular value of D is upper bounded by the length of the longest arm in the action set,
defined as constant χ2. Therefore, we have

σmax(D) ≤ max
a∈A
∥a∥2 → χ2.

We now have that
σmax(A) ≤ χ2σmax(Ã) + γ

√
d.

We now need only analyze the minimum and maximum singular values of Ã. We remind the reader that the rows of Ã
are defined as proj(ai,i)

∥ proj(ai,i)∥2
. First, we list three properties of our Ã matrix. We know that each row of Ã forms an angle of

τ(ai, i) ≥ β with the optimal arm a∗ from Assumption 4.1. We wish to find the condition number for the matrix Ã. The
smallest possible condition number is achieved when τ(ai, i) is the smallest for each row vi, i.e. τ(ai, i) = β. This is when
the rows are the most colinear, leading to poor conditioning. To analyze the condition number of Ã, we will first analyze
the condition number of B. We define the matrix B = 1√

d
Ã∗. We state the cond(Ã) = cond(B), so we need only find

cond(B). Moreover, we will do this by finding cond(B∗B). The condition number of this matrix is linked to that of B via√
cond(B∗B) = cond(B).

We note that [B∗B]ij =
1
d ⟨vi, vj⟩ where vi and vj are the ith and jth rows of Ã. Note then that [B∗B]ii =

1
d . For i ̸= j,

then ⟨vi, vj⟩ is the following. We will assume the worst case, where the angle τ(ai, i) is as small as possible, i.e. τ(ai, i) = β.
We wish to first find the angle between our α vectors. We remind the reader that our α vectors form a d− 1-dimensional
simplex centered at the unit vector u = a∗

∥a∗∥2
. We will first find the radius of this simplex, i.e., ∥u− vi∥2. The vectors u, vi,

and the origin form an isosceles triangle where u and vi are unit-norm by definition. Therefore, by the Law of Sines

∥u− vi∥2 =
sin(τ(ai, i))

sin
(

π−τ(ai,i)
2

)
= 2 sin

(
τ(ai, i)

2

)
Therefore, we have that the radius of the simplex is 2 sin

(
τ(ai,i)

2

)
, which we will call ρ for now. From Krasnodębski [1971],

the angles formed between u− vi and u− vj is arccos
(
− 1

d−1

)
. Therefore, we have the distance between vj and vi satisfies

∥vj − vi∥22 = ∥u− vi∥22 + ∥u− vj∥22 − 2∥u− vi∥2∥u− vj∥2 cos
(
arccos

(
− 1

d− 1

))
= 2ρ2

(
1− 2 cos

(
arccos

(
− 1

d− 1

)))
= 2ρ2

2d− 1

d− 1

We also have that the angle we are looking for β, which is the angle between vi and vj , satisfies

∥vj − vi∥22 = 2− 2 cos(β).

Therefore, we have

cos(β) = 1− ρ2d

d− 1
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Next, we consider the structure of matrix B∗B. Its diagonal elements are 1
d , and its nondiagonal elements are 1

d cos(β),
leading to an explicit unitary diagonalization. This matrix has singular values:

σ1, . . . , σd−1 =
1

d
− 1

d
cos(β)

σd =
d− 1

d
cos(β) +

1

d
.

We will upper bound the maximum singular value.

σd ≤
d− 1

d
cos(β) +

1

d

≤d− 1

d
+

1

d
=1

where the first inequality comes from the fact that cos(β) ≤ 1. For lower bounding the minimum singular value, we have

σ1 =
1

d
− 1

d
cos(β)

≥ ρ2

d− 1

We can lower bound ρ2 on the interval τ(ai, i) ∈ [−π
2 ,

π
2 ] via its Taylor expansion as

ρ2 ≥ τ(ai, i)2

2
.

Therefore, we get that the minimum singular value is lower bounded by

σ1 ≥
τ(ai, i)2

2d

≥ 1

2d
β

2
ω (10)

Here, Equation (10) comes from our assumption Assumption 4.1. Therefore, the maximum singular value for Ã is upper
bounded by 1 and the minimum singular value for Ã is lower bounded by (2d)−

1
2 β

1
ω .

