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Abstract

The input to the line-sets k-median problem is an integer k ≥ 1, and a set L =
{L1, . . . , Ln} that contains n sets of lines in Rd. The goal is to compute a set C
of k centers (points in Rd) that minimizes the sum

∑
L∈L minℓ∈L,c∈C dist(ℓ, c)

of Euclidean distances from each set to its closest center, where dist(ℓ, c) :=
minx∈ℓ ∥x− c∥2. An ε-coreset for this problem is a weighted subset of sets in
L that approximates this sum up to 1 ± ε multiplicative factor, for every set C
of k centers. We prove that every such input set L has a small ε-coreset, and
provide the first coreset construction for this problem and its variants. The coreset
consists of O(log2 n) weighted line-sets from L, and is constructed in O(n log n)
time for every fixed d, k ≥ 1 and ε ∈ (0, 1). The main technique is based on a
novel reduction to a “fair clustering” of colored points to colored centers. We then
provide a coreset for this coloring problem, which may be of independent interest.
Open source code and experiments are also provided.

1 Introduction

In the classic k-mean clustering problem, the input is a set P of n points in a metric space (X ,dist),
and an integer k ≥ 1. The goal is to compute a set C∗ of k centers (points in X ) that minimizes the
sum of squared distances over each point p ∈ P to its nearest center in C∗, i.e., to compute

C∗ ∈ argmin
C⊆X ,|C|=k

∑
p∈P

D̃(p, C),

where D̃(p, C) := minc∈C dist2(p, c). This problem is arguably the most common clustering
problem formulation, both in industry and academy; see references e.g. in [5, 20, 31, 36].

A natural generalization is to replace this input set P of n points by a set P of n sets in X . The
distance from such an input set P ∈ P to a set C∗ of centers can then be defined as the distance
between the closest point-center pair. This problem is called k-mean for sets; see e.g. [26] and
references therein. Its goal is to compute

C∗ ∈ argmin
C⊆X ,|C|=k

∑
P∈P

D̃(P,C), (1)

where D̃(P,C) := minp∈P D̃(p, C).
A special case is where every such set P ∈ P is a line ℓ in X = Rd. This problem is called k-mean
for lines; see e.g. [10, 17, 35]. Its goal is to compute a set C∗ of k points in Rd such that

C∗ ∈ argmin
C⊆Rd,|C|=k

∑
ℓ∈P

D̃(ℓ, C). (2)

This paper considers a further generalization of the last problem, where the input is a set of n sets,
each contains multiple lines as follows.
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Figure 1: Line-sets Clustering:(a) The k = 2 line-sets mean (black stars) of n = 5 sets (in different colors), each contains a pair (m = 2) of
lines (same color) in the plane (X = R2). The closest line to the stars in each pair of lines is bold. Application: (b) A set of n = 3 drones,
each equipped with an on-board 2D camera, takes a snapshot of a point in R3 (the black k = 1 star). Due to the missing depth, each such point
corresponds to a pixel in the 2D image’s plane, or a line in R3 which is the intersection of the image’s plane with the camera’s pin-hole. (c) The
estimated position of the drone from the noisy observations is inaccurate, so we use m = 2 guesses or consecutive images over time (blue and
red line). One of them (in bold) is closer to the observed point.

Line-sets clustering. The input to the line-sets k-mean problem is an integer k ≥ 1, and a set
L = {L1, . . . , Ln} of n sets, where each set L = {ℓ1, . . . , ℓm} in L consists of m ≥ 1 lines in Rd.
The goal is to compute a set C∗ of k points in Rd that minimizes its sum of squared distances over
every set of lines in L, i.e.,

C∗ ∈ argmin
C⊆Rd,|C|=k

∑
L∈L

D̃(L,C). (3)

Here, D̃(L,C) := min
ℓ∈L

D̃(ℓ, C) is the shortest squared distance between a point in C to its closest

line in L; see Fig 1.

1.1 Motivation

The classic k-clustering of points has numerous applications, and the k line-sets clustering is its
natural generalization. It is thus not surprising that these applications can be easily generalized and
extended. We give examples from different research fields as follows.

Handling missing data. A natural application is clustering of a data with missing values, as described
e.g. in [10]. Here, each record in the input data-set is represented by a point in d dimensions. If an
entry is missing, we may replace it by all possible values, resulting in a line in Rd that is parallel to
one of the axes. Similarly, if the missing entry is discrete, i.e., can be one in a finite set of options,
it results in a set of points. Our paper handles combination of them both. An example of this can
be found in Dataset 4 in our experimental results for California housing. The entries may be the
number of the apartment or floor, which corresponds to a set of values. A monthly rent is a continuous
variable, which corresponds to a line. Together they correspond to line-sets. Another perspective
would be of sets clustering with missing values, where most of the applications in [26] may be
generalized using our work.

Computer vision. In the fundamental 3D model reconstruction problem, we are given n pixels
(features). Each pixel is from a different 2D image that captures the same point in R3, i.e., the real
world. Such a 2D pixel corresponds to a line in R3 that passes through the camera’s pinhole and
the pixel in the image plane. The goal is to estimate the location of the point in R3, based on the
set of n 2D images. The task of estimating a 3D point location given a single set of lines is called
Triangulation. Due to uncertainty and noise, feature extraction algorithms usually identify m ≥ 1
pixels in each image as the captured point, without certainty about which of the pixels are noise and
which are correct. Here, the center is this desired point in R3, and every image is represented by m
lines. To obtain a model or a “3D point-cloud” [18, 22] we may wish to compute k points (centers)
of the 3D object. See Fig. 1 (right).

Colored point-sets clustering applications. This paper reduces the line-sets clustering problem to
clustering sets of colored points, which has its own applications. An example is the facility location
problem, as in the home and work example in Section 3. Another application is text documents
clustering, as explained in Section 5. Here, every document is represented by a set of colored
vectors, where each vector corresponds to a paragraph in a “bag of words" representation. Each color
represents a different type of paragraph, e.g., introduction, summary, main section, theorem, etc.
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More generally, the problem is relevant where each facility is useful for a specific subset of input
clients.

We hope that this paper will open the research toward more complex and general shapes that may
yield better approximations to high-ways and polygons such as k segments (as in [38, 25, 10]), arcs
or k-subspaces instead of lines.

1.2 Generalizations and computation models

Our main technique to handle the problems above, and especially their streaming, distributed, and
parallel versions, is to design data summaries (often called coresets) for the k line-sets clustering
problem, and its corresponding set of queries. We may then run naive algorithms such as exhaustive
search on the small coreset to extract the approximated solution, or apply existing heuristics and
obtain faster results.

In the following definition, a pseudo distance D̃(p, q) assigns a non-negative number for any pair
p, q ∈ Rd. The pseudo distance between sets is then the distance between the closest pair, as in (1)
above. See exact definition and constraints in Definition 2.1.

Definition 1.1 (Coreset). Let k ≥ 1 be an integer, and L = {L1, . . . , Ln} be an input set, where each
L = {ℓ1, . . . , ℓm} ∈ L consists of m ≥ 1 lines in Rd. For a given approximation error parameter
ε ∈ (0, 1) and an integer k ≥ 1, an ε-coreset of L for k line-sets clustering over a pseudo distance
D̃ is a weighted set S ⊆ L that approximates the sum of pseudo distances to L from every set C of
k centers in Rd, up to a multiplicative factor of 1 ± ε. More precisely, there is a weight function
v : S → [0,∞) such that for every set C ⊆ Rd of size |C| ≤ k,∣∣∣∣∣∑

L∈L
D̃(L,C)−

∑
L∈S

v(L)D̃(L,C)

∣∣∣∣∣ ≤ ε
∑
L∈L

D̃(L,C).

In particular, an (optimal) line-sets k-mean C∗ of the weighted set (S, v) is a (1 + ε)-approximation
to the k-line-sets mean of L. This is the strongest type of coresets (sometimes called “strong
coreset” [33, 41]), in the sense that it approximates every query C, and not just, say, the optimal
solution. It is also a weighted subset of the input, unlike a sketch, linear combination, or general
subsets of lines in Rd which are not a subset of L; see next Section 1.3.

1.3 Related work

Clustering n points by k center points is a fundamental problem in machine learning [40]. Applica-
tions can be found in operations research [6, 8], statistics [20] and computational geometry [4, 28, 43],
including constant factor approximations (randomized [2] and deterministic [7]). Many of the recent
results [13, 21] are based on coresets (under different definitions) that can usually be computed in
time that is near-linear in the input size and number k of centers. The size of these coresets is usually
(k/ε)O(1), where ε ∈ (0, 1) is a parameter that represents the approximation error.

For the special case m = 1, our coreset in Definition 1.1 is for k-means of n lines. Such a coreset
was suggested in [35] whose size is log2(n)ko(k) · ε−2, for any constant ε > 0, and is improved in
our paper. For the case that the lines are parallel to the axes, coresets were suggested in [10]. These
results also hold for j-dimensional linear subspaces, but only if they are parallel to the axes of Rd.
The main motivation is handling j missing entries in each database’s record (point).

Coresets for input sets of points, lines, and fair clustering appeared relatively recently. Coreset for
(point)-sets clustering as in Eq. (1), where each set consists of m points, was suggested in [26] and

its size is
(

logn
ε

)2
kO(m).

Our main technical result is a coreset for colored (points) clustering, where the sets and centers are
colored, and each input point can be served by a center of the same color. This approach is strongly
related to fair clustering, where each group is represented by a color.

Variations of fair clustering were suggested in [12, 23, 27] and references therein. Coresets for fair
clustering were suggested in [39]. This paper generalizes some of these results in the sense that the
input points are colored sets, but the centers are also colored.
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Our coreset constructions, as many of the recent coreset constructions, is based on the Feldman-
Langberg framework [9, 11, 15, 29]. This framework reduces the problem of computing a coreset –
to the problem of computing the importance (sensitivity) for each of the n input points/sets.

1.4 Main contributions

We suggest the first coreset construction for line-sets clustering whose size (number of weighted
sets) is sub-linear in the number n of input sets. This is by a reduction to another problem, fair
clustering (colored points) with colored centers, which may be of independent interest. We then
suggest a coreset for this type of fair clustering problems. More precisely, we provide the following
contributions for every pseudo distance D̃, constant approximation error ε ∈ (0, 1), and constant
integers d, k,m ≥ 1. See the corresponding theorems for exact bounds.
(i) An ε-coreset S ⊆ L for line-sets clustering of any set L of n sets , each consists of at most m

lines; see Theorem 4.1
(ii) An ε-coreset S ⊆ P for colored sets clustering of any set P of n sets in X ; See Theorem 4.2

Each of these coresets has size |S| ∈ O(log2 n) and can be computed in O(n log n) time, with high
probability. The following results are straightforward implication of the above results, using existing
merge-reduce frameworks [1]:

(iii) Support for streaming data in insertion time and memory that is poly-logarithmic in the number
n of the sets seen so far in the stream.

