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Supplementary material for
“Statistical Guarantees for Consensus Clustering”

This supplement contains the detailed proofs of the results and some extra simulations.

A INCONSISTENCY OF BESTOFK

Using the notation of the present paper, the name “BestOfK" should be “BestOfN". We will use our
notation in the following proposition and keep the name “BestOfK".
Proposition 3. BestOfK is not consistent unless N grows exponentially fast in n.

Proof. We will prove this proposition by providing a counterexample. Suppose K = 2, 1− p̃ = 0.6
and q = 0.4. Then for a label vector z from the RPM, by the Hoeffding inequality,

P(Mis(z, z∗) ≥ 0.1) ≥ 1− exp(2(0.4− 0.1)2n)− exp(2(0.6− 0.1)2n) ≥ 1− 2 exp(−0.18n)

where we have accounted for the two permutations in the definition of Mis. Suppose we observe N
i.i.d. label vectors z1, . . . , zN from the RPM. Then

P(min
i∈[N ]

Mis(zi, z∗) ≥ 0.1) ≥ (1− 2 exp(−0.18n))N ≥ 1− 2N exp(−0.18n).

This probability (of missing the target) approaches 1 unless N grows exponentially fast in n.

B RELATIONS AMONG CLUSTERING DISTANCES

Let nk be the size of the kth cluster of Z ∈ En
K and, n∗ℓ the size of the ℓth cluster of Z∗ ∈ En

L , and let
X and X∗ be the corresponding association matrices. The Mirkin distance (34, Eqn (6)) is given by

d′M (Z,Z∗) =
∑
k

n2k +
∑
ℓ

(n∗ℓ )
2 − 2

∑
k,ℓ

n2kℓ (13)

where nkℓ is the number of objects that are in cluster k according to Z and cluster ℓ according to
Z∗. It is not hard to see that

∑
k n

2
k = ∥X∥2F and similarly

∑
ℓ(n

∗
ℓ )

2 = ∥X∗∥2F . We also have
Z(Z∗)T = (nkℓ), hence, using ∥A∥2F = tr(AAT ),∑

k,ℓ

n2kℓ = ∥Z(Z∗)T ∥2F = tr(Z(Z∗)TZ∗ZT ) = tr((Z∗)TZ∗ZTZ) = tr(X∗X).

Combining these facts, we obtain the first equality below

d′M (Z,Z∗) = ∥X −X∗∥2F = ∥X −X∗∥ℓ1 . (14)

The second equality follows from X −X∗ having elements in {−1, 0, 1}. Here ∥ · ∥ℓ1 denotes the ℓ1
norm of a matrix viewed as a vector. The equality d′M (Z,Z∗) = ∥X −X∗∥ℓ1 immediately shows
that d′M is indeed a distance on the space of clusterings. It also connects the Mirkin distance with the
Rand index.

To see the connection with the Rand index, let Ndisagree be the number of pairs of objects for which
Z and Z ′ disagree about their co-clustering, that is, whether the two objects are in the same cluster
or not. Similarly, let Nagree be the number of pairs of objects for which Z and Z ′ agree about their
co-clustering. We have Ndisagree +Nagree =

(
n
2

)
. The Rand index is defined as the proportion of the

agreements, that is,

Rand =
Nagree(

n
2

) .

It is easy to see that ∥X −X∗∥ℓ1 = 2Ndisagree where the factor of 2 is due to the double-counting
caused by the symmetry of X −X∗. This proves the relation

1

2
d′M =

(
n

2

)
(1− Rand). (15)

The symmetric difference distance (SDD) is another name for Ndisagree, hence d′M/2 = SDD. The
Binder loss is defined as half the expression in (13), that is, d′M/2 = Binder.
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B.1 CONSISTENCY IN Mis IMPLIES CONSISTENCY IN MIRKIN DISTANCE

Let us now show that the consistency in Mis implies consistency in the normalized Mirkin distance
defined as dM := d′M/n

2. See (34, Eqn (9)). It then follows that consistency in Mis implies
consistency in the normalized SDD, normalized Binder loss and the Rand index, as discussed above.
This claim follows from the following inequality:
Proposition 4. We have dM ≤ 2 ·Mis.

Proof. Let X and X∗ be the association matrices corresponding to label vectors z and z∗. Then
d′M (z, z∗) = ∥X − X∗∥ℓ1 as shown in (14). The entries of X − X∗ take values in {−1, 0, 1}.
Assume, WLOG, that the optimal permutation between z and z∗ is the identity. Then:

1. If the label zi = z∗i , then the ith row of X − X∗ has at most “n · Mis” nonzero entries.
There are at most n such rows.

