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Abstract1

This work establishes a fully-spectral framework to capture informative long-range2

temporal interactions in a dynamic system. We connect the spectral transform3

to the low-rank self-attention mechanisms and investigate its energy-balancing4

effect and computational efficiency. Based on the observations, we leverage the5

adaptive power method SVD and global graph framelet convolution to encode6

time-dependent features and graph structure for continuous-time dynamic graph7

representation learning. The former serves as an efficient high-order linear self-8

attention with determined propagation rules, and the latter establishes scalable and9

transferable geometric characterization for property prediction. Empirically, the10

proposed model learns well-conditioned hidden representations on a variety of11

online learning tasks, and it achieves top performance with a reduced number of12

learnable parameters and faster propagation speed.13

1 Introduction14

Dynamic graphs appear in many scenarios, such as pandemic spread [1, 2], social media [3, 4],15

physics simulations [5, 6], and computational biology [7, 8]. Learning dynamic graph properties,16

however, is a challenging task when both node attributes and graph structures evolve over time.17

Many existing dynamic graph representation learning methods start from embedding the sequence of18

non-Euclidean graph topology to feed into recurrent networks [9–12]. Such a straightforward design19

assumes a discrete nature of input graphs. Graph snapshots are sliced at a sequence of fixed time20

steps, leaving the evolution of events on nodes and/or edges unobserved. Later, the memory module21

[4, 13] establishes a natural generalization of the learning procedure to continuous-time dynamic22

graphs (CTDGs), which encodes previous states for an event to its latest states. Consequently, a graph23

slice describes the past dynamics with implicitly encoded long-short term memory on node attributes.24

Nevertheless, the memory module, e.g., recurrent neural networks [14] or gated recurrent unit [15],25

has trouble tracking the full picture of graph evolving, as it reserves long-term interactions in a26

most implicit way. Accessing the encoded message inside the black box becomes extremely hard.27

Alternatively, TRANSFORMER [16] enhances the long-range memory for sequential data, and it has28

received tremendous success in language understanding [17, 18] and image processing [19, 20]. In29

particular, the self-attention mechanism learns pair-wise event similarity scores in the entire range30

of interest. It retrieves a contextual matrix of full-landscape relationships to preserve the long-term31

dependency of tokens (or events). However, at the cost of comprehensiveness, the rapid growth32

of the sequence length can easily escalate the complexity of computation and memory. While the33

attention operation can be efficiently approximated by some low-rank representation [21–24], it loses34

the expressivity at the same time.35

This work provides a fully spectral-based solution for learning the representations of long-range36

CTDGs. First, an efficient spectral transform enhances the memory encoding of continuous events by37

extracting pairwise nonlinear relationships in time and feature dimensions. A global spectral graph38

convolution with fast framelet transforms [25] then characterizes node-wise interactions in a sequence39

of graphs. The proposed design tackles the two identified problems in learning CTDGs. In particular,40

we show that the power method singular value decomposition (SVD) is an efficient and effective41
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(c) Global Framelet Graph Transforms
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Figure 1: Illustrative SPEDGNN for learning continuous-time dynamic graphs (CTDGs). (a) A
spectral transform with adaptive power method SVD processes the long-range time-dependency of
the input to the spectral domain. (b) The continuous embedding is then divided in a message-memory
module with enhanced short-term interactions. (c) Finally, a global framelet graph convolution with
multi-scale operators forms well-conditioned graph representations for prediction tasks.

implementation of the low-rank self-attention scheme. It not only fast captures the long-term evolving42

flow of the input events, but also preserves more even energy in the extracted pivotal components43

of the temporal observations. Such a design prevents ill-conditioned graph hidden representations,44

which results in an easier-to-fit smooth decision boundary for network training. In the final layer,45

the undecimated framelet-based spectral graph transform in graph representation learning commits46

sufficient scalability via its multi-level representation of the structured data.47

We investigate the relationship of spectral transforms and feed-forward propagation, and design48

Spectral Dynamic Graph Neural Network (SPEDGNN) for efficient and effective dynamic graph49

representation. The design network architecture captures temporal features and graph structure50

in CTDGs in the spectral domain. Through efficient spectral self-attention and multi-scale graph51

convolution, expressive hidden representations of batch events are embedded in linear complexity52

(proportional to the number of events). The well-conditioned final embeddings are separable by a53

smooth decision boundary with less main information loss.54

2 Spectral Transform for Long-range Sequence55

This section introduces the notion of spectral transform and discusses how it fixes the ill-conditioning56

problem and its connection to the self-attention mechanism.57

Definition 1. A spectral transform projects sample observations X ∈ RN×d from an unknown58

function space to a spectral domain with a (set of) orthonormal basis Φ: X ′ := XΦ. The new59

representationX ′ summarizes the prior knowledge of observationsX for perfect reconstruction.60

2.1 Choices of the Spectral Basis61

The properties of a formulated spectral transform are determined by Φ. For instance, the singular62

vector matrix ofX from QR decomposition or singular value decomposition (SVD) extracts principal63

components of the function space. Fourier transforms process time-domain signals to the frequency64

domain to distill local-global oscillations. Such a transform summarizes the observations in a new65

coordinate system to reflect desired properties of a sequentialX , such as sparsity or noise separation.66

To better understand how spectral transform benefits inferring the true function space, consider an67

example unitary transform by orthonormal bases of SVD. Denote the raw signal input as a matrix68

X ∈ RN×d. It can be factorized by X = UΣV > with two orthonormal bases U ∈ RN×N and69
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(a) original X (b) spatial,
normalizedBN(X)

(c) spectral,
unnormalized X′

(d) spectral,
normalized X̃

Figure 2: A toy example of binary classification. The 2-dimensional data are sampled fromN (µ, σ).
The direction and length of {v1, v2} illustrate two eigenvectors and eigenvalues of the feature.
Artificial labels are created by a decision boundary with large curvature. Both (b) batch normalized
spatial representations and (c) unnormalized spectral coefficients fail to flatten the boundary. In
contrast, (d) normalized spectral representations have a closer-to-1 condition number, creating a
smooth decision boundary that is easier for a classifier to fit.