(iv) Support for parallel computations on data that may be distributed on M machines using 1/M
amortized insertion time.

(v) Support for deletion of sets from the stream in poly-logarithmic time during the streaming, but
using memory that is linear with n.

(vi) FPTAS in time O(n log n), by running an exhaustive search on the corresponding small corsets.

Dependencies on input parameters. Our first result above is in fact an LTAS (linear time approxi-
mation scheme), since the asymptotic running time depends polynomially on 1/ε, and near-linear in
n. The dependency on d is polynomial, and the exponential dependency on k and m is unavoidable
due to known lower bounds for special cases e.g. in [19, 26]. These are worst-case bounds, and the
actual approximations errors are much smaller in practice as shown in the experimental results; see
Section 5.

1.5 Novel technique: from line-sets to fair clustering

Existing coresets for point-sets clustering are heavily based on the triangle inequality between pair of
points, which is not satisfied for the case of lines. On the other hand, existing coresets for lines were
reduced to coresets for weighted centers, which do not support sets as an input. The main challenge
in this paper is to combine these two results. This is by suggesting a novel reduction and coresets for
colored-weighted centers, which may be of independent interest and borrows techniques from fair
clustering. To our knowledge, this is the first link of this type between geometric shapes and fairness.
We hope it will open the door for many other coresets; see Section 6.

Our reduction is based on the following three steps.

Grouping. Algorithm 3 in Section 3.2 recursively chooses a very “dense” constant fraction of sets
Lm that are close to m center points (robust medians) Bm = {b1, . . . , bm} ; see Definition 2.5. The
ith line in each of these sets is then translated to its median bi, for every i ∈ [m]. At this stage we
reduced our problem to compute sensitivity for |Lm| ∈ O(n) sets of lines that form m “stars”; see
Fig. 2(a).

Reduction to points. The distance from each line that intersects a robust median bi (say, the origin)
to a query center ci ∈ C is its distance to a unit vector in the same direction, weighted by the norm of
the vector; see Fig. 2(b). This distance can be approximated, up to a constant factor, by replacing ci
with its projection on the sphere ci/ ∥ci∥ and its antipodal point −ci/ ∥ci∥.

Colored sets and centers. The new problem is now to compute sensitivity for n sets, each contains
m colored points on m unit spheres; see Fig. 2(c). Each center in the set C of k queries is duplicated
m times in m colors. The result is a set of 2mk weighted centers on m unit sphere with an additional
constraint: the ith center can “serve” only the lines on the ith sphere.
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Figure 2: (a) A set L of 3 triplets of lines, each in a different color. The first line in each triplet intersects the same
yellow (robust median) point b1, and similarly for the other lines and medians b2, b3. (b) The distance from
every colored line to a query center c ∈ R2 (black star) is the same as its distance from the star in the same
color multiplied by the distance w from the center to its median. (c) The distance between a line ℓ (in green)
and the point c (black) is the distance between c′ (blue) and ℓ multiplied by w (black brackets). This distance is
approximated by the distance ∥c′ − pℓ∥ as stated in Claim C.3.

2 Preliminaries

The results in this paper hold not only for squared distance functions but for other functions such
as non-squared distances or M-estimators. To generalize this notion, we use the following pseudo
distance over a metric space (X ,dist); see many examples of such functions in [26]. From Section 3.2,
i.e., for the case of input lines, we assume that X = Rd and dist is the Euclidean norm. That is,
the metric space is (Rd, ||.||2) but lip below can still be any function that satisfies the following log-
log Lipschitz condition.

Definition 2.1 (Pseudo-distance D̃). Let lip : [0,∞) → [0,∞) be a non-decreasing function that
satisfies the following condition: There is a constant r ∈ (0,∞) such that for every x, z > 0 we have
lip(zx) ≤ zrlip(x). Let (X ,dist) be a metric space, and D̃ be a function that maps every pair of
points p, c ∈ X to

D̃(p, c) := lip(dist(p, c)).

For a pair of finite sets P,C ⊆ X , denote D̃(P,C) := minp∈P,c∈C D̃(p, c), D̃(P, c) := D̃(P, {c})
and D̃(p, C) = D̃({p} , C).

The motivation behind the last definition is that it satisfies the following pair of properties.

Lemma 2.2 (weak triangle [42]). Let X , D̃, and r be as defined in Definition 2.1. Then D̃ satisfies
the following (“weak triangle”) inequalities (i)–(ii) for every p, q, c ∈ X :

(i) For ρ = max{2r−1, 1}, D̃(p, q) ≤ ρ(D̃(p, c) + D̃(c, q)).

(ii) For ϕ = (4r − 4)
r−1 , D̃(p, c)− D̃(q, c) ≤ ϕD̃(p, q) + D̃(p,c)

4 .

In the rest of the paper, for an integer n ≥ 1 we denote [n] = {1, . . . , n}. Also, unless otherwise
stated D̃,X , r are as stated in Definition 2.1.

For both the line-sets clustering and the colored-sets clustering problems/coresets, the input is a set
of n sets, each of size m. We call it (n,m)-set for short as follows.
Definition 2.3 ((n,m)-set). For a given integer m ≥ 1, an m-set P is a set of m items, i.e. |P | = m.
For an additional integer n ≥ 1, an (n,m)-set is a set of n m-sets.
Definition 2.4 ((n,m)-ordered-set). An m-ordered set P is an ordered-set of m ≥ 1 points in X . An
(n,m)-ordered-set is a set of n ≥ 1 m-ordered-sets.

Informally, a robust median for an optimization problem at hand is an element b that approximates
the optimal value of this optimization problem, with some leeway on the number of input elements
considered. In the context of facility location, the facility (center) needs to serve only a subset of the
closest clients (input points).

Let P be an (n,m)-set, C ⊆ X and γ ∈ (0, 1]. We denote by closest(P, C, γ) the set that is the
union of ⌈γ|P|⌉ sets P ∈ P with the smallest value of D̃(P,C), i.e.,

closest(P, C, γ) ∈ argmin
Q⊆P:|Q|=⌈γ|P|⌉

∑
P∈Q

D̃(P,C). (4)
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(d) k = 2

Figure 3: Example sets projections for Definition 2.7: (a) The projection of P =○ (top 5 points) onto the ordered
set B = ⋆ (red stars) yields T (P,B) = ○ (5 dark blue points), i.e., the union of 3 points proj(P,B) (3 on the
stars) with the 2 remaining points proj(P,B). (b) The projection of L = / (top 5 lines) onto the ordered set B
(red stars) yields T (L,B) (5 dark blue lines), i.e., the union of 3 lines proj(P,B) (translated to to the stars)
with the 2 remaining lines proj(L,B). Colored-set k-clustering: The input is a set of n = 5 pairs of points
that correspond to home/work addresses (in blue and black). (c) k = 1 center, which is a restaurant (black fork
and knife). Its distance to a person is the distance to her office (black suitcase). (d) k = 2 centers: a restaurant
(black fork and knife) and a grocery shop (blue cart). Each person chooses the closest restaurant to her office or
the closest grocery to her home.

proj proj proj proj

For simplicity of notation, we define closest(P, C) := closest(P, C, 1
|P| ) as one of the closest items

to C in P . Here and in the rest of the paper ties are broken arbitrarily.
Definition 2.5 (Robust median [16]). Let P be an (n,m)-set in X , γ ∈ (0, 1], and

D̃∗(P, γ) = minb∈X
∑

P∈closest(P,{b},γ)
D̃(P, b).

For τ ∈ (0, 1) and α ≥ 0, a point b ∈ X is a (γ, τ, α)-median for P if∑
P∈closest(P,{b},(1−τ)γ)

D̃(P, b) ≤ α · D̃∗(P, γ).

Definition 2.6 (Translation). Let b be a point in X . Than (i) For every p ∈ X , we define T (p, b) := b,
and (ii) If X = Rd, for every line ℓ in Rd we define T (ℓ, b) to be a line parallel to ℓ that intersects b.
In what follows, we define the projection of a set (points or lines) over a set of points; see Fig. 3.
Definition 2.7 (Set projection). Let m, j be a pair of integers such that 1 ≤ j ≤ m. Let P be either
an m-set of points in X or an m-set of lines in X = Rd. Let B = (b1, . . . , bj) be an ordered j-set
of points in X . Let p1 ∈ P denote the closest item {p1} = closest(P, {b1}) to b1. For every integer
i ∈ {2, . . . , j}, recursively define pi to be the closest item {pi} = closest(P \ {p1, . . . , pi−1} , {bi})
in P \ {p1, . . . , pi−1} to bi. We denote,

(i) proj(P,B) := {T(p1, b1), . . . ,T(pj , bj)} as the j items in P that were projected onto B.

(ii) proj(P,B) := P \ {p1, . . . , pj} as the m− j items in P that were not projected onto B.

(iii) T(P,B) := proj(P,B) ∪ proj(P,B) as the projection of P onto B .

(iv) For projection over an empty set, we define proj(P, ∅) := T(P, ∅) := P .

3 Sensitivity
Our main coreset construction (Algorithm 4) is a standard non-uniform sampling algorithm based
on Feldman-Langberg framework [14]. The main challenge in this framework is to compute the
importance of each input set, known as sensitivity. Our main contribution is an algorithm that
computes this sensitivity with provable guarantees on its running time and the total sensitivity, which
implies the size of the resulting coreset.

As explained in the novelty section, we provide coreset construction for line-sets, by bounding
sensitivity of a constant fraction of the input lines recursively. Section 3.2 provides sensitivity bound
for lines-sets clustering, by translating the input lines into robust medians, converting the translated
lines into colored points, and then compute sensitives for colored-sets as in Section 3.1.
Definition 3.1 (Line-set Sensitivity). Let L be an (n,m)-set of lines in Rd, and let k ≥ 1 be an
integer. We define the sensitivity of every such set L ∈ L of lines to be

SL,k(L) = sup
C⊆Rd,|C|=k

D̃(L,C)∑
L′∈L D̃(L′, C)

,

where the supremum is over every set C of k points in Rd such that D̃(L,C) > 0.
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3.1 Colored sets

In this subsection, we bound the sensitivity for the colored sets clustering. Here, the input is a set P
of n m-ordered-sets (the order resembles the colors of the points) in a metric space (X , d) equipped
with a distance function D̃, and an integer k ≥ 1. The goal is to compute a colored set ⊆ X × [m]
of k pairs, each consisting of a point and a index (color) in [m] that minimizes the sum of distances
to the sets. Here, the distance to each ordered-set P ∈ P is the minimum distance from a center in
to a point in P which has the same color,

∈ argmin
C′⊆X×[m],|C′|=k

∑
(p1,...,pm)∈P

min
(c,t)∈C′

D(c, pt).