2. If the label zi ̸= z∗i , then the ith row of X −X∗ has at most n nonzero entries. There are at
most “n ·Mis” such rows.

Therefore, d′M = ∥X −X∗∥ℓ1 ≤ n · (n ·Mis)+ (n ·Mis) ·n = 2n2 ·Mis and the result follows.

C EXTRA SIMULATION RESULTS
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(a) n = 100, N = 20,K = 6, p1 = 0.8
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(b) n = 100, N = 20,K = 6, p1 = 0.9

Figure 4: Significant improvements due to local refinement in the case of unbalanced cluster sizes.

Figure 4 shows some extra cases of unbalanced cluster sizes (various values of p1 as defined earlier),
showing the significant improvement of the refinement step in such cases. All the results for the
unbalanced case (including those in the main text) are averaged over 120 runs.

Tables 1, 2 and 3 show the average ARI in all the eight settings (abbreviated Set in the tables)
shown in Figures 2, 3 and 4. The tables show the performance of the methods at noise probabilities
p = 0.45, 0.55 and 0.65 respectively—corresponding to a cross-section of each plot at a line parallel
to the y-axis, crossing the x-axis at the respective value of p. The settings are as follows:

1. Set 1: Balanced, n = 100, N = 20.
2. Set 2: Balanced, n = 100, N = 200.
3. Set 3: Balanced, n = 500, N = 20.
4. Set 4: Balanced, n = 500, N = 200.
5. Set 5: Unbalanced, n = 100, N = 20, p1 = 0.5.
6. Set 5: Unbalanced, n = 100, N = 20, p1 = 0.75.
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Method Refined Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Basic FALSE 1.00 1.00 1.00 1.00 0.82 0.35 0.24 0.093
Basic TRUE 1.00 1.00 1.00 1.00 0.98 0.91 0.86 0.690
BestOfK FALSE 0.32 0.30 0.29 0.31 0.33 0.28 0.24 0.150
BOEM FALSE 0.50 0.48 0.57 0.69 0.38 0.41 0.33 0.310
BOEM TRUE 0.65 0.59 0.94 1.00 0.60 0.70 0.52 0.430

CCPivot FALSE 0.77 1.00 0.77 1.00 0.81 0.78 0.77 0.670
CCPivot TRUE 0.84 1.00 0.81 1.00 0.81 0.75 0.70 0.570
EM FALSE 0.97 0.98 0.97 0.99 0.72 0.41 0.36 0.220
Input FALSE 0.30 0.30 0.30 0.30 0.33 0.28 0.25 0.160
KCC FALSE 1.00 1.00 1.00 1.00 0.91 0.44 0.34 0.130

KCC TRUE 1.00 1.00 1.00 1.00 0.93 0.50 0.41 0.180
SC FALSE 0.99 1.00 1.00 1.00 0.96 0.65 0.65 0.430
SC TRUE 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.880

Table 1: Mean adjusted rand index (ARI) for all settings at noise probability p = 0.45.

Method Refined Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Basic FALSE 0.96 1.00 0.98 1.00 0.66 0.26 0.19 0.077
Basic TRUE 0.97 1.00 0.98 1.00 0.89 0.64 0.57 0.370
BestOfK FALSE 0.20 0.21 0.20 0.20 0.23 0.19 0.17 0.096
BOEM FALSE 0.21 0.21 0.23 0.29 0.33 0.39 0.31 0.240
BOEM TRUE 0.46 0.36 0.56 0.65 0.55 0.62 0.48 0.280

CCPivot FALSE 0.51 0.99 0.51 0.99 0.57 0.52 0.44 0.360
CCPivot TRUE 0.61 0.98 0.54 0.94 0.52 0.36 0.32 0.200
EM FALSE 0.87 0.95 0.91 0.97 0.64 0.33 0.27 0.140
Input FALSE 0.20 0.20 0.20 0.20 0.23 0.18 0.16 0.098
KCC FALSE 0.94 1.00 0.98 1.00 0.67 0.28 0.21 0.081

KCC TRUE 0.97 1.00 0.98 1.00 0.74 0.36 0.27 0.130
SC FALSE 0.95 1.00 0.98 1.00 0.75 0.41 0.35 0.170
SC TRUE 0.97 1.00 0.98 1.00 0.95 0.86 0.79 0.550

Table 2: Mean adjusted rand index (ARI) for all settings at noise probability p = 0.55.