We have proved the condition number of Ã. Now, we can find the total condition number for A.

cond(A) =
σmax(A)

σmin(A)

≤ χ1σmax(Ã) + γ
√
d

χ2σmin(Ã)− γ
√
d

≤ χ1 + γ
√
d

χ2

[
(2d)−

1
2 β

1
ω

]
− γ
√
d

Theorem 4.1. Let χ2 = max
a∈A
∥a∥2, χ1 = min

a∈A
∥a∥2 and define J = log

(
|A|L(L+1)

δ

)
as shorthand. Then, we have

∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∗∥2
= O

(
χ2d

2ω−1
2ω J

ω−1
ω

χ1T
ω−1
2ω

)

with probability at least 1− |A|Lδ. Note that ω > 1 is the constant from Assumption 4.1.
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Proof. We remember that from Lemma D.1, we have that∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∗∥2
≤ cond(Ae)

∥r̂ − r∥2
∥r∥2

.

From Lemma 4.3, we know that

cond(Ae) ≤ χ1 + γ
√
d

χ2

[
(2d)−

1
2 [β]

1
ω

]
− γ
√
d

.

Here, from Assumption 4.1, β = (3(1− ι)ϵL)
1
ω . Moreover, from Lemma 4.3, we have that the error in r is bounded by

∥r − r̂∥2
∥r∥2

≤ 4ϵL
µ∗ − 8ϵL

.

Combining these in Lemma D.1, we have that∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
≤ χ1 + γ

√
d

χ2

[
(2d)−

1
2 [3(1− ι)ϵL]

1
ω

]
− γ
√
d
· 4ϵL
µ∗ − 8ϵL

≤ χ1 + γ
√
d

2
L(ω−1)

ω χ2

[
(2d)−

1
2 [3(1− ι)]

1
ω

]
− 2Lγ

√
d
· 4

µ∗ − 8ϵL

Now, for the last phase number, we wish to express this in terms of T instead of our dependence on L. We will use the result
from Lemma C.2 that

log(T ) ≤ log(2ι−2dJ) + 2 log(2L) + log (2)

Using this, we have [
T

4ι−2dJ

] 1
2

≤ 2L.

Since 1−ω
ω is negative, we have

2
L(1−ω)

ω ≤
[

T

4ι−2dJ

] 1−ω
2ω

.

Using this for our bound, we have that∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
≤ χ1 + γ

√
d

2
L(ω−1)

ω χ2

[
(2d)−

1
2 [3]

1
ω

]
− 2lγ

√
d
· 4

µ∗ − 8ϵL

≤ χ1 + γ
√
d[

T
4ι−2dJ

]ω−1
2ω χ2

[
(2d)−

1
2 [3]

1
ω

]
− 2Lγ

√
d
· 4

µ∗ − 8ϵL

Given γ ≤ 2L

∥θ∥2
from Assumption 4.1, we can remove these small constants yielding∥∥∥θ̂ − θ∗

∥∥∥
2

∥θ∥2
= O

(
χ1d

2ω−1
2ω J

ω−1
2ω

χ2T
ω−1
ω

)
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E LOWER BOUND PROOFS

Lemma E.1. Given Assumption 4.1, Banerjee et al. [2022] shows that the maximum eigenvalue λd of the gram matrix∑T
ata

⊤
t = O(T ) and for all other eigenvalues λi for all i ∈ [d− 1] satisfies λi = O

(
T
d

)
.

Theorem 5.1. For a bandit instanceM characterized by reward parameter θ∗1 and action set A, there exists a bandit
instanceM′ with parameter θ∗2 and the same action set A such that any inverse estimator incurs error

max{∥θ̂ − θ∗2∥2, ∥θ̂ − θ∗1∥2} = Ω̃

(√
d

T

)
.