Example. Suppose we want to provide a convenient food source for n workers whose home and
work addresses are represented by n pairs of GPS coordinates (points on the plane). Each person
can either buy ingredients at the grocery and make a lunch box at home, or go to a restaurant during
lunchtime; see Fig 3.

In order to make the reduction to sets of lines, we need coreset for this problem that supports weights.
Hence, we define the weighted version of this problem.
Definition 3.2 (weighted colored center). A weighted colored center in X is a triplet (c, w, t), where
c ∈ X , w ≥ 0, and t ≥ 1 is an integer. We define the weighted distance from an m-ordered set
P = (p1, . . . , pm) to a colored weighted center c′ = (c, w, t) to be

D̃(P, c′) = D̃(P, (c, w, t)) =

{
w · D̃(pt, c), if t ≤ m

∞, otherwise
.

The distance between a finite set C of weighted colored centers, and an m-ordered-set P is defined
by D̃(P,C) = minc′∈C D̃(P, c′), and the cost between C and an (n,m)-ordered set P is the sum
D̃(P, C) =

∑
P∈P D̃(P,C).

Overview of Algorithm 1. Given a set P of m-ordered-sets and an integer k ≥ 1, Algorithm 1
computes a set Bm

k of center points (used only for the analyses) and a set Pm
k ⊆ P of “similar”

m-ordered-sets, which are approximately equally important for the problem at hand; see Lemma 3.3.
On the ℓ-th iteration of the external loop (Line 2), the algorithm computes a fraction of O( 1

km )m-sets
from Pm

ℓ−1 that are similar in the sense that there are m dense balls of small radii, each contains at
least one point from each set.

Algorithm 1: CS-DENSE(P, k)

Input : An (n,m)-ordered-set P in X , and an integer k ≥ 1.
Output : A pair (Pm

k ,Bm
k ), where Pm

k ⊆ P and Bm
k ⊆ X × [m] ; see Lemma 3.3.

1 P0
1 := P ; B0

1 := ∅; τ :=
1

20
2 for r := 1 to k do
3 for ℓ := 1 to m do
4 Pℓ−1

r :=
{
proj(P,Bℓ−1

r )
∣∣P ∈ Pℓ−1

r

}
// see Definition 2.7

5 Compute a
(

1

2k
, τ, 2

)
-median bℓr ∈ X × [m− (ℓ− 1)] for Pℓ−1

r

// see Definition 2.5, and suggested implementation in Algorithm 6.

6 Pℓ
r :=

{
P ∈ Pℓ−1

r proj(P,Bℓ−1
r ) ∈ closest

(
Pℓ−1

r ,
{
bℓr
}
, 1−τ

4k

)}
// Pℓ

r contains every m-set P such that proj(P,Bℓ−1
r ) is in the fraction of

the closest (1− τ)/(4k) sets in Pℓ−1
to the center bℓr; see

Definition 2.7.
7 Bℓ

r := Bℓ−1
r

⋃{
bℓr
}

8 P0
r+1 := Pm

r ; B0
r+1 := Bm

r

9 Return (Pm
k ,Bm

k )

Lemma 3.3 (sensitivity of colored-sets). Let P be an (n,m)-ordered-set in X , k ≥ 1 be an integer,
and let (Pm

k ,Bm
k ) be the output of a call to CS-DENSE(P, k); see Algorithm 1. Then |Pm

k | ∈ Θ(n),
and for every set P ∈ Pm

k and a set C ⊆ X × [0,∞) × [m] of |C| = k weighted colored centers

such that D̃(P,C) > 0, we have D̃(P,C)∑
P ′∈P D̃(P ′,C)

≤ 2k
|Pm

k | .
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3.2 Line-sets

Overview of Algorithm 2. Given an (m,m)-set L of lines, and a set B ⊆ Rd that both satisfy the condition
of Lemma C.4, and an integer k ≥ 1. Algorithm 2 outputs a function s : L → [0,∞) that maps every set L ∈ L
of lines to an upper bound s(L) of its sensitivity. This is done by a reduction to colored-sets clustering. Intuitively,
the distance between a projected set of lines (see Fig. 2 (a)) and a center can be approximated by a distance
between a colored set and a set of colored centers (projections of the original center) as shown in Fig. 2(b)

Algorithm 2: GROUPED-SENSITIVITY(L, B, k)

Input :An integer k ≥ 1, an (n,m)-set L of lines, and a set B = (b1, . . . , bm) of m points both in Rd

such that for every set L = (ℓ1, . . . , ℓm) ∈ L and every i ∈ [m] , the line ℓi intersects bi.
Output :A sensitivity function s : L → [0,∞), for every set L ∈ L.

1 For every i ∈ [m], set Si :=
{
x ∈ Rd| ∥x− bi∥ = 1

}
2 For every L ∈ L, set P (L) := (ℓi ∩ Si)

m
i=1// A 2m-ordered set

3 P := {P (L)
∣∣L ∈ L}// An (n, 2m)-ordered set

4 while |P| > 2mk do
5 (Pm

k ,Bm
k ) := CS-DENSE(P,mk)// see Algorithm 1

6 for every P ∈ Pm do

7 s′(P ) :=
2mk

|Pm
k |// see Lemma 3.3

8 P := P\Pm
k

9 for every Q ∈ P do
10 s′(Q) := 1

11 for every L ∈ L do s(L) :=
√
2s′(P (L)).

12 Return s

Line 1

Line 2

Line 5

Overview of Algorithm 3 Given an (n,m)-set L of lines, and an integer k ≥ 1, Algorithm 3 outputs a
pair of sets (Lm+1,Bm). All the m-sets in Lm+1 are similar in the sense that their sensitivity with respect to
original problem is small and equal. The algorithm consists of two parts. The first part (Lines 3-8), extracts a
subset of the original data that can be “grouped” (see Fig. 2(a)) with little effect on the sensitivity related to the
original set. The second part (Lines 9-10), uses Algorithm 2 to extract the biggest subset of this subset whose
sensitivity can be bounded.

Algorithm 3: LS-DENSE(L, k)
Input : An (n,m)-set L and an integer k ≥ 1.
Output : A pair (Lm,Bm), where Lm ⊆ L and Bm ⊆ Rd

is an ordered set.
1 τ := 1

20

2 L̄0 := L0 := L ; B0 := ∅
3 for i := 1 to m do

4 Compute a
(

1

2k
, τ, 4

)
-median bi ∈ Rd for L̄i−1

// see Algorithm 6 for suggested implementation
5 Li :=

{
L ∈ Li−1 proj(L,Bi−1) ∈ closest

(
L̄i−1,

{
bi
}
, 1−τ

4k

) }
6 Bi := Bi−1

⋃{
bi
}

7 L̄i−1 :=
{
proj(L,Bi−1)

∣∣L ∈ Li−1
}
// see Fig 3

8 L′ :=
{
proj(L,Bm)

∣∣L ∈ Lm
}

9 s := GROUPED-SENSITIVITY(L′,Bm, k)// see Algorithm 2

10 Lm+1 := argmin
L∈Lm

s
(
proj(L,Bm)

)
// Lm+1 is a set of sets

// biggest cluster whose sets have equal sensitivity
11 Return (Lm+1,Bm)

Line 4

Line 5

Line 7

Line 10

Lemma 3.4. Let L be an (n,m)-set of lines in Rd, and k ≥ 1 be an integer. Let
(
Lm+1,Bm

)
be

the output of a call to LS-DENSE(L, k); see Algorithm 3. Then, for every L ∈ Lm+1, we have

SL,k(L) ∈ O(k) ·
(

1
|Lm+1|

)
.
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4 From Sensitivity to Coreset
As previously stated, there are many frameworks (such as [14]) which provide a coreset given an
upper bound of the sensitivity as in Lemma 3.3 and an upper bound for the VC-dimension as given in
Section B.In what follows we present a general algorithm that uses such a framework.

Overview of Algorithm 4 Given an (n,m)-set L of lines in Rd , an integer k ≥ 1, an error parame-
ter ε ∈ (0, 1), and a probability of failure δ ∈ (0, 1), Algorithm 4 computes an ε-coreset (C, v) for L.
First, the algorithm (Lines 1-7) recursively extracts a subset with known sensitivities using LS-DENSE
until all sets are assigned a sensitivity, then calls an existing framework to compute the coreset (Line 8).

Algorithm 4: CORESET(L, k, η); see Theorem 4.1
Input : An (n,m)-set L of lines in Rd, a positive integer k ≥ 1, desired coreset size η ≥ 1.
Output : A pair (C, v), where C ⊆ L and v : C → (0,∞).

1 L0 := Lm+1 := L
2 while

∣∣Lm+1
∣∣ ≥ 2 do

3 (Lm+1,Bm) := LS-DENSE(L0, k)// see Algorithm 3
4 for every L ∈ Lm+1 do

5 s(L) :=
1

|Lm+1|
6 L0 := L0 \ Lm+1

7 for every set L ∈ L0 do s(L) := 1
8 (C, v) := CORESET-FW(L, s, η)// see Algorithm 5
9 Return(C, v)

Theorem 4.1. Let L be an (n,m)-set of lines in Rd, k ≥ 1 be an integer, ε, δ ∈ (0, 1), and let

η ≥
(

m1.5d logn
ε

)2

(2k)cmk + log2
(
1
δ

)
be an integer, where c is a sufficiently large constant that can

be determined from the proof. Let (C, v) be the output of a call to CORESET(L, k, η); see Algorithm 4
in the Appendix. Then, Claims (i)–(ii) hold as follows.

(i) With probability at least 1− δ, (C, v) is an ε-coreset of L for the k-line-sets of size |C| = η.
(ii) The pair (C, v) can be computed in n log(n)(2k)O(mk) time.

By modifying Line 3 of Algorithm 4 to call CS-DENSE rather than LS-DENSE, as well as straight-
forward modifications over the input, one can achieve coreset construction for Colored-sets clustering
as follows.

Theorem 4.2. Let k,m ≥ 1 be constant integers, let P be an (n,m)-ordered-set in Rd, ε, δ ∈ (0, 1),

and let η ≥
(

m1.5d logn
ε

)2
(2k)cmk + log2

(
1
δ

)
be an integer, where c is a sufficiently large constant

that can be determined from the proof. There is an algorithm that given P, k, ε and δ returns with
probability at least 1− δ an ε-coreset of P for colored-sets k-mean of size η in n log(n)(2k)O(mk)

time.