7. Set 6: Unbalanced, n = 100, N = 20, p1 = 0.8.

8. Set 7: Unbalanced, n = 100, N = 20, p1 = 0.9.

D PROOFS

D.1 PROOF OF PROPOSITION 1

For any Z ∈ En
K , we have ∥Z∥2F =

∑
k,i Z

2
ki =

∑
k,i Zki = n. Thus, ∥Z∥2F = ∥P̂jZj∥2F = n for all

j ∈ [N ]. Hence, solving (5) is equivalent to maximizing f(Z) :=
∑N

j=1 wj tr(Z
T P̂jZj) = tr(ZT Z̄)

over En
K , where Z̄ :=

∑
j wjP̂jZj . Let Z = (z1, . . . , zn) and Z̄ = (z̄1, . . . , z̄n). Maximizing

f(Z) =
∑n

i=1⟨zi, z̄i⟩ is a separable problem over i, and maximizing z 7→ ⟨z, z̄i⟩ over EK amounts
to finding the index of the maximum element of z̄i, that is, the “argmax” of z̄i, as claimed.

D.2 PROOF OF THEOREM 1

We have Zj = PjZ
′
j where Z ′

j = (z′j1, . . . , zjn) and z′ji are i.i.d. draws as in (8). Since the algorithm
is invariant to permutations Pj , without loss of generality we assume Pj = In, hence Zj = Z ′

j . We
write X∗ = (Z∗)TZ∗ for the true association matrix. Let En be the all-ones n× n matrix.
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Method Refined Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Basic FALSE 0.790 1.000 0.88 1.00 0.47 0.17 0.120 0.061
Basic TRUE 0.810 1.000 0.89 1.00 0.60 0.33 0.280 0.160
BestOfK FALSE 0.120 0.130 0.12 0.12 0.13 0.11 0.098 0.062
BOEM FALSE 0.085 0.098 0.12 0.11 0.24 0.29 0.320 0.270
BOEM TRUE 0.130 0.150 0.21 0.22 0.36 0.33 0.290 0.150

CCPivot FALSE 0.250 0.690 0.22 0.67 0.28 0.24 0.210 0.140
CCPivot TRUE 0.280 0.540 0.21 0.37 0.22 0.12 0.088 0.051
EM FALSE 0.600 0.920 0.74 0.95 0.46 0.23 0.180 0.078
Input FALSE 0.120 0.120 0.12 0.12 0.14 0.11 0.096 0.059
KCC FALSE 0.590 1.000 0.89 1.00 0.39 0.16 0.100 0.045

KCC TRUE 0.740 1.000 0.89 1.00 0.52 0.24 0.180 0.083
SC FALSE 0.750 1.000 0.88 1.00 0.47 0.19 0.140 0.076
SC TRUE 0.810 1.000 0.89 1.00 0.65 0.40 0.330 0.190

Table 3: Mean adjusted rand index (ARI) for all settings at noise probability p = 0.65.

Lemma 1. Let Z ∼ L(Z∗, p) and let X = ZTZ be the corresponding association matrix. Then,

M := E[X] = (1− ξ)X∗ + ξ
( 1

K
En + (1− 1

K
)In

)
(16)

where ξ = p(2− p).

Proof of Lemma 1. We have Xij = (ZTZ)ij = ⟨zi, zj⟩ and E[zi] = (1− p)z∗i + p 1
K 1K . For i ̸= j,

zi and zj are independent, hence

EXij = ⟨Ezi,Ezj⟩ = ⟨(1− p)z∗i + p
1

K
1K , (1− p)z∗j + p

1

K
1K⟩

= (1− p)2⟨z∗i , z∗j ⟩+ 2p(1− p)
1

K
+ p2

1

K
For i = j, we have E[Xii] = 1. The above shows that

E[X] = (1− p)2X∗ + p(2− p)
1

K
En + p(2− p)

(
1− 1

K

)
In

which simplifies to the desired expression.

Let Z1, . . . , ZN , Z ∼ L(Z∗, p) be independent draws, and let Xj = ZT
j Zj and X = ZTZ be the

associated association matrices. Setting X̄ = 1
N

∑N
t=1Xt, we obtain

E∥X̄ −M∥2F =
∑
ij

E(X̄ij −Mij)
2 =

∑
ij

var(X̄ij) =
1

N

∑
ij

var(Xij).