V ∈ Rd×d. The two orthonormal bases span the row and column spaces of X , and they both can70

projectX to a spectral domain. For instance, the spectral coefficientsX ′ = XV are the projection71

of aggregated features under the basis V .72

2.2 Transforming towards Balanced Energy73

A key motivation to perform the spectral transform on a time-dependent long-range sequence is to74

amend the highly-imbalanced energy distribution of the original feature space. We pay special atten-75

tion to the cases when the expressivity of latent representations is hurt, i.e., the detailed information76

with small energy in the original feature space is smoothed out. In practice, such small-energy details77

can be pivotal to distinguishing different entities, and ignoring them not only removes local noise but78

also eliminates potentially useful messages. For instance, tumor cells generally live within a small79

area and it has considerably small energy in a medical image. Smoothing these features could result80

in problems in pathology diagnosis.81

Amending the energy distribution, however, can be tricky to conduct in the features’ original domain.82

Figure 2 demonstrates a two-dimensional toy example. The sample distribution in Figure 2(a)83

concentrates the most variance in a certain direction with eigenvalues of sample variance σ = {9, 2}.84

An instant normalization in the same domain, such as BatchNorm [26] in Figure 2(b), reshapes85

the sample distribution. However, the energy is still centralized in v1’s direction. As a result,86

the two classes (colored in red and green) can only be divided by a decision boundary that has a87

large curvature. It is difficult to fit by classifiers such as an MLP-based model, which tends to fit88

smooth flat curves. Meanwhile, Figure 2(c) illustrates the unnormalized spectral representation of the89

original data X ′ := XV = UΣ, which projects X to a new coordinate set by the transformation90

V . As shown in Figure 2(d), normalizing the new coordinates in the same spectral domain by91

X̃ := X ′diag(c1, c2)V T results in an easy-to-fit flat decision boundary.92

The spectral transform allows balancing features’ energy and truncating local noise, if necessary,93

simultaneously. To circumvent singular decomposition, we consider an efficient approximation94

that relies on matrix products of X . We can regard U (from X = UΣV T ) to be close to the95

orthonormal basisQ (from QR decompositionX = QR). Power method SVD [27] suggests a better96

approximation to U , which is the orthonormal basis Q̃ fromX(X>X)q = Q̃R̃, i.e.,97

U ≈ Q̃ = X(X>X)qR̃−1. (1)

The normalized features X̃ is therefore approximated by including a proper diagonal matrix C98

in (1), i.e., X̃ ≈ X(X>X)qR̃−1C. However, it is computationally expensive to directly invite99

the orthogonal factor R̃ to participate in every propagation of the neural network, as every QR100

decomposition involves a Gram-Schmidt algorithm. To balance the computational cost and the101

expressivity, we transfer the progressive update on R̃ to C. We let102

X̃ ≈X(X>X)qW , (2)

whereW = R̃−1C constitutes a fixed R̃ and a learnable diagonalC initialized as an identity matrix.103

Consequently, X̃ supports matrix computations and network propagation.104
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Compared to the conventional truncated SVD that ranks the orthonormal basis by singular values,105

the learnable spectral transform in (2) conducts a data-driven principal component distillation and106

normalization simultaneously. The learnable projectionW plays a similar role to the computationally107

intensive Gram-Schmidt orthonormalization that summarizes the entity features to a set of spectral108

coefficients and ranks them adaptively by their importance to the underlying application. Such a109

learning scheme prevents important rare patterns from being removed due to their small energy.110

2.3 Connecting Adaptive Spectral Transform to Self-Attention111

Aside from preserving small-energy rare patterns as other spectral transforms, the adaptive SVD-112

based spectral transform is also closely connected to linear self-attention mechanisms [21, 23, 28].113

ForX ∈ RN×d, a self-attention layer reads114

Xattn := (QaK
>
a Va)/

√
dk, (3)

whereQa := XWQ, Ka := XWK , Va := XWV .

The three square matricesQa (query),Ka (key) and Va (value) learn basis functions at an identical115

size of N × d. The learning cost drops significantly when N � d, as a smaller number of parameters116

are required to approximate. In comparison, conventional self-attentions activate the context mapping117

matrix softmax(QaK
>
a /
√
dk) ∈ RN×N . The calculation order of (3) is thus required strictly from118

left to right, which rejects efficient matrix computations due to the inevitable N -dimension.119

To understand the intrinsic connection between linear self-attention in (3) and power method SVD,120

rewriteXattn as a function ofX , i.e.,121

Xattn = XWQW
>
KX

>XWV = XW1X
>XW2 (4)

withWQW
>
K = W1 andWV = W2. Compared to (2), a linear self-attention step in (4) is a special122

implementation that approximates a 1-iteration QR approximation of the SVD basis. To approach123

the power of q iterations adaptive power method SVD, a number of q-layer linear self-attention124

is required. Moreover, both (2) and (4) aggregate row-wise variation and summarizes a low-rank125

covariance matrix ofX withX>X . However, (2) provides an efficient concentration to large-mode126

tokens while truncating out noises. For an extremely long sequence of inputXN ∈ RN×d(N � d),127

X>NXN ∈ Rd×d in (2) completes the main calculation at a significantly small cost. This cost-efficient128

technique is important for scalable learning tasks such as time-series data learning, where the length129

of an input sequence could explode easily.130

3 Spectral Transforms for Dynamic Graphs131

In this section, we expand the long-range sequence of interest to an additional dimension of topology132

and practice the spectral transform on dynamic graphs. We validate the efficiency and effectiveness133

of the spectral transform framework by dynamic graph representation learning.134

3.1 Problem Formulation135

A static undirected graph is denoted by Gp = (Vp,Ep,Xp) with n = |Vp| nodes, where its edge136

connection is described by an adjacency matrix Ap ∈ Rn×n and the node features are stored in137

Xp ∈ Rn×d. A graph convolution finds a hidden representationHp of the structureAp and the node138

featureXp. WhenAp and/orXp change with time, Gp is called a dynamic graph. Dynamic graph139

representation learning finds the hidden representation Hp of each Gp from a sequence of graphs140

G = {Gp}Pp=1 where each Gp = (Vp,Ep,Xp). Depending on the particular prediction task,Hp can141

be processed for label assignments. For example, link prediction forecasts the pair-wise connection142

of nodes in a graph, and node classification completes unlabeled nodes.143

Continuous-time dynamic graphs (CTDG) is a general and complicated genre of dynamic graphs. An144

arbitrary observation of a CTDG is recorded as a tuple of (event, event type, timestamp). The event145

recorded at a specific timestamp is described by a feature vector, and the event type can be one of146

edge addition/deletion, or node addition/deletion. Training an adequate model for CTDG, however,147

can be challenging. Compared to a static graph, the complete architecture of a CTDG is revealed148

sequentially during training. A powerful design for graph embedding is thus required to interpret the149

connection between the next graph with historical graph snapshots. In comparison to discrete-time150
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dynamic graphs, the consecutive activity recording behavior allows CTDGs to capture the event flow151

of the entire graph so that the information loss is minimized.152

To this end, we propose to employ adaptive temporal spectral transforms to encode the long-range153

evolution of the graph dynamics to normalized spectral coefficients X̃ for a minimum loss of154

energy. The short-term interaction is enhanced by employing a message-memory module [4, 13] then155

partitioned evenly into a sequence of subgraphs of interactive nodes, where the node attributes encode156

its present and recent status. Next, the graph topology is embedded by another spectral-based graph157

network, i.e., a global spectral graph convolution, to find a well-conditioned hidden representation158

for the final prediction task. We now explain the two spectral-based transforms in detail.159