5 Experimental Results
We implemented our coreset construction algorithms for both Colored-sets and Line-sets. In this
section we test there empirical performance on synthetic and real data. Open source is available
in [32]. Since we provide the first coreset construction for the given problems, we compare our results
to a single baseline - a random uniform sampling of the same number of points as in the coreset.
Except for the case of (n, 1)-sets of lines where we also compare to the existing coreset for lines
k-mean [35].

Colored-sets data-sets

(i) A synthetic dataset of size n = 10000 with outliers by sampling colored points from a set of
Gaussians with different parameters corresponding to different colors. For each color there are two
overlapping Gaussians for modeling the inliers of size 4950 each and one Gaussian more than three
standard deviations away of size 100 for modeling the outliers.

(ii) The Reuters-21578 data-set from [30], which results in sets of points corresponding to each
paragraph in each document. Additionally we divide paragraphs into categories: beginning (first
third), main part (middle third) ending (last third). This results in each document being represented
as a set of m=3 colored points corresponding to sets of paragraphs of different categories.

9



Figure 4: Experimental results. See details in Section 5.

Line-sets data-sets

(iii) A synthetic dataset that consists of the colored points dataset from the previous section, after
removing the colors from the points. Each point was then turned into a line by assigning it to a
random direction according to similar mixture of Gaussians.

(iv) We used California housing prices data-set [37] in witch we introduced uncertainty by removing
two of the 9 dimensions each point. We removed one discrete value which created sets and one
continuous value which created the lines.

The experiment. For each data set, and for different values of m, k, we conduct the following
experiments. For every σ ∈ {10 · 2i}ni=0, a coreset S1(σ) of size σ using our algorithm, a uniform
sample S2(σ) of the data-set of size σ, and for the corresponding experiments a coreset S3(σ) of
size σ using [35]. Then we generated a set Q, |Q| = 500 queries: half of them are k-means that
were computed using generalization of the EM heuristic, and the rest were randomly and uniformly
sampled from the ground set. Finally, for every i ∈ {1, 2} we computed the maximum approximation
error

Si, εi(σ) = max
Q∈Q

∣∣∣∑P∈P D̃(Si, Q)−
∑

P∈P D̃(P, Q)
∣∣∣∑

P∈P D̃(P, Q)

Results for the corresponding databases (i)–(iv) are shown in Fig. 4.

Discussion Our coresets out-preform uniform sampling in most of the experiments. As expected,
when the data is uniformly distributed, the sensitivity of each point is close, and uniform sampling is
already a coreset. Increasing k and m yields more isolated clusters, which explains why the error for
the uniform samplings becomes higher compared to the coreset’s error. As is in previous paper, the
empirical error is very small compared to the theoretical worst-case bounds, even for small coresets.

6 Conclusion and Future Work
The paper suggests the first coresets for k line-sets clustering via a reduction to coresets for colored-
sets clustering of independent interest. We expect that this paper will open a line of research for many
possible directions. For example, projectivedd clustering of sets. That is, replacing the outputted
k point centers by k linear subspaces of Rd, each of dimension j ≥ 1. Another direction is to
handle inputs sets of subspaces, each of dimension j ≥ 1. Extending to non-linear shapes is another
direction. Although, the main contribution of this paper is the theoretical breakthrough and results.
However, we also expect that our code can be extended and applied for real-world systems that have
similar problems, such as [24, 34].
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A Appendix

B Sensitivity Coresets

Every coreset in this paper is a weighted subset of its input, unlike other papers where the coreset
may be a subset of a larger ground set. For example, points or lines in Rd instead of the input set. For
clarity, the following definitions are a bit simpler than their cited versions due to this feature of our
coresets. We also assume that the set of queries is the same for every input set and not a function of
the resulting coreset. Such a generalization may be used to remove the dependency of the coreset on
the dimension d; see Future Work in Section 6.
Definition B.1 (Query space [9, 29]). Let P be a finite set. Let Q be a (possibly infinite) set, called
queries. Let f : P ×Q → [0,∞) be a cost function. The tuple (P,Q, f) is called a query space.

In most papers, P is a set of points in Rd or a metric space, and in some papers, P is a set of lines.
However, in this paper, P is usually a set of sets, where each p ∈ P corresponds to a set of lines or
colored points. Every item in Q is a set of k centers, sometimes colored. Since this section is generic,
we keep the classic notation defined above.

The following definition of VC-dimension is used in Theorem B.5 to bound the VC-dimension for
our problems. Unfortunately, a different definition is used in the context of query spaces. Below we
present the two definitions and show how they are equivalent.
Definition B.2 (VC-dimension ). Let X be a set, called ground set, and let F be a set of functions
from X to {0, 1}. For a set S ⊆ X , we call Sf := {x ∈ S|f(x) = 1} the subset of S induced by f .
We say that S is shuttered by F if and only if |{Sf |f ∈ F}| = 2|S|. The VC-dimension of F is the
largest size of S that is shuttered by F .

The definition of VC-dimension for query spaces is a straight forward generalization of the classic
definition of VC-dimension in PAC-learning above.
Definition B.3 (VC-dimension for query spaces [9]). For a query space (P,Q, f), a query C ∈ Q,
and r ∈ [0,∞) we define

range(P,C, r) = {p ∈ P |f(p, C) ≤ r} .

Let ranges(P,Q, f) :=
{
range(P,C, r)

∣∣C ∈ Q, r ≥ 0
}
. The VC-dimension of the pair

(P, ranges(P,Q, f)) is the size |S| of the largest subset S ⊆ P such that

|
{
S ∩ range(P,C, r)

∣∣C ∈ Q, r ∈ [0,∞)
}
| = 2|S|.

The VC-dimension of the query space (P,Q, f) is the VC-dimension of (P, ranges(P,Q, f)).

The following lemma show the relation between the pair of definitions above.
Lemma B.4. Let (P,Q, f) be a query space. We define

H((P,Q, f)) :=

{
x 7→

{
1, f(x,C) ≤ r

0, otherwise

∣∣∣∣C ∈ Q, r ∈ [0,∞)

}
The VC-dimension of H((P,Q, f)) is the VC-dimension of (P,Q, f).

Proof. Let H = H(P,Q, f) be as defined in Lemma B.4. Let S ⊆ P be a set, and for ev-
ery h ∈ H let Sh be the subset of S induced by h. For every C ∈ Q and r ∈ [0,∞), let

h′(x) =

{
1, f(x,C) ≤ r

0, otherwise
then every x ∈ P is x ∈ Sh′ ⇔ x ∈ S ∩ range(P,C, r). Hence, for

every S′ ⊆ S we have S′ ∈ {Sh|h ∈ H} ⇔ S′ ∈
{
S ∩ range(P,C, r)

∣∣C ∈ Q, r ∈ [0,∞)
}

.
Finally, the VC-dimension of both, H and (P,Q, f) is the size of largest set S, such that
|{Sh|h ∈ H}| =

∣∣{S ∩ range(P,C, r)
∣∣C ∈ Q, r ∈ [0,∞)

}∣∣ = 2|S|.

Lemma B.5 (Variant of Theorem 8.4, [3]). Suppose h is a function from Rd × Rn to {0, 1} and let

H =
{
x 7→ h(a, x)

∣∣a ∈ Rd, x ∈ Rn
}

be the class determined by h. Suppose that h can be computed by an algorithm that takes as an input
a pair (a, x) ∈ Rd × Rn and returns h(a, x) after no more than t operations of the following types:
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• the arithmetic operations +,−,×, and / on real numbers,

• jumps conditioned on >,≥, <,≤,=, and ̸= comparisons of real numbers, and

• outputs 0 or 1.

Then the V C-dimension of H is O (dt).

We now bound the VC-dimension for our line-sets mean problem, whose query space is(
L, {C ⊆ Rd||C| = k}, D̃

)
.

Lemma B.6. Let L be an (n,m)-set of lines in Rd, k ≥ 1 be an integer, and Q = {C ⊆ Rd||C| = k}.
Let (L, Q, D̃) be a line-sets clustering query space. Then the VC-dimension d′ of (L, Q, D̃) is
d′ ∈ O(md2k2).

Proof. Let Q = {C ⊆ Rd
∣∣|C| = k}. Let H = H((L,Q, D̃)) be as defined in Lemma B.4. Let

h : L × (Q× R) → {0, 1} such that

h(L, (C, r)) =

{
1, if D̃(L,C) ≥ r

0, Otherwise.

Note that, H is determined by h. Assuming that each line ℓ ∈ L ∈ L is represented by direction
vector, it takes t = O(mdk) arithmetic operations to evaluate h. Furthermore, any pair in Q× R can
be represented as a vector in (dk + 1)-dimensional space. Hence by Lemma B.5, the V C-dimension
of H is O(dk ·mdk) = O(md2k2). Finally, by Lemma B.4 the VC-dimension of (L,Q, D̃) is equal
to the VC-dimension of H and both are O(md2k2).

In this paper we use the classic definition of sensitivity.
Definition B.7 (Sensitivity). Let (P,Q, f) be a query space. The sensitivity function s∗ : P → [0,∞)
of a query space (P,Q, f) maps every p ∈ P to

s∗(p) := sup
q

f(p, q)∑
p′∈P f(p′, q)

,

where the supremum is over every q ∈ Q such that f(p, q) > 0.

An upper bound for the sensitivity of such a query space is a function s : P → [0,∞) such that
s(p) ≥ s∗(p) for every p ∈ P .

In the above definition we assumed that the supremum of an empty set is zero.
The following theorem proves that a coreset can be computed by sampling according to sensitivity of
points. The size of the coreset depends on the total sensitivity and the complexity (VC-dimension) of
the query space, as well as the desired error ε and probability δ of failure.
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Theorem B.8 ([9]). Let

• (P,Q, f) be a query space, and n = |P |.

• d′ be the dimension of (P,Q, f).

• s : P → [0,∞) be a sensitivity bound of (P,Q, f), and t =
∑

p∈P s(p) be its total sensitivity.

• ε, δ ∈ (0, 1),

• c > 0 be a universal constant that can be determined from the proof,

• η ≥ c(t+1)

ε2

(
d′ log(t+ 1) + log

(
1
δ

))
, and

• (C, v) be the output weighted set of a call to CORESET-FW(P, s, η); see Algorithm 5.

Then (i)–(ii) hold as follows.

(i) With probability at least 1 − δ, (C, v) is an ε-coreset of (P,Q, f), whose size is |C| = η; see
Section 1.2.