We have var(Xij) = 0 for i = j. For i ̸= j, one has Xij ∼ Ber((1− ξ)X∗
ij + ξ/K), hence

var(Xij) = (1− ξ)X∗
ij +

ξ

K
−

(
(1− ξ)2X∗

ij + 2
ξ

K
(1− ξ)X∗

ij +
ξ2

K2

)
= ψ(ξ)

(
1− 2

K

)
X∗

ij + ψ(ξ/K)

where ψ(x) = x(1− x). Note that ξ = p(2− p) ∈ (0, 1). It follows that

N · E∥X̄ −M∥2F ≤ ψ(ξ)
(
1− 2

K

)∑
ij

X∗
ij + n2ψ(ξ/K)

where the inequality is due to bounding var(Xii) by the same formula used for var(Xij), i ̸= j.
Let n∗k be the number of entities in cluster k of Z∗, that is, n∗k = (Z∗1n)k. We have

∑
ij X

∗
ij =

∥Z∗1n∥2 =
∑

k(n
∗
k)

2. Using the assumption n∗k ≤ βn/K, we have

N · E∥X̄ −M∥2F ≤ ψ(ξ)
(
1− 2

K

)β2n2

K
+ n2ψ(ξ/K).
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Calculating the center separations. Let M̃ = (1− ξ)X∗ + (ξ/K)En. We note that M − M̃ is
diagonal and

∥M − M̃∥2F = ∥ξ(1− 1/K)In∥2F = ξ2(1− 1/K)2n ≤ ξ2n.

It follows that

E∥X̄ − M̃∥2F = E
∑
i ̸=j

(X̄ij − M̃ij)
2 + E

∑
i

(X̄ii − M̃ii)
2

≤ E∥X̄ −M∥2F + ξ2n.

We obtain

1

n2
E∥X̄ − M̃∥2F ≤ 2

N

[
ψ(ξ)

(
1− 2

K

)β2

K
+ ψ(ξ/K)

]
+

2ξ2

n
.

The matrix M̃ is a K-means matrix with K distinct rows. If zi = r ̸= k = zi′ , then

∥M̃i∗ −Mi′∗∥2 = (1− ξ)2∥X∗
i∗ −X∗

i′∗∥2 = (1− ξ)2(n∗r + n∗k) ≥ 2(1− ξ)2
n

βK

using n∗k ≥ n/(βK), which holds by assumption (9). We have nrδ2r ≥ 2(1− ξ)2( n
βK )2 which gives

the following bound, using (49, Proposition 1),

E[Misr] ≲
1

N(1− ξ)2

[
ψ(ξ)(K − 2)β4 + β2K2ψ(ξ/K)

]
+

ξ2

(1− ξ)2
β2K2

n
.

Here, Misr is the misclassification rate over true cluster r. The dependence on β of the first term is
O(β2) when K = 2 and O(β4) when K > 2. Ignoring this difference, we can simplify the bound,
by noting that K2ψ(ξ/K) = Kξ(1− ξ/K) ≤ Kξ and β2 ≤ β4. Then,

E[Misr] ≲
ξ

(1− ξ)2
2Kβ4

N
+

ξ2

(1− ξ)2
β2K2

n
,

from which the bound in the theorem follows since Mis =
∑

r(n
∗
r/n)Misr.

D.3 PROOF SKETCH FOR THEOREM 2

For the benefit of the readers, we first give a proof sketch for Theorem 2 and its key lemma. A
detailed proof is given in Appendix D.4. The proof of Theorem 2 relies on the following key lemma:

Lemma 2. Let B(δ) denote the set of label matrices Z with at most nδ labels different from Z∗,
and let Ẑ(Z) be the output of Algorithm 3 with initial label matrix Z. If nminp(1 ∧ I)/K → ∞ and
logK
NI → 0, then

P
(
∃Z ∈ B(δ) such that ẑi(Z) ̸= z∗i

)
≤ e

−(1−η′)NI+ 3KnδN
2pnmin (17)

for some η′ = o(1).

The first step is to prove the case δ = 0 in Lemma 2, corresponding to the initial label matrix in
Algorithm 3 being Z∗. If z∗i = e1, then the algorithm fails to recover z∗i if there exists k ̸= 1 such
that Yk := n1bk−nkb1 ≥ 0. Yk is the average of i.i.d. samples, where each sample follows a mixture
model depending on which events among zi = e1, zi = ek, or zi ̸∈ {e1, ek} happens. We compute
the MGF of Yk and obtain the bound

E
[
exp(tNYk/(n1n2(1− p)))

]
≤

[
(1− p̃) e−t(1+o(1)) + q et(1+o(1)) + (K − 2)q e

2qt2

nmin(1−p)2
]N
.