3.2 Adaptive Temporal Spectral Transform160

The long-range time-dependency is encoded with adaptive power method SVD as a particular161

implementation of the temporal spectral transform. As briefed in Section 2, it takes a similar role162

as the traditional self-attention in feature extraction but is equipped with additional scalability and163

reliability. We focus on the transform and ignore the adaptive normalization for conciseness.164

For an event sequence X ∈ RN×d, we look for its expressive low-dimensional projection X ′ in165

the spectral domain that i) summarizes the principal patterns of X , and ii) is immune to minor166

disturbances. Analogous to self-attentions, the spectral encoder assigns a matrix of similarity scores167

to X , and it follows an explicit update rule to establish a traceable learning process. The main168

patterns from both event attributes and time dimensions are summarized in spectral coefficientsX ′169

(cyan box in Figure 1). Below we explain the two interpretations of such transforms.170

Interpret 1. Spectral coefficients X ′ ≈ XV extract information in feature dimension. By171

definitionX := UΣV >, SVD stores the factorized features (in columns of V ) and temporal shifts172

(in rows of U ). For low-rank or noisy input, truncated SVD [29] extracts stable main patterns by173

X ′ ≈XV ∈ RN×d′(d > d′). Specifically, the transformedX ′ is projected by V to a new space of174

the most effective feature representation. For instance, the jth feature of the ith transformed event175

X ′ij = Xi,:V:,j concretesXi to a coefficient following the projection of the jth factorized feature.176

Interpret 2. Spectral coefficients X ′ ≈ X(X>X)R−1 aggregates information of time dimen-177

sion. We focus on the simplest case of iteration q = 1 for illustration purpose, i.e.,X>XR−1 is a178

one-step approximation of V . For instance, the jth element in the jth row ofX>X is fromX:,j that179

covers the whole time interval. The consequent covariance matrixX>X ∈ Rd×d summarizes the180

column-wise linear relationship ofX , i.e., the change of attributes over time. TransformingX by this181

similarity matrix establishes a new presentation with the all-time temporal correlation of attributes.182

For q > 1, the approximation takes linear adjustments via R−1 and concentrates high energies on183

more expressive modes with the same fundamental format of the covariance matrixX>X .184

3.3 Memory-Message Aggregator185

Given an event ei[t] at time t with respect to node ni, we name it a message of ni at time t, denoted as186

msg(ei[t]). In addition, if the node was previously recorded active, we use mem(ei[: t]) to represent187

the past information, or memory, of ni prior to time t. The memory module mem(·) refreshes188

constantly with the latest messages to capture the dynamic nature of graph interactions. When a new189

event ei[t] is recorded at time t, the memory updates to mem(ei[t]) = f(mem(ei[: t]),msg(ei[t]))190

with a trainable function f(·). Depending on when the node i was previously recorded, the last191

memory can be found before t− 1. Also, it is possible to recall memories from multiple steps away.192

We thus describe ni[t]’s state by its hidden memory hi[t] at time t, which concatenates msg(ei[t])193

and mem(ei[: t]), i.e., hi(t) = concat(msg(ei[t]))‖mem(ei[: t]))). The embedding for194

an interactive event eij(t) between two nodes ni and nj is similar, which reads hi(t) =195

concat(msg(eij [t])‖mem(ei[: t])‖mem(ej [: t])).196

3.4 Global Framelet Graph Transforms197

We leverage global spectral graph convolutions to extract multi-level and multi-scale features in198

scalable graph representation learning. The vanilla framelet graph convolution (UFGCONV) [25]199

implements fast framelet decomposition and reconstruction for efficient static graph topology embed-200
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Algorithm 1: SPEDGNN: Spectral Dynamic Graph Neural Network

Input :raw sequential dataX
Output : label prediction Y

1 Initialization: adaptive coefficient C; global Θ

2 Adaptive power method SVD X̃ ←X(X>X)qR̃−1C;
3 for batch p← 1 to M − 2 do
4 hp[t]← msg(ei[t])‖mem(ei[: t]);
5 Gp ← (Ap,Xp ← FC(hp[t]));
6 Hp ← UFGCONV(Ap,Xp, θp);
7 Yp ← Predictor(Hp);
8 Θp ← θp;
9 Yp,val,Yp,test ← Predictor(Hp+1),Predictor(Hp+2);

10 Update: score(Yval), score(Ytest).
11 end

ding (See Appendix B). Working in the framelet domain has been proven robust to local perturbations201

and circumvents over-smoothing with Dirichlet energy preservation [30, 31]. For CTDGs, we propose202

a global version of framelet transforms to perform multi-scale robust graph representation learning.203

Formally, the graph framelet convolution defines in a similar manner to any typical spectral graph204

convolution layer that θp ?Xp = Vpdiag(θp)WpX
[
p, whereX[

p denotes the embedded input and205

θp is the learnable parameters with respect to X[
p. TheWp and Vp are the decomposition and206

reconstruction operators that transform the input graph signalX[
p from and to the vertex domain.207

Different from a set of independent static graphs, dynamic graphs are captured on an evolving timeline.208

Therefore, we preserve the intra-connections of the graph sequence in a global learnable variable209

Θ. At time t, we initialize the framelet coefficients θ[t](0) with their most recent best estimation210

before t, i.e., θ[: t](n), from Θ. For instance, the initial θ with respect to node p reads θp[t](0) = Θp.211

Figure 1 demonstrates the update procedure of the global framelet transform with a sample global212

graph of 5 nodes. Suppose the subgraph at batch t contains the first 3 of the 5 nodes. A UFGCONV213

trains θ[t] to represent these three nodes. The parameter values are initialized with the best estimated214

of {Θ1,Θ2,Θ3} recorded before t. The optimized model is deployed for further prediction tasks.215

Meanwhile, Θ updates the first three parameters by {θ1[t](n), θ2[t](n), θ3[t](n)}.216