Proof. This proof will follow the proof of Theorem 1 from Guo et al. [2021]. We will establish two bandit instances.
The first instanceM is parameterized by the true θ∗1 . The second instance isM′ which is parameterized by θ∗2 where
θ∗2 := θ∗1 − ϵv where ϵ ∈ R. We will choose v ∈ Rd as a random vector on the unit ball according to a uniform distribution.
Suppose one of instancesM andM′ are chosen and we observe the sequence ET := {a1, a2, . . . , aT }. We denote the
reward distribution for an arm at under bandit instancesM andM′ as V(at) and V ′(at) respectively. Furthermore, we state
that the rewards of these bandit instances are a sample from Normal Distributions with variance Σ2. Formally, we state that
V(at) ∼ N(⟨θ∗1 , aT ⟩,Σ2) and V ′(at) ∼ N(⟨θ∗2 , aT ⟩,Σ2). We reduce the reward estimation error to that of binary testing
between these two instances, as in the Le-Cam approach.

Given some series of actions E := {a1, a2, . . . , aT } generated by our demonstrator where E ∈ F and F is the sigma-algebra
of possible events, i.e. FT = σ({a1, a2, . . . , aT }). Our bandit instancesM andM′ have the probability distributions over
all possible series of actions P and P′, acting over FT . Given LeCam [1973], any algorithm choosing between the two bandit
instances with a decision θ̂, it must at least suffer an error

E
v

[
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
]
≥ E

v

[
1

2
∥ϵv∥(1− ∥P′ − P∥TV)

]
≥ E

v

[
1

2
∥ϵv∥

(
1− sup

E∈FT

|P(E)− P′(E)|
)]

(11)

where Equation (11) comes from the definition of the total variation. Here, we rely on the result of Lemma 19 from
Kaufmann et al. [2014] stating that

sup
E∈FT

|P(E)− P′(E)| ≤
T∑

t=1

KL(V(at),V ′(at)).

However, remembering that the reward distributions are normally distributed with well-defined means and variances, we get

KL(V(at),V ′(at)) =
ϵ2(⟨at, v⟩)2

2Σ2
.

19



Here, we introduce the term αt,d = ⟨at, v⟩.

E
v

(
T∑

t=1

(⟨at, v⟩)2
)

= E
v

(
T∑

t=1

v⊤ata
⊤
t v

)

= E
v

(
v⊤

(
T∑

t=1

ata
⊤
t

)
v

)

= E
v

(
d∑
i

α2
i e

⊤
i

(
T∑

t=1

ata
⊤
t

)
e⊤i

)

= E
v

(
d∑
i

α2
i e

⊤
i

(
T∑

t=1

ata
⊤
t

)
e⊤i

)

=

d∑
i

1

d
∥ei∥22λi (12)

≤ ∥ei∥22
T

d
+

d−1∑
i

1

d
∥ei∥22λi

≤ ∥ei∥22
T

d
+ max

i∈[d−1]

(
1

d
λi∥ei∥22

)
≤ T

d
max
i∈[d]

(
∥ei∥22

)
(13)

where Equation (13) comes from Banerjee et al. [2022] saying λi ≤ O
(
T
d

)
for i ≤ d− 1 and λd ≤ O (T ). We will call the

quantity from Equation (13) as Λ = T
d max
i∈[d−1]

(
∥ei∥22

)
. We finally have

sup
E∈FT

|P(E)− P′(E)| ≤ ϵ2Λ

Σ2

Therefore, we arrive at the final

E
v

(
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≥ 1

2
∥ϵv∥

(
1− ϵ2Λ

Σ2

)
≥ ϵ∥v∥

2
− ϵ3∥v∥Λ

2Σ2

To maximize the lower bound, we set ϵ = Σ√
2Λ

to get ,

E
v

(
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≤ Σ∥v∥

3
√
3Λ

.