The choice of t has little affect on the last term since nmin is large, so we set t = 1
2 log[(1− p̃)/q] to

minimize (1− p̃)e−t + qet. Under the regularity conditions of the lemma and the definition of I in
(11), we have

E
[
exp(tYk/(n1n2(1− p)))

]
≤

[
2
√
(1− p̃)q + (K − 2)q

](1−o(1))N
= e−(1−o(1))NI .
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Applying the Chernoff inequality, it follows that

P(ẑi(Z∗) ̸= z∗i ) ≤
K∑

k=2

P (Yk ≥ 0) ≤
K∑

k=2

E
[
exp(tYk/(n1n2(1− p)))

]
≤ (K − 1)e−(1−o(1))NI .

Using the assumption logK
NI → 0, we obtain P(ẑi(Z∗) ̸= z∗i ) ≤ e−(1−η)NI . This proves the

case δ = 0. Now we compare Yk’s obtained from Algorithm 3 initialized with label matrices
Z∗ and Z, and denoted by Yk(Z∗) and Yk(Z), respectively. For all Z ∈ B(δ), we show that
|Yk(Z∗)− Yk(Z)| ≤ 3(n1 ∨ nk)nδ if z∗i = e1, giving

P
(
∃Z ∈ B(δ) such that ẑi(Z) ̸= z∗i

)
≤

K∑
k=2

P
(
Yk ≥ −3(n1 ∨ nk)nδ

)
.

We apply the Chernoff inequality with the same choice of t to obtain (17). We arrive at the proof of
Theorem 2. Let Ẑ(Z) be the output of Algorithm 3 with initial label matrix Z. Consider the event
Aδ = {Mis(Z̃, Z∗) ≤ δ}. For any ε > 0,

P
(
Mis(Ẑ(Z̃), Z∗) > ε

)
≤ P

(
Ac

δ

)
+ P

(
∃Z ∈ B(δ′), Mis(Ẑ(Z), Z∗) > ε

)
.

We have P
(
Ac

δ

)
= o(1) under assumption (b1). Letting ε = NIe

−(1−η′)NI+ 3KnδN
2pnmin , one can

verify that the second probability also converges to 0 under the conditions of the theorem and
ε = e−(1−o(1))NI . This proves (20) under assumption (b1). For the proof under assumption (b2),
please see Appendix D.4

D.4 DETAILED PROOF OF THEOREM 2

Let Ẑ(Z) be the output of Algorithm 3 with initial label matrix Z. Consider the event Aδ′ =

{Mis(Z̃, Z∗) ≤ δ′}. For any ε > 0,

P
(
Mis(Ẑ(Z̃), Z∗) > ε

)
≤ P

(
Ac

δ′
)
+ P

(
∃Z ∈ B(δ′), Mis(Ẑ(Z), Z∗) > ε

)
. (18)

If assumption (b1) holds, then let δ′ = δ so that P(Ac
δ) = o(1). If assumption (b2) holds, Then we

let δ′ =
√
nminpIδ/(Kn) so that

Knδ′

nminpI
=

√
Knδ

nminpI
= o(1)

and by Markov’s inequality,

P(Mis(Z̃, Z∗) > δ′) ≤ 1

δ′
E[Mis(Z̃, Z∗)] ≤ δ

δ′
=

√
Knδ

nminpI
= o(1).

Then, (b1) is satisfied with δ = δ′. Therefore, it is enough to only consider assumption (b1) and let
δ′ = δ for the rest of the proof.

Let π∗ be the permutation corresponding to Mis(Z̃, Z∗) in assumption (b1), that is, π∗ =
argminπ

∑n
i=1 1{z̃i ̸= π(z∗i )}. Since we can always assume π∗(z∗) to be the true label, with-

out loss of generality, we can assume π∗ = identity. Writing T2 for the second term in (18),

T2 ≤ P
(
∃Z ∈ B(δ),

n∑
i=1

1{ẑi(Z) ̸= z∗i } > nε
)
≤ P

( n∑
i=1

1
{
∃Z ∈ B(δ), ẑi(Z) ̸= z∗i

}
> nε

)
.

By Markov’s inequality, we obtain

T2 ≤ 1

nε

n∑
i=1

P
(
∃Z ∈ B(δ), ẑi(Z) ̸= z∗i

)
≤ 1

ε
e
−(1−η′)NI+ 3KnδN

2pnmin . (19)

where the second inequality follows from Lemma 2, given assumption (a) of the theorem.
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Assumption (a) of the theorem also implies 3KnδN
2pnmin

= o(NI), so this term can be absorbed into

η′NI , giving T2 ≤ 1
εe

−(1−η′′)NI for some η′′ = o(1). Let

ε = NIe−(1−η′′)NI = e−(1−η)NI ,

where η = η′′ + log(NI)
NI = o(1). It follows from (19) that

T2 ≤ 1

ε
e−(1−η′′)NI =

1

NI
= o(1).