(ii) (C, v) can be computed in O(n) time, given (P, s, η).

Algorithm 5: CORESET-FW(P, s, η)

Input :A finite set P ⊆ Rd, where
∑

p∈P w(p) > 0, a function s : P → [0,∞), and an integer η ≥ 1.
Output :A weighted set (C, v).

1 s′(p) := s(p) + 1
|P |

2 C :=
{
p ∈ P

∣∣ s′(p)∑
q∈P s′(q) ≥ 1

η

}
for every p ∈ C do v′(p) := 1

3 Q := P \ C
4 η′ := η − |C|
5 for η′ iterations do

6 Sample a point q from Q, where q = p with probability Pr(p) :=
s′(p)∑

p′∈Q s′(p′)
C := C ∪ {q}

7 v′(q) :=
1

η′ · pr(q)
8 for every p ∈ C do

9 v(p) := v′(p) ·
|P |∑

q∈C v′(q)

10 Return (C, v)

Theorem B.9 (Restatement of Theorem 4.1). Let L be an (n,m)-set of lines in Rd, k ≥ 1 be an
integer, ε, δ ∈ (0, 1), and let

η ≥
(
m1.5d log n

ε

)2

(2k)cmk + log

(
1

δ

)
be an integer, where c is sufficiently large constant that can be determined from the proof. Let (C, v)
be the output of a call to CORESET(L, k, η); see Algorithm 4. Then, Claims (i)–(ii) hold as follows.

(i) With probability at least 1− δ, (C, v) is an ε-coreset of L for the k-line-sets of size |C| = η;
see Section 1.2.

(ii) The pair (C, v) can be computed in n log(n)(2k)O(mk) time.

Proof. Let J denote the number of “while” iterations in Line 2 of Algorithm 4. For every j ∈ [J ], let
L0
j , Lm+1

j and Bm
j denote, respectively, the sets L0, Lm+1 and Bm during the execution of Line 3 at

the jth “while” iteration.

Let j ∈ [J ]. The pair (Lm+1
j ,Bm

j ) is the output of a call to LS-DENSE(L0
j , k). Hence, by Lemma 3.4,

with an appropriate choice of b ∈ O(k) (determined from the proof of Lemma 3.4), for every
L ∈ Lm+1

j its value s(L) that is defined in Lines 5 satisfies, for every C ⊆ Rd of size |C| = k, such
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that D̃(L,C) > 0,

b · s(L) = b∣∣Lm+1
j

∣∣ ≥ D̃(L,C)∑
Q∈L0

j

D̃(Q,C)
≥ D̃(L,C)∑

Q∈L
D̃(Q,C)

, (5)

where the first inequality is by Lemma 3.4, and the second inequality holds since L0
j ⊆ L. Since (5)

holds for every C, and L ∈ L we have

b · s(L) ≥ sup
C⊆Rd,|C|=k

D̃(L,C)>0

D̃(L,C)∑
Q∈LD̃(Q,C)

≥ SL,k(L). (6)

By Line 8 of Algorithm 4, the pair (C, v) is the output of Algorithm 5. By (6) b · s(L) is an upper
bound to the sensitivity of L. Note that in Line 8 we call Algorithm 5 with s and not with b · s,
however, the distribution is the same due to the scaling in Line 6 of Algorithm 5. By Theorem B.8
(C, v), is an ε-coreset with probability at least 1− δ if

η ≥ c(t+ 1)

ε2

(
d′ log(t+ 1) + log

(
1

δ

))
, (7)

where c is a constant that can be determined from the proof, d′ is the VC-dimension of the query
space

(
L, {X ⊆ Rd||X| = k}, D̃

)
, and t =

∑
L∈L s(L) is the total sensitivity of L.

In order to bound the total sensitivity, given a set L′ we first determine the size of fraction of sets
from L′ that outputted by the execution of LS-DENSE(L′, k); see Algorithm 3. Let τ = 1

20 , and
a = 4

1−τ . By Line 5 of Algorithm 3, for every i ∈ [m]∣∣Li
∣∣ = ⌈∣∣Li−1

∣∣
ak

⌉
. (8)

Therefore, by induction

|Lm| ≥
∣∣L0
∣∣

(ak)m
. (9)

The argmin set in Line 10 is the set of lines that is retuned in the fist iteration of Algorithm 2. Similarly
to (9), by induction over Line 6 of Algorithm 1 we have∣∣Lm+1

∣∣ ≥ |Lm|
(ak)mk

, (10)

and by combining (9) with (10) we get∣∣Lm+1
∣∣ ≥ ∣∣L0

∣∣
(ak)mk+m

. (11)

Combining (11) and Line 3 of Algorithm 4 yields

∣∣Lm+1
j

∣∣ ≥ ∣∣L0
j

∣∣
(ak)mk+m

. (12)

By (12) and Line 6 of Algorithm 4∣∣L0
j+1

∣∣ ≤ ∣∣L0
j

∣∣− ∣∣Lm+1
j

∣∣ ≤ ∣∣L0
j

∣∣− ∣∣L0
j

∣∣
(ak)mk+m

=
∣∣L0

j

∣∣ (1− 1

(ak)mk+m

)
=
∣∣L0

1

∣∣ (1− 1

(ak)mk+m

)j

= n

(
1− 1

(ak)mk+m

)j

,

(13)
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where the second inequality is by (12). Combining the fact that
∣∣L0

j

∣∣ ≥ 1 with (13), we conclude that

J ≤ (ak)mk+m log2 n. (14)

Therefore, the total sensitivity t is bounded by

t ≤
∑
L∈L

s(L) =

J∑
j=1

 ∑
L∈Lm+1

j

b∣∣Lm+1
j

∣∣
+ c =

∑
j∈[J]

(∣∣Lm+1
j

∣∣ · b∣∣Lm+1
j

∣∣
)

+ c

=
∑
j∈[J]

b+ c = Jb+ c ≤ (ak)mk+m+1 log2 n,

where c ≥ 1 is a constant. By combining with (7), we get that the pair (C, v) is an ε-coresets for
(L, k) if

η ≥ (ak)mk+m+1 log2 n

ε2

(
log2

(
(ak)mk+m+1 log n

)
d′ + log2

(
1

δ

))
.

where d′ ∈ O(md2k2) (by Lemma B.6) is the VC-dimension of the sets clustering query space of
the lines set clustering problem.

Running time: Consider a call CS-DENSE(P, k) to Algorithm 1 where P is an (n,m)-set. For
every i ∈ [k], j ∈ [m] the i, jth iteration of the “for” loops takes O

(
dn

(
1
4k

)jm+i−1
+ dk4

)
time.

Summing over all the mk iterations yields a total running time of O
(
dn+ dmk5

)
.

Consider a call LS-DENSE(L, k) to Algorithm 3, where L is an (n,m)-set of lines in Rd. For every
i ∈ [m], the ith iteration of the “for” loop at Line 3 takes O

(
dn
(

1
4k

)j−1
+ dk4

)
time. Summing

over all the m iterations yields a total running time of O(dn + dk4). Combined with the call to
CS-DENSE inside the call to GROUPED-SENSITIVITY at Line 9 the overall time is O(dn+ dmk5).

There are J calls to LS-DENSE(L0, k) at Line 3 of Algorithm 4, which dominates the running time
of this algorithm (in each of the J iterations of the “while” loop). The set L0 at the jth call is of size∣∣L0

j

∣∣ ∈ O
(
n
(
1− 1

4k

)i−1
)

. Therefore, the jth call takes O
(
d
∣∣L0

j

∣∣+ dmk5
)

time. Summing this

running time over every j ∈ [J ], where J ≤ (ak)mk+m log n by (14), yields a total running time of

J · dmk5 + dn

J∑
i=1

(
1− 1

4k

)i−1

∈ dn log2(n)(ak)
o(mk),

as claimed in (ii).

Theorem B.10 (Restatement of Thorem 4.2). Let P be an (n,m)-ordered-set in X , let k ≥ 1 be an
integer, ε, δ ∈ (0, 1), and let

η ≥
(
m1.5d log n

ε

)2

(2k)cmk + log

(
1

δ

)
be an integer, where c is sufficiently large constant that can be determined from the proof. There is
an algorithm that given P, k, ε and δ return with probability at least 1 − δ an ε-coreset of P for
colored-sets k-mean of size η in n log(n)(2k)O(mk) time.

Such algorithm is achieved by little variation over Algorithm 4 and using CS-DENSE instead LS-
DENSE.

Proof. Similar and can be deduced from the proof of Theorem B.9.

C Algorithms Correctness

C.1 Correctness of Algorithm 1

The goal of Algorithm 1 is to find a small family (set) P ′ of Θ(n) sets that are sufficiently mutually
close that they can be replaced with multiple copies of the same set with little to no effect on the cost.
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In that case, all of their sensitivities would be ∼ 1
|P′| . The proof of this lemma is by case analesis of

two cases. The first case assumes that one of the centers in the query is close to P ′. In this case, the
sets in P ′ are not affecting the cost at all. In the other case, we assume that all of the centers are far
from P ′ and then we try to show that they are much closer to each other than to the centers relative to
the cost of the centers.

Proof of Lemma 3.3. Let Cw ⊆ X × [0,∞) × [m] be a set of |Cw| = k weighted colored centers.
Consider the variables τ,Pm

1 , . . . ,Pm
k and b11, . . . , b

m
k that are computed during the execution of

CS-DENSE(P, k). For every i ∈ [m] and r ∈ [k], identify bir = (xi
r, j). Without the loss of

generality, assume that j = 1. Therefore, for every P ∈ P , i ∈ [m] and r ∈ [k], we have

D̃(proj(P, (b1r, . . . , b
i−1
r )), bir) = D̃

(
P,
(
xi
r, i
))

.

For the rest of the proof, let b̄ir = (xi
r, i).

Let P0
0 = . . . ,Pm

0 := P . We say that an ordered-set P ∈ P is served by a colored weighted center
(c, w, t) ∈ Cw if D̃(P,Cw) = D̃(P, (c, w, t)). For every i ∈ [k + 1], let (ci, wi, ti) ∈ C denote a
center that serves at least |Pm

i−1|/k sets from Pm
i−1, and let Pi denote the sets of P that are served by

(ci, wi, ti). For every r ∈ [k] and ℓ ∈ [m], let

Qr,ℓ ∈ argmin

Q⊆Pℓ−1
r ,|Q|=

(1−τ)·|Pℓ−1
r |

k

∑
Q∈Q

D̃(Q, b̄ℓr), (15)

and denote D̃∗
r,ℓ =

∑
Q∈Qr,ℓ

D̃(Q, b̄ℓr).

