
A Appendix / supplemental material453

A.1 Implementation Details454

Data Preprocessing All sequences are first normalised to a common training resolution of 512×512455

pixels. Following the protocol of BANMo, each 960× 720 RGB frame is centre-cropped and456

downsampled, while its paired 256×192 depth image is bilinearly up-scaled. To stabilise early457

optimisation, we apply a global scale of 0.2 to both (i) the raw depth values and (ii) the translation458

component of the ARKit camera extrinsics that initialise the background root pose Gt
o. After training459

converges, this scale is reversed so that predicted depth and geometry return to metric units. All460

quantitative evaluations are finally performed on renderings resampled to 480×360 resolution.461

Dataset Details Our experiments are conducted on a newly captured dataset comprising 11 se-462

quences recorded with a stereo camera setup at 30fps, featuring diverse scenes with complex interac-463

tions between humans and animals. Each sequence is approximately 0.5-1 minutes long, containing464

between 400 and 900 frames. We perform stereo rectification and use the left-camera frames for465

model training, reserving the right-camera frames exclusively for validation.466

Evaluation Metrics We adopt standard visual quality metrics (LPIPS, PSNR, SSIM) and depth467

accuracy metrics (Acc@0.1m and RMS depth error). For visual metrics, we compute results on novel468

views synthesized from withheld validation trajectories. Depth accuracy metrics utilize stereo-derived469

depth maps as ground truth.470

Metric Formulas We provide precise formulations for the metrics used in quantitative evaluation:471

• PSNR: PSNR = 10 · log10
(

MAX2
I

MSE

)
, where MSE = 1

N

∑N
i=1(Ii − Îi)

2.472

• SSIM: SSIM(x, y) =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)
, following standard definitions.473

• LPIPS: Utilizes a pre-trained neural network to measure perceptual similarity.474

• Acc@0.1m: Defined as the proportion of predicted depth values within 0.1 meters of the475

ground truth.476

• RMS depth error:
√

1
N

∑N
i=1(Di − D̂i)2, measuring mean depth deviation.477

Deformation Network Initialization Dynamic Gaussian Splatting is notoriously sensitive to its478

starting configuration: poorly placed Gaussians or mis-estimated skeletal poses readily trap optimisa-479

tion in severe local minima, producing results that are hardly better than a naïve DEFORMABLE-GS480

baseline. To avoid this collapse we adopt the two–stage scheme described in the main paper: (i) a481

neural-SDF pre-fit jointly refines camera intrinsics, skeletal articulation, and soft deformation; (ii)482

Gaussians are then sampled on the resulting neural SDF canonical surface and the warping network483

is continued to be optimized while we switch the objective to dynamic Gaussian splatting. This484

warm-start supplies accurate joint positions, correct scale, and well-distributed primitives, allowing485

subsequent learning to focus on fine non-rigid motion rather than coarse alignment. Ablations in486

Table 5 confirm that removing this initialisation causes up to a 35% drop in PSNR and depth accuracy487

on articulated human/animal sequences.488

Network Architecture For the deformation networks, we adopt multi-layer perceptrons (MLPs)489

with sinusoidal Fourier features for positional encoding. Specifically, our global and object-root490

transformations use MLPs with 5 hidden layers, each containing 256 neurons, activated with ReLU491

functions. The neural soft deformation network, modeled with a flow-based architecture inspired by492

RealNVP, comprises 4 coupling layers to ensure invertibility.493

Training and Optimization We implemented our model using PyTorch and optimized all networks494

using Adam with an initial learning rate of 10−4, exponentially decayed by a factor of 0.5 every 2,000495

iterations. For each optimization stage (initialization and joint refinement), we set the maximum496

number of iterations to 6,000, with early stopping criteria based on validation-set performance.497
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Method PSNR↑ SSIM↑ LPIPS↓ Depth Acc↑ Depth Err↓

Ours (full) 21.31 0.747 0.263 0.901 0.127
w/o initialization 17.30 0.552 0.425 0.742 0.251

Table 5: Effect of initialization. Higher is better for PSNR / SSIM / Depth Acc; lower is better for Depth Err.

Computational Cost Our proposed method significantly reduces computational requirements com-498

pared to NeRF-based methods. On an NVIDIA H20 GPU, our initialization stage takes approximately499

30 minutes, and joint refinement typically completes within 1.5 hours for sequences with around 800500

frames. Inference for novel view synthesis operates at interactive frame rates (20fps on average).501

Because TOTAL-RECON reports training times on an RTX A6000, we re-ran our training on the same502

A6000. Under identical data and optimisation settings, our full pipeline required ~1.2 hours, whereas503

TOTAL-RECON took ~12 hours to reach comparable visual quality, confirming a ≈10× speed-up504

while maintaining (and improving) reconstruction fidelity.505

A.2 Additional Visual Qualitative Comparison506

Previous work on Dynamic Gaussian Splatting encompasses a variety of architectures and settings.507

However, the main paper already demonstrates that our method surpasses these baselines in stability508

and fidelity across long, articulated sequences. Here, we therefore focus on the most competitive prior509

art, TOTAL-RECON, which similarly targets long-range, high-quality reconstructions. Comprehensive510

side-by-side renderings and depth maps (7, 8, 9, 10, 11) show that our approach produces sharper511

silhouettes, fewer temporal artifacts, and consistently lower photometric and geometric error. The512

gap widens on challenging multi-actor scenes, confirming that the hierarchical deformation and513

articulated priors in our pipeline are critical for robust 4D reconstruction.514

B Limitations and Future Work515

Handling Discontinuous Motions Although our model effectively captures continuous articulated516

motions, handling abrupt discontinuities remains challenging due to our smooth deformation field517

assumption. Future directions may explore explicit discontinuity modeling, possibly integrating518

event-based vision sensors for improved robustness in highly dynamic scenarios.519

Improved Initialization Exploring advanced initialization methods, potentially leveraging para-520

metric body models (such as SMPL for humans or animal-specific skeletal models), could further521

enhance reconstruction quality and reduce sensitivity to initialization.522

C Broader Impacts523

Our method has potential positive impacts in AR/VR applications, enhancing realism in interactive524

systems. However, we acknowledge potential misuse risks, such as generating misleading synthetic525

content. We advocate responsible use and transparency in synthetic data usage, encouraging further526

research in detection and mitigation of malicious synthetic media.527
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Figure 7: NVS comparisons with Total-Recon.
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Figure 8: NVS comparisons with Total-Recon.
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Figure 9: NVS comparisons with Total-Recon.
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Figure 10: NVS comparisons with Total-Recon.
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Figure 11: NVS comparisons with Total-Recon.
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