Hence, we obtain (12) as desired.

D.4.1 AN AUXILIARY LEMMA

We state the case δ = 0 in Lemma 2 as a separate lemma and prove it first. Recall that nmin =
mink∈[K] nk where nk is the size of the kth cluster. We have the following lemma.
Lemma 3 (Local refinement with Z∗). Suppose the initial label matrix in Algorithm 3 is Z∗, and
assume nminp(1 ∧ I)/K → ∞ and logK

NI → 0, then

P(ẑi ̸= z∗i ) = e−(1−η)NI (20)

for some η = o(1). As a direct consequence, E[Mis(Ẑ, Z∗)] ≤ e−(1−η)NI .

Proof of Lemma 3. Let q := p/K and p̃ := (K − 1)q := p − q. We first focus on the probability
P(ẑ1 ̸= z∗1). Let C∗

k = {i ≥ 2 : z∗i = ek}. We have bk =
∑

i∈C∗
k
⟨zi, z1⟩. Since z∗1 = e1 by

assumption, z1 takes values e1 and any of eℓ, ℓ ̸= 1 w.p. 1 − p̃ and q. For i ∈ C∗
1 , zi has the same

distribution as z1. For i ∈ C∗
2 , zi takes values e2 and any of eℓ, ℓ ̸= 2 w.p. 1− p̃ and q respectively.

Note that (b1, b2) is independent of z1. It follows that

(b1, b2) | z1 ∼


Bin(n1, 1− p̃)⊗ Bin(n2, q), if z1 = e1
Bin(n1, q)⊗ Bin(n2, 1− p̃), if z1 = e2
Bin(n1, q)⊗ Bin(n2, q), if z1 /∈ {e1, e2}

(21)

where ⊗ is the notation for the product measure, that is, b1 and b2 are independent in each case. The
three possibilities above hold with probability 1−p̃, q and (K−2)q respectively. Let Y = n1b2−n2b1
and let MY (λ) be the moment-generating function (MGF) of Y .

Let ψ(λ; p) = 1−p+peλ be the MGF of a Ber(p) variable. Then, the MGF of Bin(n, p) is ψ(λ; p)n
and hence

E[eλY | z1] = E[eλn1b2 | z1] · Ee−λn2b1 | z1]

=


ψ(λn1; q)

n2 · ψ(−λn2; 1− p̃)n1 if z1 = e1
ψ(λn1; 1− p̃)n2 · ψ(−λn2; q)

n1 if z1 = e2
ψ(λn1; q)

n2 · ψ(−λn2; q)n1 if z1 /∈ {e1, e2}.

Let ϕ(λ;µ) = exp(µ(eλ − 1)) be the MGF of Poi(µ) and note that ψ(λ; p)n ≤ ϕ(λ;np). Then, for
example, we have

E[eλY | z1 = e1] ≤ ϕ(λn1;n2q) · ϕ(−λn2;n1(1− p̃)).

Since ϕ(λ;µ) = exp[µ(λ+ o(λ))] = exp[µλ(1 + o(1))] for λ = o(1), we obtain

E[eλY | z1 = e1] ≤ exp
[
n1n2λq(1 + o(1))− n1n2λ(1− p̃)

(
1 + o(1)

)]
assuming that λ(n1 + n2) = o(1). Then,

E[eλY | z1 = e1] ≤ exp
[
n1n2λ(q − 1 + p̃)

(
1 + o(1)

)]
Take λ = t [n1n2(1− p)]

−1 for some t ≥ 0 to be determined below. Noting q − 1 + p̃ = −(1− p),

E[eλY | z1 = e1] ≤ exp
[
−t

(
1 + o(1)

)]
.
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The case z1 = e2 is argued similarly and we obtain the bound E[eλY | z1 = e2] ≤ exp
[
t
(
1+o(1)

)]
.

For z1 /∈ {e1, e2}, we perform a second-order expansion, assuming λ = o(1):

ϕ(λ;µ) = exp
[
µ
(
λ+

1

2
λ2 + o(λ2)

)]
≤ exp

[
µ
(
λ+ λ2

)]
and obtain

ψ(λn1; q)
n2 · ψ(−λn2; q)

n1 ≤ exp
[
λ2n1n2(n1 + n2)q

]
.