Since for every i ∈ [k] we have |Pi ∩ Pm
i−1| ≥ |Pm

i−1|/k, by the definition of the robust median∑
Q∈Pi∩Pm

i−1

D̃(Q, ci) ≥ D̃∗
(
Pm
i−1,

1

k

)
. (16)

Let P = (p1, . . . , pm) ∈ P , such that D̃(P,C) > 0. The rest of the proof uses the following case
analysis, (i) there is an index i ∈ [k] such that

D̃(P, ci) ≤
16ϕραD̃∗

i,ti

|Qk,m|
, (17)

where ϕ and ρ are constants defined in Lemma 2.2 , and (ii) Otherwise.

Proof for Case (i): By (17),

D̃(P,C)∑
Q∈P D̃(Q,C)

≤ wiD̃(pti , ci)∑
Q∈Pi

D̃(Q,C)
(18)

=
D̃(pti , ci)∑

(q1,...,qm)∈Pi
D̃(qti , ci)

(19)

≤
16ϕραD̃∗

i,ti
/|Qk,m|∑

(q1,...,qm)∈Pi∩Pm
i−1

D̃(qti , ci)
(20)

≤
16ϕραD̃∗

i,ti
/|Qk,m|

D̃∗
i,ti

/α
(21)

≤ 16ϕρα2

|Pm
k |

, (22)

where (18) holds since Pi is a subset of P , (20) holds by the assumption of Case (i), (21) holds by
combining (16) and Definition 2.5 (i), and (22) holds since |Qk,m| ⊆ |Pm

k | .

Proof for Case (ii): By the pigeonhole principle, ci = cj for some i, j ∈ [k + 1], such that i < j.
Put Q = (q1, . . . , qm) ∈ Pj ∩ Pm

j−1 and note that P ∈ Pm
k ⊆ Pm

j−1. By Markov’s inequality, for
every ℓ ∈ [m] we have

D̃(P, b̄ℓj−1), D̃(Q, b̄ℓj−1) ≤
2D̃∗

j−1,ℓ

|Qj−1,ℓ|
. (23)
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By (23) and Lemma 2.2 (i), for every ℓ ∈ [m]

D̃(P,Q) ≤ ρ
(
D̃(pℓ, b̄

ℓ
j−1) + D̃(qℓ, b̄

ℓ
j−1)

)
≤

4ρD̃∗
j−1,ℓ

|Qj−1,ℓ|
. (24)

Combining the last inequality with Definition 2.1(ii), yields

D̃(P, (cj , tj))− D̃(Q, (cj , tj)) = D̃(pti , cj)− D̃(qti , cj)

≤ ϕD̃(pti , qti) +
D̃(pti , cj)

4
(25)

≤
4ϕρD̃∗

j−1,tj

|Qj−1,tj |
+

D̃(pti , cj)

4
(26)

≤
4ϕρD̃∗

j−1,tj

|Qk,m|
+

D̃(pti , cj)

4
, (27)

where (25) is followed from Lemma 2.2(ii) and (i) respectively. Finally (26) is obtained after
plugging (24) in (25), and (27) is since |Qk,m| ≤ |Qi,j | for every i ∈ [k] and j ∈ [m].

By the assumption of Case(ii), for every r ∈ [m],

D̃(P, cj) = D̃(P, ci) >
16ϕραD̃∗

j,r

|Qk,m|
.

Hence
D̃(P, cj)

4
>

4ϕραD̃∗
j,r

|Qk,m|
.

Combining with (27) yields

D̃(P, cj)− D̃(Q, cj) ≤
D̃(P, cj)

4
+

D̃(P, cj)

4
=

D̃(P, cj)

2
, (28)

that is D̃(Q, cj) ≥ D̃(P, cj)/2. Hence,

D̃(P,C)∑
P ′∈P D̃(P ′, C)

≤ D̃(P, cj)∑
Q∈Pj∩Pm

j−1
D̃(Q, cj)

≤ 2D̃(P, cj)

D̃(P, cj)|Pj ∩ Pm
j−1|

≤ 2k

|Pm
j−1|

(29)

≤ 2k

|Pm
k |

,

where (29) holds since Pj serves at least
∣∣Pm

j−1

∣∣ /k sets of Pm
j−1.

Corollary C.1. Let P , k and (Pm
k ,Bm

k ) be as in Lemma 3.3, and let lip, r be as defined in Defini-
tion 2.1. Then, for every set P ∈ Pm

k and a set Cw ⊆ X × [0,∞)× [m] of |C| = k weighted colored
centers such that D̃(P,C) > 0, we have

lip(D̃(P,C))∑
P ′∈P lip(D̃(P ′, C))

≤ 2rk

|Pm
k |

. (30)

Proof. In what follows, we use the variables and notations from proof of Lemma 3.3. The proof is is
similar to the proof of Lemma 3.3, and is via the following case analysis. (i) there is an index i ∈ [k]
such that:

D̃(P, ci) ≤
16ϕραD̃∗

i,ti

|Qk,m|
, (31)
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and (ii) Otherwise.

Case (i): By (31),
lip(D̃(P,C))∑

Q∈P lip(D̃(Q,C))
≤ 16ϕρα2

|Pm
k |

, (32)

similar to (22).

Variation over Case (ii): By (28) we have,
2D̃(Q, cj) ≥ D̃(P, cj),

and by Definition 2.1,
2rlip

(
D̃(Q, cj)

)
≥ lip

(
D̃(P, cj)

)
. (33)

Hence,

lip
(
D̃(P,C)

)
∑

P ′∈P lip
(
D̃(P ′, C)

) ≤
lip
(
D̃(P,C)

)
∑

Q∈Pj∩Pm
j−1

lip
(
D̃(Q,C)

)
≤

wr
i lip

(
D̃(P,C)

)
wr

i

∑
Q∈Pj∩Pm

j−1
lip
(
D̃(Q,C)

)
≤

2rlip
(
D̃(P, cj)

)
lip
(
D̃(P, cj)

)
|Pj ∩ Pm

j−1|

≤ 2rk

|Pm
j−1|

(34)

≤ 2rk

|Pm
k |

,

where (34) holds since Pj serves at least
∣∣Pm

j−1

∣∣ /k sets of Pm
j−1.

The following claim has nothing to do with the correctness of Algorithm 1. However, it will be used
later in the proof of Lemma 3.4.
Claim C.2. Let P be an (n,m)-ordered-set in (X , D), and k ≥ 1 be an integer. For every integer
i ∈ [m], and ordered set P ∈ P , we have

sup
Cw⊆X×R×[m]

|Cw|=k, D̃(P,Cw)>0

D̃(P,Cw)∑
Q∈P D̃(Q,Cw)

≥ sup
Cw⊆X×R×[i]

|Cw|=k, D̃(P,Cw)>0

D̃((p1, . . . , pi), Cw)∑
(q1,...,qm)∈P D̃((q1, . . . , qi), Cw)

,

(35)
i.e., the sensitivity of any prefix with respect to all the other sets prefixes is smaller than the sensitivity
of the original set with respect to the original family.

Proof. Let i ∈ [m] be an integer. Let C ⊆ X × (0,∞)× [i] be a set that maximizes the right hand
side of (35), i.e.,

sup
Cw⊆X×R×[i]

|Cw|=k, D̃(P,Cw)>0

D̃((p1, . . . , pi), Cw)∑
(q1,...,qm)∈P D̃((q1, . . . , qi), Cw)

=
D̃((p1, . . . , pi), C)∑

(q1,...,qm)∈P D̃((q1, . . . , qi), C)
.

Then

sup
Cw⊆X×R×[m]

|Cw|=k, D̃(P,Cw)>0

D̃(P,Cw)∑
Q∈P D̃(Q,Cw)

≥ D̃(P,C)∑
Q∈P D̃(Q,C)

= (36)

sup
Cw⊆X×R×[i]

|Cw|=k, D̃(P,Cw)>0

D̃((p1, . . . , pi), Cw)∑
(q1,...,qm)∈P D̃((q1, . . . , qi), Cw)

(37)

where (36) holds since X × (0,∞)× [i] ⊆ X × (0,∞)× [m], and (37) is by the definition of C.
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C.2 Correctness of Algorithm 2

Claim C.3. Let p be a point on a line ℓ in Rd, and let S = {c ∈ Rd| ∥p− c∥ = 1} denote the unit
sphere that is centered at p; see Fig. 5. Then, for every point q ∈ S, we have

dist(ℓ, q) ≤
√
2 · dist(S ∩ ℓ, q).

p

q

∈ S ∩ ℓ

closest(ℓ, q)
θ

Figure 5

Proof of Claim C.3. Let a, b be a pair of unit vectores in Rd such that aT b ≥ 0.

∥a− b∥ =

√
∥a− b∥2 =

√
2 ∥1− aT b∥ (38)

≤
√

2 ∥1− (aT b)2∥ =

√
2dist2(a, sp(b)) =

√
2dist(a, sp(b)) (39)

Then if p were on the origin by substitute a = q and b = S ∩ ℓ we get

dist(ℓ, q) ≤
√
2dist(S ∩ ℓ, q).

Lemma C.4. Let L be an (n,m)-set of lines, and B = (b1, . . . , bm) be a set of m points, both in Rd,
such that for every set L = (ℓ1, . . . , ℓm) ∈ L and every i ∈ [m] , the line ℓi intersects bi. Let k ≥ 1
be an integer, and let s : L → (0, 1] be the output of call to GROUPED-SENSITIVITY(L, B, k);see
Algorithm 2. Then, for every L ∈ L, we have

s(L) ≥ SL,k(L).

Proof of Lemma C.4. Define P (L) for every L ∈ L, as in Algorithm 2. For every line ℓ ⊆ Rd,
p′ ∈ ℓ, and p ∈ Rd \ {p′}, by Thales Theorem, we have

dist(ℓ, p) = dist(p, p′) · dist
(
ℓ, p′ +

p− p′

dist(p, p′)

)
. (40)

Let L = (ℓ1, . . . , ℓm) ∈ L, and C ⊆ Rd be a set of |C| = k centers such that D̃(L,C) > 0, and
recall that, by (4), for every set P in X let closest(C,P ) denote the only point in closest(C,P, 1

|C| )

consists of the closest point in C to a set in P . Hence,

D̃(L,C) = min
i∈[m]

D̃(ℓi, C)

= min
i∈[m]

lip (dist(ℓi, closest(C, ℓi)))

= min
i∈[m]

lip

(
dist(closest(C, ℓi), bi) · dist

(
ℓi, bi +

closest(C, ℓi)− bi
dist (closest(C, ℓi), bi)

))
, (41)

where (41) holds by (40).
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For every i ∈ [m], and every point q ∈ Rd \ {bi}, the point bi + q−bi
∥q−bi∥ is in Si, i.e., on the unit

sphere that is centered at bi. By Claim C.3,

D̃(L,C)∑
L′∈L D̃(L′, C)

≤

√
2r ·mini∈[m] lip

(
dist(closest(C, ℓi), bi) · dist

(
ℓi ∩ Si, bi + closest(C,ℓi)−bi

∥closest(C,ℓi)−bi∥

))
∑

(ℓ′1,...,ℓ
′
m)∈L

minj∈[m] lip

(
dist(closest(C, ℓ′j), bj) · dist

(
ℓ′j ∩ Sj , bj +

closest(C,ℓ′j)−bj

∥closest(C,ℓ′j)−bj∥

)) .