The workflow of SPEDGNN is summarized in Figure 1 and Algorithm 1. A temporal spectral217

transform first processes the input raw data to the spectral domain that encodes long-range time218

dependency. With the adaptive power method SVD, a group of stable principal patterns can be219

extracted, which is functioned similarly to a stacked efficient linear self-attention mechanism. Next, a220

message-memory module enhances the short-term interactions of events and generates a comprehen-221

sive node representation of batched subgraphs. The topology of subgraphs records the interactions222

among node entities for a global graph framelet network to learn. Based on this, we estimate the main223

algorithm has a linear computational complexity O(Nd log(d)) to the number of events N , which224

proves that SPEDGNN is efficient with a small time and space complexity (See Appendix C).225

4 Numerical Examples226

We carry out experiments on three bipartite graph datasets (Wikipedia, Reddit, and MOOC)[13, 32]227

for link prediction and node classification tasks [33]. Both transductive and inductive settings are228

examined in link predictions. We leave implementation details in Appendix E.229

A fair comparison is made with JODIE [13], DYREP [34], and TGN [4]. Classic methods (e.g.,230

TGAT and DEEPWALK) that significantly underperform the baseline methods are excluded. For231

model training and evaluation, we assume the interactions of a graph are given until the last timestamp232

in batch t and make predictions on the timestamps of batch t+ 1 and t+ 2, where predictions on the233

former set provide the validation scores, and the latter guides the test scores. Note that our training234

follows PyTorch Geometric [35] and makes a more strict data acquirement criterion than TGN, where235

the latter has access to all previous data when loading node neighbors, including those in the same236
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Table 1: Performance of link prediction over 10 repetitions.

Wikipedia Reddit MOOC
Model # parameters precision ROC-AUC precision ROC-AUC precision ROC-AUC

tr
an

sd
uc

tiv
e DYREP 920× 103 94.67±0.25 94.26±0.24 96.51±0.59 96.64±0.48 79.84±0.38 81.92±0.21

JODIE-RNN 209× 103 93.94±2.50 94.44±1.42 97.12±0.57 97.59±0.27 76.68±0.02 81.40±0.02
JODIE-GRU 324× 103 96.38±0.50 96.75±0.19 96.84±0.39 97.33±0.25 80.29±0.09 84.88±0.30

TGN-GRU 1, 217× 103 96.73±0.09 96.45±0.11 98.63±0.06 98.61±0.03 83.18±0.10 83.20±0.35
SPEDGNN-MLP (ours) 170× 103 97.02±0.06 96.51±0.08 98.19±0.05 98.15±0.06 82.40±0.24 85.55±0.17

SPEDGNN-GRU (ours) 376× 103 97.44±0.05 97.15±0.06 98.69±0.09 98.66±0.12 84.50±0.10 86.88±0.09

in
du

ct
iv

e

DYREP 920× 103 92.09±0.28 91.22±0.26 96.07±0.34 96.03±0.28 79.64±0.12 82.34±0.32
JODIE-RNN 209× 103 92.92±1.07 92.56±0.87 93.94±1.53 95.08±0.70 77.17±0.02 81.77±0.01
JODIE-GRU 324× 103 94.93±0.15 95.08±0.70 92.90±0.03 95.14±0.07 77.82±0.17 82.90±0.60

TGN-GRU 1, 217× 103 94.37±0.23 93.83±0.27 97.38±0.07 97.33±0.11 81.75±0.24 82.83±0.18
SPEDGNN-MLP (ours) 170× 103 94.27±0.05 93.28±0.05 97.49±0.01 97.34±0.02 82.54±0.08 85.23±0.09

SPEDGNN-GRU (ours) 376× 103 96.60±0.01 95.70±0.02 97.47±0.05 97.10±0.09 82.35±0.06 83.67±0.06

† The top three are highlighted by First, Second, Third.

test batch. Such an operation reveals the true connections to predict, and the test scores of TGN237

reported by Rossi et al. [4] are higher than in this paper.238

Prediction Performance. Table 1 reports the performance of link prediction tasks. SPEDGNN239

constantly outperforms JODIE and DYREP with RNN, and achieves at least comparable performance240

to JODIE and TGN-GRU with a small volatility. It is noteworthy that JODIE-GRU outperforms241

the original JODIE-RNN by Kumar et al. [13]. The performance gain of GRU over RNN explains242

to some extent the rare outperformance of TGN over SPEDGNN-MLP, not to mention that MLP is243

simpler than any recurrent unit. This statement is confirmed by the performance of SPEDGNN-GRU.244

When the GRU module is employed in the memory layer, the highest performance score is almost245

always observed over different datasets, learning tasks, and evaluation metrics.246

In addition to the transductive and inductive link prediction tasks, we also conduct node classifica-247

tion. The model performance is evaluated by the average ROC-AUC scores, which better fit the248

extremely imbalanced nature of node classes. The results reported in Table 2 confirm that SPEDGNN249

outperforms all baselines, especially with the GRU module.250

Table 2: ROC-AUC of node classification

Model Wikipedia Reddit MOOC
DYREP 84.59±2.21 62.91±2.40 69.86±0.02
JODIE-RNN 85.38±0.08 61.68±0.01 66.82±0.05
JODIE-GRU 87.90±0.09 64.30±0.21 70.23±0.09

TGN-GRU 88.95±0.07 61.49±0.01 70.32±0.13

SPEDGNN-MLP (ours) 88.37±0.03 64.94±0.07 69.52±0.08
SPEDGNN-GRU (ours) 90.32±0.05 65.28±0.05 71.08±0.02

Table 3: Training speed for link prediction

Model Wikipedia Reddit MOOC
DYREP 20.1s ±0.6s 139.3s ±0.1s 78.34s ±0.6s

JODIE-RNN 17.4s ±2.0s 121.8s±0.3s 62.64s ±0.1s

JODIE-GRU 16.9s ±1.1s 131.6s ±1.5s 58.82s ±2.2s

TGN-GRU 24.9s ±0.3s 128.1s ±2.2s 78.11s ±0.7s

SPEDGNN-MLP (ours) 9.87s ±0.1s 63.3s ±1.1s 38.41s ±0.5s

SPEDGNN-GRU (ours) 12.5s ±0.3s 83.6s ±0.1s 49.20s ±0.1s

Computational Efficiency. Table 3 evaluates model efficiency by the training speed per epoch.251