Let γ := 2q/(1− p)2 and let nhar := 2n1n2/(n1 + n2) be the harmonic mean of n1 and n2. Note
that nhar ≥ nmin. We have

λ2n1n2(n1 + n2)q =
t2(n1 + n2)q

n1n2(1− p)2
= γt2/nhar.

To summarize, the conditional MGF satisfies

E[etY/(n1n2(1−p)) | z1] ≤


exp

[
−t

(
1 + o(1)

)]
if z1 = e1

exp
[
t
(
1 + o(1)

)]
if z1 = e2

exp(γt2/nhar) if z1 /∈ {e1, e2}.

Recall that the events z1 = e1, z1 = e2 and z1 /∈ {e1, e2} happen with probability 1 − p̃, q and
(K − 2)q respectively. It follows that

MY (t/(n1n2(1− p))) ≤ (1− p̃) e−t(1+o(1)) + q et(1+o(1)) + (K − 2)q eγt
2/nhar . (22)

Let us set

t =
1

2
log((1− p̃)/q) =

1

2
log

(
1 +

K

p
(1− p)

)
, (23)

so that (1− p̃)e−t = qet =
√
(1− p̃)q. Then, t ≥ 0 and since log(1 + x) ≤ x, we have

t ≤ K(1− p)/(2p). (24)
The condition λ(n1 + n2) = o(1) is satisfied under assumption nminp/K → ∞, since

λ(n1 + n2) =
(n1 + n2)t

n1n2(1− p)
=

2t

nhar(1− p)
≤ K(1− p)/p

nhar(1− p)
≤ K

nminp
= o(1).

Recalling that q = p/K, the exponent of the last term in (22) satisfies
γt2

nhar
≤ γK2(1− p)2

4p2nhar
=

2qK2

4p2nhar
=

K

2nharp
≤ K

2nminp
= o(I)

under the assumption of the lemma. It follows that

MY (t/(n1n2(1− p))) ≤ 2
√
(1− p̃)q eo(t) + (K − 2)qeo(I)

= 2(
√
(1− p̃)q)1+o(1) + (K − 2)qeo(I)

=
[
(
√
(1− p̃)q)o(1) ∨ eo(I)

]
e−I

where the first equality is by eo(t) = (et)o(1) = (
√
(1− p̃)q)o(1) for our choice of t, and the second

equality by the definition (11) of I . Since
√

(1− p̃)q ≤ e−I , we have (
√

(1− p̃)q)o(1) = eo(I),
hence

MY (t/(n1n2(1− p))) ≤ eo(I)e−I = e−(1−o(1))I = e−(1−η)I .

Let Y1, . . . , YN be the i.i.d. copies of Y . By Markov’s inequality,

P
( N∑
j=1

Yj ≥ 0
)
= P

(
eλ

∑N
j=1 Yj ≥ 1

)
≤ Eeλ

∑N
j=1 Yj =MY1(λ)

N ≤ e−(1−η)NI .

The above argument shows that P
(
b2
n2

≥ b1
n1

)
≤ e−(1−η)NI . Repeating the argument for the ith label,

it shows that

P(ẑi(Z∗) ̸= z∗i ) ≤ P
(

max
k=2,...,K

bk
nk

≥ b1
n1

)
≤

K∑
k=2

P
(
bk
nk

≥ b1
n1

)
≤ (K − 1)e−(1−η)NI .

If K = 2, then we have already obtained (20). If K > 2, then

(K − 1)e−(1−η)NI = e−(1−η)NI+log(K−1) = e−(1−η)NI+o(NI).

The term o(NI) can be absorbed into ηNI , so we can still obtain (20).
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D.4.2 DETAILED PROOF OF LEMMA 2

Let i = 1 without loss of generality, and let Z ∈ B(δ), and n̂k = nk(Z), the size of the kth cluster in
the label matrix Z. Let bk(Z∗) = (Z∗

−1X̄1)k and bk(Z) = (Z−1X̄1)k where X̄1 is the first column
of X̄ in the algorithm. Suppose Z has at most nδ labels different from Z∗, then∣∣[n1b2(Z∗)− n2b1(Z

∗)]− [n1b2(Z)− n2b1(Z)]
∣∣ ≤ (n1 ∨ n2)nδ.

and ∣∣[n1b2(Z)− n2b1(Z)]− [n̂1b2(Z)− n̂2b1(Z)]
∣∣ ≤ |n1 − n̂1| · b2(Z) + |n2 − n̂2| · b1(Z)
≤ nδ (n1 + n2).

