
Predicting	the	Chemical	(Dis)order	in	Multicomponent	Materials	with	High-Throughput	
Simulations	and	Representation	Learning	

Jiayu	Penga	
a	University	at	Buffalo,	The	State	University	of	New	York,	NY	14260,	USA	jypeng@buffalo.edu	

  
1.	Introduction			
The	 vast	 structural	 tunability	 and	 compositional	

diversity	 of	 multicomponent	 materials	 make	 them	
promising	 for	 a	 range	 of	 applications,	 yet	 the	
complexity	 of	 atomic	 ordering	 in	 such	 multinary	
materials,	all	the	way	from	highly	ordered	elemental	
arrangements	 to	 fully	 disordered	 solid	 solutions,	
poses	 significant	 challenges	 in	 the	 rational	 design,	
rigorous	 discovery,	 and	 global	 optimization	 of	
materials	with	desired	properties	[1,2]. 
	
2.	Substantial	section	
This	 presentation	 will	 explore	 our	 recent	

advancements	 in	 leveraging	 physics-informed,	 data-
driven	approaches	to	predict	the	chemical	dis(order)	
in	 these	 complex	 materials,	 offering	 a	 new	 lens	 to	
reconcile	 theoretical,	 machine	 learning,	 and	
experimental	 perspectives	 (Fig.	 1).	 Through	 high-
throughput	atomistic	simulations	with	physics-driven	
machine	 learning,	 we	 establish	 and	 evaluate	 data-
driven,	 physics-informed	 descriptors	 to	 universally	
and	 accurately	 predict	 experimental	 cation	 ordering	
in	 multicomponent	 perovskite	 oxides,	 providing	
systematic	 benchmarks	 between	 machine	 learning,	
theory,	and	experiments	[3].	
	
More	 importantly,	 we	 examine	 an	 overlooked	

question	 in	 designing	 graph	 convolutional	 neural	
networks—whether	 these	 state-of-the-art	
architectures	 can	 learn	 the	 dependence	 of	 key	
materials	 properties	 on	 chemical	 compositions	 and	
atomic	orderings	equally	accurately.	We	demonstrate	
that	 although	 these	 models	 can	 generally	 capture	
composition-dependent	 properties	 across	 the	
periodic	 table,	 building	 ordering-sensitive	 graph	
neural	 networks	 requires	 symmetry-aware	
architectures	 that	 can	 inherently	 preserve	 and	
differentiate	the	distinct	crystallographic	symmetries	
of	various	inequivalent	atomic	orderings	[4,5].	
	
Together,	our	work	formalizes	standing	challenges	

and	pinpoints	promising	paths	for	more	rigorous	AI-
driven	 materials	 design,	 where	 the	 critical	 role	 of	
chemical	(dis)order	can	be	accurately	captured.	
	
	
	
	
	
	
	
	
	
	
	
	

	
Fig.	 1:	 Reimagining	 physics-driven	 atomistic	 machine	
learning	 for	 the	 differentiable	 inverse	 design	 of	multinary	
compositions	and	chemical	disorders.	
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