Compared to the baseline models, the training speed per epoch of SPEDGNN is shorter with 50%252

ahead on the largest dataset Reddit. It confirms SPEDGNN’s long-sequence computational privilege253

analysed in Section 2. In contrast, the comparable performance by TGN-GRU is achieved at the cost254

of doubling the training time to fit the model with seven times more learnable parameters. On the255

other hand, both variants of JODIE require a significantly longer training time than SPEDGNN, not256

to mention that their performance cannot constantly stay at the top tier.257

Well-conditioned Spectral Node Embedding. We validate the energy balancing effect of the258

proposed SPEDGNN by investigating the distribution of hidden embedding’s eigenvalues of different259

models. Recall that in Section 2 we demonstrated with a 2-dimensional toy example that the260

normalized spectral transform projects input features to well-conditioned representations, which261

requires a smoother decision boundary that is easier to fit by a classifier. For a higher dimensional262

feature representation, we describe the smoothness of the decision boundary by the decay of the263

associated condition number λi/λmin, or the eigenvalues λi.264

We made the comparison on the optimized hidden representation of the test samples in Wikipedia.265

The distribution and total variance of condition number are visualized in Figure 3 and Figure 4,266
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Figure 3: The distribution of
the largest 25 singular values
of the hidden representation by
SPEDGNN, TGN, and JODIE.

Figure 4: The number of singular vectors that provides 50%
(left) or 90% (right) of total variance by SPEDGNN, TGN,
and JODIE. SPEDGNN constantly includes more vectors to
achieve the same level of total variance.

respectively. According to Figure 3, JODIE and TGN concentrate the most variance in the first few267

directions. Eigenvalues of the associated hidden representations decrease drastically after the first 3268

or 4 epochs. Such a fast reduction of condition numbers indicates that the analyzed hidden features269

are highly-correlated, which gives rise to the concentration of the variance of the feature space on the270

first few principal components. As it challenges the classifier to find the optimal model to fit a rough271

decision boundary, such a circumstance with concentrated feature energy is not favored. In contrast,272

SPEDGNN finds a more separable hidden representation of test samples with slowly decayed singular273

values. As shown in Figure 4, the embedding by SPEDGNN constantly disperses the total variation in274

a larger number of vectors, while JODIE and TGN pick a few features to undertake most variations275

after the first few epochs.276

5 Related work277

5.1 Efficient Self-Attention278

The transformer is well-known for its powerful learning ability [16, 36–38]. However, the self-279

attention mechanism at the core of a transformer framework requires quadratic time and memory280

complexity, which hinders the model’s scalability. A handful of recent works discuss potential281

improvements in the efficiency of model memory or computational cost when the input dimension is282

of a fixed size that is considerably large.283

The prominent efficient transformer methods fall into three directions. First, prior knowledge284

compress or distill the self-attention architecture to a sparse attention matrix by pre-defining strides285

convolutions [39, 40] or assuming patchwise patterns [19, 41]. Some recent study also considers286

replacing fixed patterns with a learnable scheme that efficiently identifies chunks or clusters [42–44].287

The data-driven learning procedure introduces extra flexibility to the division of the patches, blocks,288

or receptive fields, but the core idea of attention localization remains.289

The second approach simultaneously accesses multiple tokens through a global memory module.290

The target is to distill the input sequence with a limited number of inducing points (or memory)291

[45, 46]. Compared to the first approach of patching input tokens, inducing points break down the292

strict concept of token entities and make parameterizations on the global memory of token mixers.293

The third emerging technique avoids explicitly computing the full contextual matrix of the self-294

attention mechanism through kernelization [28, 47] or low-rank approximation [21–23]. The pro-295

jection is usually conducted on the lengthy sequence dimension that ignores the chronicle order of296

sequence when computing attention scores. However, the global view in compress helps the attention297

mechanism to manage the overall picture of the sequence on top of token-wise correlations. As is298

investigated by a recent study [48], the substitution of matrix decomposition to the self-attention299

mechanism is critical for learning the global context.300

5.2 Graph Structure Embedding301

GNNs have seen a surge in interest and popularity for dealing with irregular graph-structured data302

that traditional deep learning methods such as CNNs fail to manage. Common to most GNNs and303

their variants is the graph embedding through the aggregation of neighbor nodes in a way of message304

passing [49–51]. As a key ingredient for topology embedding, graph convolutions correspond to305
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spatial methods and spectral methods that operate on node space [52, 53] or on a pseudo-coordinate306

system that is mapped from nodes through some transform (typically Fourier) [54].307

Due to the intuitive characteristics of spatial-based methods which can directly generalize the CNNs308

to graph data with convolution on neighbors, most GNNs fall into the category of spatial methods309

[53, 55–62]. Many other spatial methods broadly follow the message passing scheme with different310

neighborhood aggregation strategies, but they inherently lack expressivity [60, 63, 64].311

In contrast, spectral-based graph convolutions [25, 54, 65–72] convert the raw signal or features in the312

vertex domain into the frequency domain. Spectral-based methods have already been proved to have313

a solid mathematical foundation in graph signal processing [73], and the vastly equipped multi-scale314

or multi-resolution views push them to a more scalable solution of graph embedding. Versatile315

Fourier[65, 66, 74], wavelet transforms[68] and framelets[25] have also shown their capabilities in316

graph representation learning. Of these transforms, Fourier transforms is particularly one of the most317

popular ones and the work in [75] gave a detailed review of how Fourier transform enhances neural318

networks. In addition, with fast transforms being available in computing strategy, a big concern319

related to efficiency is well resolved.320

5.3 Temporal Encoding of Dynamic Graphs321

Recurrent neural networks (RNNs) are considered exceptionally successful for sequential data322

modelling, such as text, video, and speech [76–78]. In particular, Long Short Term Memory (LSTM)323

[79] and Gated Recurrent Unit (GRU) [15] gains great popularity in application. Compared to the324

Vanilla RNN, they leverage a gate system to extract memory information, so that memorizing long-325

range dependency of sequential data becomes possible.Later, the Transformer network [16] designs326

an encoder-decoder architecture with the self-attention mechanism, so as to allow parallel processing327

on sequential tokens. The self-attention mechanism have achieved state-of-the-art performance across328

all NLP tasks [16, 33] and even some image tasks [20, 80].329

For dynamic GNNs, it is critical to consolidate the features along the temporal dimension. Dynamic330

graphs consist of discrete and continuous two types according to whether they have the exact temporal331

information [81]. Recent advances and success in static graphs encourage researchers and enable332

further exploration in the direction of dynamic graphs. Nevertheless, it is still not recently until several333

approaches [34, 82–84] were proposed due to the challenges of modeling the temporal dynamics.334