Substituting in Λ, we get

E
v

(
max{ E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≤ Σ∥v∥

3
√
3Λ

≤ Σ∥v∥
√
d

3
√
3T max

i∈[d−1]
(∥ei∥2)

≤ Σ
√
d

3
√
3T max

i∈[d−1]
(∥ei∥2)

Therefore, we get our final claim

E
v

(
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≤ O

(√
dΣ2

T

)
.
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Therefore, in expectation of v, we have the desired quantity.

F PROOF OF LEMMA 4.4

Lemma F.1. Given any value ω ∈ [1,∞), there exists a linear bandit instance (i.e., a set of arms and a reward function)
that satisfies Assumption 4.1.

To prove the above claim, we will prove the following lemma which implies Lemma 4.4.

Lemma F.1. Let G = cos (κ) ∥θ∗∥2 − 3(1 − ι)ϵL for notational ease. Given any value ω ∈ [1,∞), we can construct a
bandit instance that satisfies Assumption 4.1. Specifically, Assumption 4.1 is satisfied by two-dimensional bandit instances
that are rotationally isomorphic to the bandit instance where

1. θ∗ forms an angle κ with the vector (1, 0) where

κ ∈
[
max

(
− cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0) + β − π

)
,

min

(
cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0)− β

)]
.

2. All arms (x, y) in the action set A that aren’t (1, 0) satisfyu

cos(κ+ tan-1(y, x))∥θ∗∥2
√
x2 + y2 < cos(κ)∥θ∗∥2.

3. The two points
(

G cos(β)
cos(κ+β)∥θ∗∥2

, G sin(β)
cos(k+β)∥θ∗∥2

)
,(

G cos(−β)
cos(κ−β)∥θ∗∥2

, G sin(−β)
cos(k−β)∥θ∗∥2

)
∈ A.

We have defined two instancesM1 = (θ∗1 ,A1) andM2 = (θ∗2 ,A2) as rotationally isomorphic if there exists a rotation
operationR such thatR(θ∗1) = θ∗2 andR is a bijective function from A1 to A2.

Proof. For visualization purposes, we will demonstrate the existence of an action set A ⊂ R2, which satisfies our
assumptions for a prechosen value ω. We provide an example visualization in Figure 4. Without loss of generality, set the
optimal arm a∗ to be the vector (1, 0). Let

κ ∈
[
max

(
− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
, arccos (0) + β − π

)
,

min

(
arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
, arccos (0)− β

)]
be the angle formed between θ∗ and a∗ where a∗ is the reference point and θ∗ ∈ Rd. In this setting, µ∗ = cos(κ)∥θ∗∥2. We
remind the reader that we set β = (3(1− ι)ϵL)

1
ω .

The claim is that the following conditions are sufficient for an action set to satisfy Assumption 4.1 for a given ω.

1. ∀(x, y) ∈ A s.t. (x, y) ̸= a∗, cos(κ+ atan2(y, x))∥θ∗∥2
√

x2 + y2 < cos(κ)∥θ∗∥2
2. The points

(
(cos(κ)∥θ∗∥2−3(1−ι)ϵL) cos(β)

cos(κ+β)∥θ∗∥2
, (cos(κ)∥θ∗∥2−3(1−ι)ϵL) sin(β)

cos(k+β)∥θ∗∥2

)
and

(
(cos(κ)∥θ∗∥2−3(1−ι)ϵL) cos(−β)

cos(κ−β)∥θ∗∥2
, (cos(κ)∥θ∗∥2−3(1−ι)ϵL) sin(−β)∥θ∗∥2

cos(k−β)∥θ∗∥2

)
are both in A.