(42)

Let

C ′ =

{(
bi +

c− bi
∥c− bi∥

, ∥c− b∥ , i
)∣∣∣∣ i ∈ [m], c ∈ C

}
. (43)

Hence, we can reformulate the right hand side of (42) to

D̃(L,C)∑
L′∈L D̃(L′, C)

≤
√
2r ·min(c,w,t)∈C′ lip (w · dist (ℓt ∩ St, c))∑

(ℓ′1,...,ℓ
′
m)∈L min(c′,w′,t′)∈C′ lip (w′ · dist (ℓt′ ∩ St′ , c′))

. (44)

Since C ′ ⊆ Rd × (0,∞)× [m], and the cardinality of the set C ′ is at most |C| · |B| = mk, we have

SL,k(L) = sup
C⊆Rd,|C|=k

D̃(L,C)>0

D̃(L,C)∑
L′∈L D̃(L′, C)

(45)

≤ sup
Cw⊆Rd×(0,∞)×[m]

|Cw|=mk

√
2r ·min(c,w,t)∈Cw

lip

(
w · dist (ℓt ∩ St, c)

)
∑

{ℓ′1,...,ℓ′m}∈L min(c′,w′,t′)∈Cw
lip

(
w′ · dist (ℓt′ ∩ St′ , c′)

) (46)

≥ sup
Cw⊆Rd×(0,∞)×[2m]

|Cw|=2mk

√
2rlip

(
D̃ (P (L), Cw)

)
∑

L′∈L lip
(
D̃ (P (L′), Cw)

) ≤
√
2r · s′(P (L)), (47)

where (45) is by Definition 3.1, (46) is by (44), the left hand side of (47) is by the definition of D̃,
and the right hand side of (47) is by Corollary C.1. Also the two factor in the size of Cw is since each
line represented by to points with different colors (we may avoid this by modifying the nations in
Section 3.1 but we leave the proof for future version). Finally,

s(L) =
√
2r · s′(P (L)) ≥ SL,k(L),

where the left hand side is by Algorithm 2, and the right hand side is by (47).
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C.3 Correctness of Algorithm 3

Lemma C.5 (restatement of Lemma 3.4). Let L be an (n,m)-set of lines in Rd, and k ≥ 1 be an
integer. Let

(
Lm+1,Bm

)
be the output of a call to LS-DENSE(L, k); see Algorithm 3. Then, for

every L ∈ Lm+1, we have SL,k(L) ∈ O(k) ·
(

1
|Lm+1|

)
.

The proof of this lemma is inspired by the proof of Lemma 4.1 in [26]. The proof uses the following
pair of lemmas. Lemma B.1 [26] whose assumptions hold also for sets of lines, and a generalization
of Lemma B.2 [26] for parallel lines.
Lemma C.6 (Lemma B.1 in [26]). Let k ≥ 1 be an integer. Let A,B be a pair of sets of lines in Rd,
and C ⊆ Rd be a set of |C| = k points. If D̃(A∪B,C) ̸= D̃(B,C) then D̃(A∪B,C) = D̃(A,C).

Lemma C.7 (Generalization of Lemma B.2 in [26]). Let A be a finite set of lines in Rd, let ℓ ∈ A
and ℓ′ be a line in Rd that is parallel to ℓ. Let B = (A \ {ℓ}) ∪ {ℓ′}. Then, for every C ⊆ Rd, we
have

D̃(A,C) ≤ ρ
(
D̃(B,C) + D̃(ℓ, ℓ′)

)
.

Proof. By definition, we have

D̃(A,C) = min
{
D̃(ℓ, C), D̃(A \ {ℓ} , C)

}
≤ min

{
ρ
(
D̃(ℓ, ℓ′) + D̃(ℓ′, C)

)
, D̃(A \ {ℓ} , C)

}
(48)

≤ min
{
ρ
(
D̃(ℓ, ℓ′) + D̃(ℓ′, C)

)
, ρ
(
D̃(A \ {ℓ} , C) + D̃(ℓ, ℓ′)

)}
≤ ρmin

{
D̃(ℓ′, C), D̃(A \ {ℓ} , C)

}
+ ρD̃(ℓ, ℓ′)

= ρ(D̃(B,C) + D̃(ℓ, ℓ′)), (49)

where (48) holds since the distance from a line to a parallel line is the same from every point on the
line, hence the weak triangle holds by Definition 2.1, and (49) is by the definition of B.

Proof of Lemma 3.4. In what follows, we use the variables and notations from Algorithm 3. Put
L ∈ Lm+1, i ∈ [m], and consider the ith iteration of the “for” loop at Line 3 of Algorithm 3. Let
C ⊆ Rd be a set of |C| = k centers such that D̃(L,C) > 0 and D̃(T (L,Bm) , C) > 0. Let

L̂i−1 :=
{
Q ∈ Li−1

∣∣D̃(T(Q,Bi−1), C) = D̃(proj(Q,Bi−1), C)
}

be the union of sets Q ∈ Li−1 whose closest projected line on Bi−1 to the query C is among the
lines that are translated to the points of Bi−1. Firstly, we prove that

D̃(T(L,Bi−1), C)∑
Q∈Li−1

D̃(T(Q,Bi−1), C)
≤ 5ρ2

D̃(T(L,Bi), C)∑
Q∈Li

D̃(T(Q,Bi), C)
+

4ρ

|Li|
(50)

via the following case analysis: (i)
∣∣∣L̂i−1

∣∣∣ ≥ ∣∣Li−1
∣∣

2
, i.e., more than half of the sets satisfy that their

closest line to C is amongst their translated lines onto Bi−1, and (ii) Otherwise, i.e.,
∣∣∣L̂i−1

∣∣∣ < ∣∣Li−1
∣∣

2
.

Proof for Case (i):
∣∣∣L̂i−1

∣∣∣ ≥ ∣∣Li−1
∣∣

2
. By Line 5 in Algorithm 3, we have

Li ⊆ Li−1 ⊆ · · · ⊆ L0 = L. (51)

Therefore, ∑
Q∈Li−1

D̃(T(Q,Bi−1), C) ≥
∑

Q∈L̂i−1

D̃(T(Q,Bi−1), C) (52)

=
∑

Q∈L̂i−1

D̃(proj(Q,Bi−1), C), (53)
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where (52) holds since L̂i−1 ⊆ Li−1, and (53) is by the definition of L̂i−1. This proves (50) for Case
(i) as

D̃(T(L,Bi−1), C)∑
Q∈Li−1

D̃(T(Q,Bi−1), C)
≤ D̃(proj(L,Bi−1), C)∑

Q∈Li−1

D̃(T(Q,Bi−1), C)

≤ D̃(proj(L,Bi−1), C)∑
Q∈L̂i−1 D̃(proj(Q,Bi−1), C)

(54)

≤ D̃(proj(L,Bi−1), C)∑
Q∈L̂m D̃(proj(Q,Bm), C)

, (55)

where the first inequality holds since T(L,Bi−1) ⊇ proj(L,Bi−1) by Definition 2.7, the second
inequality is by (53), and the third is a simple corollary from combining Claim C.2, and Lemma C.4.

Proof for Case (ii):
∣∣∣L̂i−1

∣∣∣ < |Li−1|
2 . Let γ = 1/(2k). Let bi, Li, and L̄i−1 be as defined in Lines 4,

and 5, 7, respectively. Identify Bi−1 =
{
b1, . . . , bi−1

}
if i ≥ 2, and Bi−1 = ∅ if i = 1. For every

Q ∈ Li−1, substituting A = proj(Q,Bi−1) and B = proj(Q,Bi−1) in Lemma C.6 yields{
Q ∈ Li−1|D̃

(
T(Q,Bi−1), C

)
̸= D̃(proj(Q,Bi−1), C)

}
⊆
{
Q ∈ Li−1|D̃

(
T(Q,Bi−1), C

)
= D̃(proj(Q,Bi−1), C)

}
.

(56)

Hence, ∣∣{Q ∈ Li−1 D̃
(
T(Q,Bi−1), C

)
= D̃

(
proj(Q,Bi−1), C

)}∣∣
≥
∣∣{Q ∈ Li−1 D̃

(
T(Q,Bi−1), C

)
̸= D̃(proj(Q,Bi−1), C)

}∣∣ (57)

=
∣∣∣Li−1 \ L̂i−1

∣∣∣ ≥ ∣∣Li−1
∣∣

2
, (58)

where(57) is by (56), the equality in (58) is by the definitions of Li−1 and L̂i−1, and the last inequality
is by the assumption of Case (ii).

Recall that by Line 7 of Algorithm 3,

L̄i−1 =
{
proj(Q,Bi−1)

∣∣Q ∈ Li−1
}
,

and define

Z =

{
Q ∈ Li−1

∣∣proj(Q,Bi−1) ∈ closest

(
L̄i−1, C,

1

2

)}
.