In general, a dynamic graph neural network could be thought of as a combination of static GNNs335

and time series models which typically come in the form of an RNN [85–87]. The first DGNN was336

introduced by Seo et al. [85] as a discrete DGNN and Know-Evolve [88] was the first continuous337

model. JODIE [13] employed a coupled RNN model to learn the embeddings of the user/item. The338

work in [89] learns the node representations through two joint self-attention along both dimensions of339

graph neighborhood and temporal dynamics. The work in [90] was the first to use RNN to regulate340

the GCN model, which means to adapt the GCN model along the temporal dimension at every time341

step rather than feeding the node embeddings learned from GCNs into an RNN. TGAT [91] is notable342

as the first to consider time-feature interactions. Then Rossi et al. [4] presented a more generic343

framework for any dynamic graphs represented as a sequence of time events with a memory module344

added in comparison to [91] to enable short-term memory enhancement.345

6 Discussion346

This work analyzes the versatile spectral transform in capturing the evolution of long-range time347

series as well as graph topology. We investigate a particular dynamic system of continuous-time348

dynamic graphs (CTDGs) to find its robust representation. In particular, we implement iterative SVD349

approximations to encode the long-range feature evolution of the dynamic graph events, which acts350

a similar role as multiple layers of a low-rank self-attention mechanism. The proposed transform351

has linear complexity of O(Nd log(d)) for a CTDG with N events of d dimensions. The short-term352

memory in learning is enhanced for dynamic events by a learnable scheme, such as MLP or GRU. A353

multi-level and multi-scale fast transform of global spectral graph convolution is then employed for354

topological embedding, which allows sufficient scalability and transferability in learning dynamic355

graph representation. The final event embeddings are well-conditioned and the algorithm requests356

fewer calculation resources. The proposed SPEDGNN shows competitive performance on real357

dynamic graph prediction tasks.358
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[56] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua508

Bengio. Graph attention networks. arXiv:1710.10903, 2017.509

[57] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and510

Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model511

cnns. In CVPR, pages 5115–5124, 2017.512

[58] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast513

graph representation learning. In Advances in Neural Information Processing Systems, 2018.514

12



Well-conditioned Spectral Transforms for Dynamic Graph Representation

[59] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning515

architecture for graph classification. In AAAI Conference on Artificial Intelligence, 2018.516

[60] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks517

for semi-supervised learning. In AAAI conference on artificial intelligence, 2018. 9518

[61] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec.519

Hierarchical graph representation learning with differentiable pooling. Advances in Neural520

Information Processing Systems, 2018.521

[62] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Ge-522

niepath: Graph neural networks with adaptive receptive paths. In AAAI Conference on Artificial523

Intelligence, pages 4424–4431, 2019. 9524

[63] Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass525

filters. arXiv:1905.09550, 2019. 9526

[64] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.527

Rethinking graph transformers with spectral attention. In Advances in Neural Information528

Processing Systems, volume 34, pages 21618–21629, 2021. 9529

[65] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured530

data. arXiv:1506.05163, 2015. 9531

[66] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks532

on graphs with fast localized spectral filtering. In Advances in Neural Information Processing533

Systems, volume 29, pages 3844–3852, 2016. 9534

[67] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph535

convolutional neural networks with complex rational spectral filters. IEEE Transactions on536

Signal Processing, 67(1):97–109, 2018.537

[68] Yunxiang Zhao, Jianzhong Qi, Qingwei Liu, and Rui Zhang. Wgcn: Graph convolutional538

networks with weighted structural features. arXiv:2104.14060, 2021. 9539

[69] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural540

network. In International Conference on Learning Representations, 2018.541

[70] Ming Li, Zheng Ma, Yu Guang Wang, and Xiaosheng Zhuang. Fast haar transforms for graph542

neural networks. Neural Networks, 128:188–198, 2020.543

[71] Xuebin Zheng, Bingxin Zhou, Yu Guang Wang, and Xiaosheng Zhuang. Decimated framelet544

system on graphs and fast g-framelet transforms. Journal of Machine Learning Research, 23545

(18):1–68, 2022.546

[72] Xuebin Zheng, Bingxin Zhou, Ming Li, Yu Guang Wang, and Junbin Gao. Mathnet: Haar-like547

wavelet multiresolution-analysis for graph representation and learning. arXiv:2007.11202, 2020.548

9549

[73] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.550

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to551

networks and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013. 9552

[74] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional553

networks. In International Conference on Learning Representations, 2017. 9554

[75] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens555

with fourier transforms. arXiv:2105.03824, 2021. 9556

[76] Alex Graves. Sequence transduction with recurrent neural networks. In ICML 2012 Workshop557

on Representation Learning, 2012. 9558

[77] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep559

recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and560

Signal Processing, pages 6645–6649. Ieee, 2013.561

[78] Atefeh Shahroudnejad. A survey on understanding, visualizations, and explanation of deep562

neural networks. arXiv:2102.01792, 2021. 9563

[79] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9564

(8):1735–1780, 1997. 9565

13



Well-conditioned Spectral Transforms for Dynamic Graph Representation

[80] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks566

for image question answering. In the IEEE / CVF Computer Vision and Pattern Recognition567

Conference, pages 21–29, 2016. 9568

[81] Joakim Skardinga, Bogdan Gabrys, and Katarzyna Musial. Foundations and modelling of569

dynamic networks using dynamic graph neural networks: A survey. IEEE Access, 2021. 9570

[82] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and571

Sungchul Kim. Continuous-time dynamic network embeddings. In the Web Conference 2018,572

pages 969–976, 2018. 9573

[83] Taisong Li, Jiawei Zhang, S Yu Philip, Yan Zhang, and Yonghong Yan. Deep dynamic network574

embedding for link prediction. IEEE Access, 6:29219–29230, 2018.575

[84] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. DynGEM: Deep embedding method576

for dynamic graphs. In 3rd International Workshop on Representation Learning for Graphs577

(ReLiG), IJCAI, 2017. 9578

[85] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured579

sequence modeling with graph convolutional recurrent networks. In International Conference580

on Neural Information Processing, pages 362–373. Springer, 2018. 9581

[86] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks.582

Pattern Recognition, 97:107000, 2020.583

[87] Apurva Narayan and Peter HO’N Roe. Learning graph dynamics using deep neural networks.584

IFAC-PapersOnLine, 51(2):433–438, 2018. 9585

[88] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal586

reasoning for dynamic knowledge graphs. In International Conference on Machine Learning,587

pages 3462–3471, 2017. 9588

[89] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural589

representation learning on dynamic graphs via self-attention networks. In the 13th International590