In the visualization (Figure 4), the orange line denotes the first constraint so that all points to the left of the orange line
satisfy the first constraint. Moreover, the points from the second constraint are Points 1 and 3 in Figure 4.
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We will evaluate the reward of Point 1. Point 1 forms an angle of β with the optimal arm a∗ and, thus, forms an angle of
β + κ with θ∗. Moreover, the ℓ2 norm of Point 1 is

∣∣∣∣ (cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ+ β) ∥θ∗∥2

∣∣∣∣ .
Given the restriction on κ, we have that (cos(κ)∥θ∗∥2−3(1−ι)ϵL)

cos(κ+β)∥θ∗∥2
is strictly positive. Since

− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
≤ κ ≤ arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
,

the numerator is positive. Moreover, since arccos (0)− β − π ≤ arccos (0)− β the denominator is positive. Therefore, its
reward is

(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ+ β) ∥θ∗∥2
∥θ∗∥2 cos(β + κ) = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL

= µ∗ − 3(1− ι)ϵL

We now do this similarly for Point 3. Point 3 forms an angle of −β with the optimal arm a∗ and, thus, forms an angle of
κ− β with θ∗. Moreover, the ℓ2 norm of Point 1 is

∣∣∣∣ (cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ− β) ∥θ∗∥2

∣∣∣∣ .
Given the restrictions on κ, the value (cos(κ)∥θ∗∥2−3(1−ι)ϵL)

cos(κ−β) is strictly positive. Since

− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
≤ κ ≤ arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
,

the numerator is positive. Moreover, since arccos (0) + β − π ≤ arccos (0) + β, the denominator is positive. Therefore, its
reward is Therefore, its reward is

(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ− β) ∥θ∗∥2
∥θ∗∥2 cos(κ− β) = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL

= µ∗ − 3(1− ι)ϵL

Moreover, a∗, or Point 2 in Figure 4 has a reward of µ∗ = cos(κ)∥θ∗∥2. The ℓ2 norm of Point 2 is 1. It forms an angle of
κ with θ∗. Therefore, its reward is cos(κ)∥θ∗∥2. Given that all points in the action set obey constraint 1 except for a∗, by
definition, they have a reward less than cos(κ)∥θ∗∥2, which is the reward of a∗. Therefore, all points in A will be rewarded
less than a∗. Also, Points 1 and 3 satisfy the first constaint as well. Therefore, these conditions are sufficient to satisfy
Assumption 4.1.
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x

y

Point 1

Point 2
Point 3

Example Convex Polytope

Arms with optimal reward

a∗

θ∗
κ

Figure 4: Example Configuration of action set detailed by the proof for Lemma 4.4. The green points are the three points
referenced by the proof, the orange line is the line of vectors with the same optimal reward as the optimal Point 2, and the
blue lines are example continuations of drawing the convex hull of the action set that satisfy Assumption 3.1. These are
done when κ = .2, L = 5, and β = .1.

G IMPLEMENTATION DETAILS FOR PHASED ELIMINATION USED IN EXPERIMENTS

Algorithm 3: Phased Elimination
Input :δ (probability parameters), L (number of phases),

{ν1, . . . , νL} (error parameters)
Result: a1, . . . , aT

1 ℓ← 0
2 A1 ← A
3 tℓ ← 0
4 while ℓ < L do
5 εℓ ← 2−ℓ

6 πℓ ← G-Optimal design of Aℓ with δ and νℓ
7 Nℓ ← 0
8 for a ∈ Aℓ do
9 Nℓ(a)←

⌈
2dπℓ(a)

ν2
ℓ

log
(

kℓ(ℓ+1)
δ

)⌉
10 Play action a for Nℓ(a) rounds
11 Nℓ ← Nℓ +Nℓ(a)

12 end
13 Vℓ ←

∑
a∈Aℓ

πℓ(a)aa
⊤

14 θℓ ← V −1
l

∑tℓ+Nℓ

t=tℓ
atxt

15 Aℓ+1 ← {a ∈ Aℓ s.t. max
b∈Aℓ

(⟨θℓ, b− a⟩) ≤ 2εl}
16 tℓ ← tℓ + Tℓ

17 ℓ← ℓ+ 1

18 end

Algorithm 3 formally describes the implementation of Phased Elimination used in our experiments. The behavior of this
implementation only differs from Algorithm 1 in the choice of stopping criteria; here, we stop after a maximum number of
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phases, while Algorithm 1 fixes T and allows L to vary. Line 6 is computed via a convex program.
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