Since Z contains the |Z| ≤
⌈
|Li−1|

2

⌉
sets Q ∈ Li−1 with the smallest distance D̃(proj(Q,Bi−1), C),

for any set Z ′ ⊆ Li−1 such that |Z ′| ≥ |Li−1|
2 , we have∑

Q∈Z

D̃(proj(Q,Bi−1), C) ≤
∑
Q∈Z′

D̃(proj(Q,Bi−1), C). (59)

By the assumption of Case (ii), ∣∣∣Li−1 \ L̂i−1
∣∣∣ ≥ ∣∣Li−1

∣∣
2

, (60)

and by the definition of Z, we have{
proj(Q,Bi−1)

∣∣Q ∈ Z
}
= closest

(
L̄i−1, C,

1

2

)
. (61)

Therefore, ∑
Q∈closest(L̄i−1,C,1/2)

D̃(Q,C) =
∑
Q∈Z

D̃(proj(Q,Bi−1), C)

≤
∑

Q∈Li−1\L̂i−1

D̃(proj(Q,Bi−1), C),
(62)
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where the equality is by (61), and the inequality is by substituting Z ′ = Li−1 \ L̂i−1 in (59). By the
definitions of Li−1 and L̂i−1, for every Q ∈ Li−1 \ L̂i−1, we have

D̃(proj(Q,Bi−1), C) = D̃(T(Q,Bi−1), C). (63)

Let
OPTi = min

C′⊆Rd,|C′|=k
D̃
(
closest(L̄i−1, C ′, 1/2), C ′) . (64)

Hence,

OPTi ≤
∑

Q̄∈closest(L̄i−1,C,1/2)

D̃(Q̄, C) (65)

≤
∑

Q∈Li−1\L̂i−1

D̃(proj(Q,Bi−1), C) (66)

=
∑

Q∈Li−1\L̂i−1

D̃(T(Q,Bi−1), C) (67)

≤
∑

Q∈Li−1

D̃(T(Q,Bi−1), C), (68)

where (65) holds by the definition of OPTi, (66) is by (62), (67) is by (63), and (68) holds since
Li−1 \ L̂i−1 ⊆ Li−1.

Recall that Bm = (b1, . . . , bm) is an ordered set. Denote the closest line to b1 in L by ℓ1, i.e.,
ℓ1 ∈ argminℓ∈L D̃(ℓ, b1). For every j ∈ [m−1], recursively define ℓj+1 to be the line that is closest
to bi over every line in L \ {ℓ1, . . . , ℓj}, i.e.,

ℓj+1 ∈ argmin
ℓ∈L\{ℓ1,...,ℓi}

D̃(ℓ, bj+1). (69)

Hence, for every j ∈ [m], we have

D̃
(
proj(L,Bj−1), bj

)
= D̃(ℓj , bj). (70)

Since L ∈ Lm+1 ⊆ Li and γ = 1
2k , by Line 5 of Algorithm 3 we have

proj(L,Bi−1) ∈ closest

(
L̄i−1,

{
bi
}
,
(1− τ)γ

2

)
. (71)

By the Pigeonhole Principle, the largest cluster in every set C ′ of k centers contains at least |L̄i−1|
k ≤

|L̄i−1|
2k = γ|L̄i−1| sets. Since, by Line 4 of Algorithm 3, bi is a (γ, τ, 4)-median, we have∑
Q∈closest(L̄i−1,{bi},(1−τ)γ)

D̃(Q, bi) ≤ 4 min
b∈Rd

∑
Q∈closest(L̄i−1,{b},γ)

D̃ (Q, b) ≤ 4 ·OPTi. (72)

Therefore,

D̃(ℓi, bi) = D̃
(
proj(L,Bi−1), bi

)
(73)

≤ 4 ·

∑
Q∈closest(L̄i−1,{bi},(1−τ)γ) D̃(Q, bi)

(1− τ)γ
∣∣L̄i−1

∣∣ (74)

≤ 4 ·
∑

Q∈closest(L̄i−1,{bi},(1−τ)γ) D̃(Q, bi)

|Li|
(75)

≤ 8OPTi

|Li|
, (76)

where (73) is by (70), (74) is by combining Markov’s inequality with (71), (75) follows since
|Li| =

⌈
(1−τ)γ

2 |Li−1|
⌉
=
⌈
(1−τ)γ

2 |L̄i−1|
⌉
≤ (1− τ)γ|Li−1|, and (76) is by (72).
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Now, since
T(L,Bi) =

(
T(L,Bi−1) \ {ℓi}

)
∪ {T(ℓi, bi)} ,

i.e., the sets T(L,Bi−1) and T(L,Bi) differ only one line, and by Definition 2.7 the line T(ℓi, bi)
is parallel to ℓi. Thus, by substituting A = T(L,Bi−1), B = T(L,Bi), and ℓ = T(ℓi, bi) in
Lemma C.7, we obtain

D̃(T(L,Bi−1), C) ≤ ρD̃(T(P,Bi), C) + ρD̃(ℓi,T(ℓi, bi)). (77)

Dividing both sides of (77) by
∑

Q∈Li−1

D̃(T(Q,Bi−1), C) yields

D̃(T(L,Bi−1), C)∑
Q∈Li−1

D̃(T(Q,Bi−1), C)
≤ ρD̃(T(L,Bi), C)∑

Q∈Li−1

D̃(T(Q,Bi−1), C)
+

ρD̃(ℓi,T(ℓi, bi))∑
Q∈Li−1

D̃(T(Q,Bi−1), C)
. (78)

The rightmost term in (78) can then be bounded by

ρD̃ (ℓi,T(ℓi, bi))∑
Q∈Li−1

D̃ (T(Q,Bi−1), C)
≤ ρD̃(ℓi,T(ℓi, bi))

OPTi
(79)

=
ρD̃ (ℓi, bi)

OPTi
(80)

≤ 8ρOPTi

|Li|OPTi
=

8ρ

|Li|
, (81)

where (79) is by (68), and the inequality in (81) holds by (76).

We now bound the middle term of (78). Similarly to (69), for every Q ∈ Li identify Q =
{q1, . . . , qm}. We have,∑

Q∈Li

D̃(T(Q,Bi), C) ≤ ρ
∑
Q∈Li

D̃(T(Q,Bi−1), C) + ρ
∑
Q∈Li

D̃(qi,T(qi, bi)) (82)

≤ ρ
∑
Q∈Li

D̃(T(Q,Bi−1), C) + ρ
∣∣Li
∣∣ 4OPTi

|Li|
(83)

≤ ρ
∑

Q∈Li−1

D̃(T(Q,Bi−1), C) + 4ρOPTi (84)

≤ (5ρ)
∑

Q∈Li−1

D̃(T(Q,Bi−1), C), (85)

where (82) holds by summing (77) over every Q ∈ Li, (83) holds since bi is robst midian for L̄i−1,
(84) holds since Li ⊆ Li−1 by (51), and (85) is by (68). By (85), the middle term of (78) is bounded
by

ρD̃(T(L,Bi), C)∑
Q∈Li−1

D̃(T(Q,Bi−1), C)
≤ 5ρ2D̃(T(L,Bi), C)∑

Q∈Li

D̃(T(Q,Bi), C)
. (86)

Combining (78), (81) and (86) yields (50) as

D̃(T(L,Bi−1), C)∑
Q∈Li−1

D̃(T(Q,Bi−1), C)
≤ 5ρ2D̃(T(L,Bi), C)∑

Q∈Li

D̃(T(Q,Bi), C)
+

8ρ

|Li|
.

Wrapping all together. We can now apply (50) recursively over every i ∈ [m] to obtain

D̃(L,C)∑
Q∈L

D̃(Q,C)
=

D̃(T(L,B0), C)∑
Q∈L0

D̃(T(Q,B0), C)

≤ (5ρ2)m
D̃(T(L,Bm), C)∑

Q∈Lm

D̃(T(Q,Bm), C)
+ 4ρ

m∑
i=1

(5ρ2)i−1

|Li|
. (87)
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Furthermore, for every L′ ∈ Lm+1 by Lines 9, and 10 of Algorithm 3 and by combining Lemma 3.3
and Lemma C.4 we get

D̃(T(L′,Bm), C)∑
Q∈Lm

D̃(T(Q,Bm), C)
≤ 2

√
2mk

|Lm+1|
. (88)

Lemma 3.4 now holds as

SL,k =
D̃(L,C)∑

Q∈L
D̃(Q,C)

≤ 2
√
2mk(5ρ2)m

|Lm+1|
+ 4ρ

m∑
i=1

(5ρ2)i−1

|Li|
(89)

≤ 2
√
2mk(5ρ2)m

|Lm+1|
+ 4ρ

m∑
i=1

(5ρ2)i−1

|Lm+1|
(90)

≤ 2
√
2mk(5ρ2)m

|Lm+1|
+

4ρ

|Lm+1|
· (5ρ

2)m−1 − 1

(5ρ2)− 1
(91)

≤ 2
√
2mk(5ρ2)m

|Lm+1|
+

4ρ

|Lm+1|
· (5ρ2)m (92)

≤ 15mkρ(5ρ2)m

|Lm+1|
, (93)

where (89) holds by plugging (88) in (87), (90) holds since
∣∣Lm+1

∣∣ ≤ ∣∣Li
∣∣ for every i ∈ [m], the

last derivation holds by summing the geometric sequence, and inequalities (92) and (93) hold since
ρ ≥ 1.

Overview of Algorithm 6 Suggested implementation for robust median; See Definition 2.5.

Algorithm 6: MEDIAN(P, k, δ)

1 Input: An (n,m)-set P , a positive integer k ≤ 1, and probability of failure δ ∈ (0, 1).
2 Output: A point q ∈ X that satisfies Lemma C.8
3 b := a universal constant that can be determined from the proof of Lemma C.8
4 Pick a random sample S of |S| = b · k2log( 1δ ) sets from P
5 q := a point that minimizes

∑
p∈closest(S,{q},(1−τ)γ) D̃(p, q) over q ∈ Q ∈ S

6 Return q

Lemma C.8 (Lemma 5.1 in [26]). Let P be an (n,m)-set in X , k ≥ 1, and δ ∈ (0, 1). Let q ∈ X
be the output of MEDIAN(P, k, δ); see Algorithm 6. Then, with probability at least 1 − δ, q is a(

1

2k
,
1

6
, 2

)
-median for P; see Definition 2.5. Moreover , q can be computed in O(tb2k4 log( 1δ ))

time, where t is the time it takes to compute D̃(P,Q) for every pair P,Q ∈ P .

30


	Introduction
	Motivation
	Generalizations and computation models
	Related work
	Main contributions
	Novel technique: from line-sets to fair clustering

	Preliminaries
	Sensitivity 
	Colored sets
	Line-sets

	From Sensitivity to Coreset
	Experimental Results
	Conclusion and Future Work
	Appendix
	Sensitivity Coresets
	Algorithms Correctness
	Correctness of Algorithm 1
	Correctness of Algorithm 2
	Correctness of Algorithm 3

	28a9af3a-0133-4e07-8578-5913e91cd0fe.pdf
	Introduction
	Motivation
	Generalizations and computation models
	Related work
	Main contributions
	Novel technique: from line-sets to fair clustering

	Preliminaries
	Sensitivity 
	Colored sets
	Line-sets

	From Sensitivity to Coreset
	Experimental Results
	Conclusion and Future Work
	Appendix
	Sensitivity Coresets
	Algorithms Correctness
	Correctness of Algorithm 1
	Correctness of Algorithm 2
	Correctness of Algorithm 3