Conference on Web Search and Data Mining, pages 519–527, 2020. 9591

[90] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-592

shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional593

networks for dynamic graphs. In AAAI Conference on Artificial Intelligence, pages 5363–5370,594

2020. 9595

[91] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-596

sentation learning on temporal graph. In International Conference on Learning Representations,597

2020. 9598

[92] Bin Dong. Sparse representation on graphs by tight wavelet frames and applications. Applied599

and Computational Harmonic Analysis, 42(3):452–479, 2017. 15600

[93] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:601

Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53602

(2):217–288, 2011. 16603

[94] James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:604

Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001. 17605

[95] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International606

Conference on Learning Representations, 2019. 17607

14



Well-conditioned Spectral Transforms for Dynamic Graph Representation

A Message-Memory Aggregator608

A continuous-time dynamic graph records the temporal evolution by a sequence of events. After the609

spectral transformer in Section 3.2, the event-based instances are projected to a spectral domain of610

the feature dimension, where the long-term dependencies are well-encoded. However, the intrinsic611

structural information is waiting for embedding.612

To this end, a memory ‘window’ gets involved that divides multiple batches of subgraphs. This613

operation allows zooming into a small range of events and generating graph snapshots for further614

topological embedding. Since dynamic graphs are a generalized version of non-Euclidean time series,615

the learning procedure requires an enhancement of short-term memory. That is, the current state of616

an underlying node is believed to be closely connected to recent messages of the same entity (node)617

from previous states. Thus, instead of treating graph intervals as discrete slices, a message-memory618

aggregator practices node embedding with short-range information inheritance [4, 13].619

Given an event ei[t] at time t with respect to node ni, we name it a message of ni at time t, denoted620

as msg(ei[t]). In addition, if the node was previously recorded active, we use mem(ei[: t]) to621

represent the past information, or memory, of ni prior to time t. The memory module mem(·)622

refreshes constantly with the latest messages to capture the dynamic nature of graph interactions.623

When a new event ei[t] is recorded, the updated memory at time t is624

mem(ei[t]) = f(mem(ei[: t]),msg(ei[t]))

with a trainable function f(·). Depending on when the node i was previously recorded, the last625

memory can be found before t− 1. Also, it is possible to recall memories from more than one step626

away.627

We thus describe ni[t]’s state by its hidden memory hi[t] at time t, which concatenates msg(ei[t])628

and mem(ei[: t]), i.e.,629

hi(t) = concat(msg(ei[t]))‖mem(ei[: t]))). (5)
The embedding for an interactive event eij(t) between two nodes ni and nj is similar, which reads630

hi(t) = concat(msg(eij [t])‖mem(ei[: t])‖mem(ej [: t])). (6)

B Graph Framelet Transforms631

This section briefs the graph framelet transforms [25, 92], which fast approximation of framelet632

coefficients is the foundation for an efficient global UFGCONV algorithm in Section 3.4.633

Framelet System. A framelet is defined by two key elements: a filter bank η := {a; b(1), . . . , b(K)}634

and a set of scaling functions Ψ = {α;β(1), . . . , β(K)}. We name a the low-pass filter and b(k) the635

kth high-pass filter with k = 1, . . . ,K. The two sets of filters respectively extract the approximated636

and detailed information of the input graph signal in the framelet domain. The choice of filter masks637

results in different tight framelet systems. This work considers the Haar-type filter with one high638

pass, i.e., K = 1. For x ∈ R, it defines639

α̂(x) = cos(x/2) and β̂(1)(x) = sin(x/2).

For other choices, such as linear and quadratic filters, we refer interested reader to [92].640

Framelet Transform. Framelet transform divides an input signal to multiple channels by a set of641

low-pass and high-passes framelet bases. For a specific nodes p, its undecimated framelet bases at642

scale level l = 1, . . . , J reads643

ϕl,p(v) :=
∑n
`=1 α̂

(
λ`

2l

)
u`(p)u`(v),

ψ
(k)
l,p (v) :=

∑n
`=1 β̂

(k)
(
λ`

2l

)
u`(p)u`(v), k = 1, . . . ,K.

(7)

Here the eigenpairs {(λ`,u`)}n`=1 of the graph Laplacian L plays a key role in embedding graph644

topology. The ϕl,p(v),ψ
(k)
l,p (v) with v ∈ V are named the low-pass and the kth high-pass framelet645

basis, respectively. They project input signals to a transformed domain as framelet coefficients. Given646

a signal x, 〈ϕl,p,x〉 and 〈ψkl,p,x〉 are the corresponding low-pass and high-pass framelet coefficients647

for node p at scale l. They respectively record the approximated global information and detailed local648

information of the graph signal.649
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Fast Graph Framelet Transform. DefineWk,l the framelet decomposition operator as a set650

of orthonormal framelet bases at (k, l) ∈ {(0, J)} ∪ {(1, 1), . . . , (1, J), . . . (K, 1), . . . , (K,J)}.651

Essentially, calculatingW at the low-pass and the k, lth high-pass requires652

W0,J = U α̂

(
Λ

2

)
U> and Wk,l = U β̂(k)

(
Λ

2l+1

)
U> ∀l = 0, . . . , J. (8)

To avoid time-consuming eigen-decomposition to the graph Laplacian, we consider m-order Cheby-653

shev polynomials for a fast approximation of the filter spectral functions. Denote the m-order654

approximation of α and {β(k)}Kk=1 by T0 and {Tk}Kk=1, respectively. The framelet decomposition655

operatorWr,j is approximated by656

Wk,l =

{
T0
(
2−RL

)
, l = 1,

Tr
(
2R+l−1L

)
T0
(
2R+l−2L

)
. . . T0

(
2−RL

)
, l = 2, . . . , J.

(9)

The dilation scale H satisfies λmax ≤ 2Hπ.657

C Complexity Analysis658

In this section, we show the spectral transformer is efficient with a small time and space complexity.659

In particular, we analyze the computational complexity of SPEDGNN following Algorithm 1 by660

estimating the cost for the three main computational units: power method SVD for the entire training661

data, and MLP and UFGCONV (graph framelet convolution) for graph batches.662

Time Complexity. For a dynamic graph with N events (edges) and d edge features, the computa-663

tional cost for power method SVD isO(Nd log(d)) [93]. The MLP has costO(N) in total. For allM664

batches, the framelet convolution (UFGConv) has the complexity of O(
∑M
p=1 npSp log2(λp/π)F )665

where np, Sp are the number of edges and sparsity of the pth batched graph, λp is the largest eigen-666

value of the corresponding graph Laplacian [25], and F is the number of the node features. In667

practice, the np for each batched graph can be set as n/M , and we suppose Sp and λp are bounded668

by constants. The total computational cost of SPEDGNN is O (N(d log(d) + F )).669

Space complexity. For the power method SVD, the memory cost is O(Nd). The MLP with L+ 1670

fully connected layers needs memoryO(
√
N/M×h1+h1×h2+· · ·+hl×hL+1), where hi denotes671

the hidden unit of the ith layer, and hL+1 is determined by the output dimension. Suppose each layer672

has the same number of hidden neurons h, then MLP has the space complexity O(h
√
N/m+ h2L).673

The memory cost of framelet convolution is O(NF ). Then, the total space complexity of SPEDGNN674

is O
(
N(d+ F ) + h

√
N/M + h2L

)
.675

Parameter number. The trainable network parameters appear mainly in MLP and UFG-676

CONV. Similar to the space complexity analysis, SPEDGNN has a total number of677

O
(
h
√
N/M + h2L+NF

)
parameters.678

The empirical computational efficiency of SPEDGNN is evaluated by comparing against competitor679

models with link prediction tasks in Table 3 in the main paper.680

D Dataset Descriptions681

The experiments are conducted on three bipartite graph datasets: Wikipedia, Reddit and MOOC682

[13, 32].683

• Wikipedia has users and Wikipedia pages as the two sets of nodes. An edge is recorded when a684

user edits a page. The dataset selects the 1, 000 most edited pages and frequent editing users685

who made at least 5 edits. The dataset contains 9, 227 nodes and 157, 474 edges in total, and686

each event is described by 172 features.687

• Reddit divides two sets of nodes as users and subreddits (communities). An interaction occurs688

when a user posts a message to a subreddit. The datasets samples 1, 000 most active subreddits689
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as nodes along with the 10, 000 most active users. In total, the dataset contains 11, 000 nodes690

and 672, 447 edges. All events are recorded as 172 edge features by the LIWC categories [94]691

by the text of each post.692

• MOOC records students and courses of the “Massive Open Online Course" learning platform.693

An interaction occurs when a student enrolls in the course. The dataset consists of 7, 047694

students, 97 courses and 411, 749 interactions. Specifically, 4, 066 state changes are recorded695

implying action that a student drops out of a course.696

E Implementation Details697

The best-reported performance of all the methods is tuned with PyTorch on NVIDIA® Tesla V100698

GPU with 5,120 CUDA cores and 16GB HBM2 mounted on an HPC cluster.699

E.1 Training Setup700

We follow the pseudo-code of Algorithm 1 and design SPEDGNN accordingly. In the spectral701

attention module, we approximate truncated SVD with some largest modes with q-iteration. The702

specific number of nodes is selected as the smallest number between 50 and 100 such that the spectral703

norm error is less than 0.1. The memory batches are processed by fully connected layers, and704

the prepared subgraphs are then processed by UFGCONV with Haar-type filters at dilation factor705

2l to allow efficient transforms. To train a generalized model that is robust to small disturbance,706

in the validation set we randomly add 50% negative samples at each epoch. The same negative707

sampling procedure is conducted in the test set, except that all the samples are deterministic. We708

follow the design convention of negative sampling to promise non-trivial training and prediction. The709

hyper-parameters of baseline models, unless specified, are fixed to the best choice provided by their710

authors. For all the models, we fix the batch size at 1, 000 with a maximum of 200 epochs for both711

datasets. Any employed neural network overlays either 2 or 3 layers, and the memory dimension, node712

embedding dimension, and time embedding dimension are selected from {100, 150, 200} respectively.713

To make the comparison as fair as possible, the number of parameters of each model corresponding714

to the fine-tuned hyperparameters are reflected in Table 1. The optimal learning rate is tuned from the715

range of {1e− 4, 5e− 5}, and the weight decay is fixed at 1e− 2. The training process is optimized716

by ADAMW [95]. All the datasets follow the standard split and processing rules as in [4, 13]. The717

average test accuracy and its standard deviation come from 10 runs of random initialization.718

E.2 Model Availability719

We use publicly available programs to implement baseline methods, which are available at:720

• JODIE [13]: https://github.com/srijankr/jodie;721

• DYREP [34]: implemented by https://github.com/twitter-research/tgn;722

• TGN [4]: https://github.com/twitter-research/tgn.723

For SPEDGNN, we upload PyTorch version implementation at https://anonymous.4open.724

science/r/speger.725

F Ablation Study726

In addition to the comparison against baseline methods, we also designed an ablation study to justify727

the choice of the temporal spectral transform and the sequential network. For the former, we set728

up two different data encoders in terms of using the adaptive SVD (ASVD). spectral transform or729

not (RAW). The output data matrix is then used for graph slicing and then batch training. For the730

sequential network in message-memory aggregation, we compare MLP and GRU modules, which731

are also the two choices we evaluated in the last two experiments. Lastly, we compare the choice of732

using UFG or not.733

The models are validated on Wikipedia for transductive link prediction, following the same setups734

aligned with Table 1. The hyper-parameters are fixed to the optimal results from the best performed735

SPEDGNN in the earlier baseline comparison experiment.736

17

https://github.com/srijankr/jodie
https://github.com/twitter-research/tgn
https://github.com/twitter-research/tgn
https://anonymous.4open.science/r/speger
https://anonymous.4open.science/r/speger
https://anonymous.4open.science/r/speger


Well-conditioned Spectral Transforms for Dynamic Graph Representation

Table 4: Average performance of ABLATION study on Wikipedia with link prediction.

Module precision ROC-AUC

RAW+MLP+UFG 96.71±0.10 96.20±0.20
RAW+GRU+UFG 97.18±0.03 96.84±0.04
ASVD+MLP+UFG 97.02±0.06 96.51±0.08
ASVD+GRU+UFG 97.44±0.05 97.15±0.06
ASVD+GRU 96.54±0.12 96.12±0.09

Table 4 reports the average precision and ROC-AUC with the first, second, and third highest scores737

highlighted in red, violet, and black respectively. Under both evaluation metrics, including UFG738

module always result in a noticeably better performance. For the choice of GRU or MLP for message-739

memory aggregation, it confirms the finding in Section ?? that GRU improves prediction performance740

over simpler MLP modules, but the outperformance is not as high when MLP collaborates with the741

adaptive SVD module, which achieves comparable scores to the RAW+GRU setting. Overall, the742

choice of combining ASVD+GRU+UFG in our model reaches the highest prediction scores. These743

observations justify that well-conditioned data due to spectral transform benefits various models for744

prediction and classification tasks.745
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