Let Y (Z∗) = n1b2(Z
∗)− n2b1(Z

∗) and Y (Z) = n̂1b2(Z)− n̂2b1(Z). Combining the two by the
triangle inequality, we obtain

|Y (Z∗)− Y (Z)| ≤ 3(n1 ∨ n2)nδ =: h(δ).

By Markov’s inequality, for λ ≥ 0,

P
(

max
Z∈B(δ)

Y (Z) ≥ 0
)
≤ P

(
Y (Z∗) ≥ −h(δ)

)
= P

(
eλNY (Z∗) ≥ e−λNh(δ)

)
≤ eλNh(δ)E[eλNY (Z∗)]

As in the proof of Lemma 3, we take λ = t [n1n2(1− p)]
−1, with t given by (23). Using the upper

bound (24), we have

λNh(δ) =
3(n1 ∨ n2)nN
n1n2(1− p)

δt ≤ 3KnδN

2pnmin
.

The result follows as in Lemma 3.

E RPM AND BAYESIAN AGGREGATION

One might ask whether RPM is a useful model in practice. For the applications in which all the label
vectors are perturbations of a common true “center”, and our goal is to recover this center, RPM is a
good first approximation. This is the case for Bayesian label aggregation as we argue below. In such
settings, the RPM is like the i.i.d. noise model used in classical regression. Although one can imagine
more complex regression models (like those with heteroscedastic noise, or mixtures of regressions,
etc.), the i.i.d. setting still provides a lot of insights for understanding the more complex models.

E.1 RPM IS A GOOD MODEL FOR A CONCENTRATED POSTERIOR

Lets us now argue how one can arrive at RPM in the context of Bayesian aggregation, by systematically
making some assumptions. First, we note that our goal in the paper is not to prove the “posterior
concentration around the truth”, also known as posterior consistency. This is problem-specific and
out of the scope of this work. We assume that we are working with a model for which posterior
consistency has already been established. The question that we are trying to answer is then this:

Given that the posterior concentrates around the true partition, and given that the
MCMC has converged—that is, we are sampling from this concentrated posterior—
can we obtain a consistent estimate of the center of the posterior (which would be
the true partition) based these samples?

For this purpose, it is enough to assume that we are observing samples from the posterior
p(z1, . . . , zn|D), where D is the observed data, and this posterior is concentrating around z∗ which
is the true partition. For simplicity, let us drop D and note that the posterior is some multivariate
discrete distribution p(z1, . . . , zn). Then, we proceed in steps:

1. First, we address the label-switching issue. Let z be a sample from the posterior and let
permutation π be the minimizer of H(z∗, π(z)) over all K! permutations, where H(·, ·) is
the Hamming distance. We note that π(z) is an equivalent label vector to z (only the cluster
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labels are permuted.) We consider the distribution of π(z) as the posterior distribution rather
than that of z. This is only to simplify the discussion and is without loss of generality, since
our methods are invariant to label-switching. The distribution of π(z) will have a single
mode at z∗ while that of z will have K! modes on all equivalent versions of z∗. Given such
simplification, renaming π(z) to z from now on, the posterior is a multivariate distribution
p(z1, . . . , zn) which is highly concentrated around z∗ = (z∗1 , . . . , z

∗
n). This follows from

the posterior consistency assumption.

2. We claim that this multivariate distribution can be approximated by the product of its
marginals p(z1, . . . , zn) ≈

∏n
i=1 pi(zi). This is intuitively clear for any concentrated

discrete distribution. Alternatively, it is intuitively clear to anyone who has looked at MCMC
samples at stationarity. Each node/object i usually has a most likely assignment which is
z∗i , but it occasionally jumps to some other label with a small probability. The fluctuations
for different nodes are independent; this is intuitively because the bulk of the labels don’t
change their clusters all at once; only a few do at any given time.

3. Non-uniform RPM: Given the independence assumption across i, the most general form
pi(zi) can take is a categorical (a.k.a. Multinomial(1,π)) distribution. The bulk of the mass
of this categorical variable will be on z∗i , and the rest distributed among the other labels. For
example, for some node, i, the label can jump, say, between z∗i = 3 and 5 with the bulk of
the probability on 3. For others it could be that when they jump from z∗i , they land over a
larger collection of labels. Here, we are making the simplifying assumption that for each
node, the mass that is put on anything other than z∗i is uniformly distributed over the label
set [K] \ {z∗i }. This assumption can be removed, and we can work with general categorical
variables, at the expense of making the rates and the analysis more complicated.

4. Inhomogeneous RPM: Given that the noise in the categorical variable is uniform over
[K] \ {z∗i }, we now assume that the probability of taking any of those values is the same
for the all nodes (i.e., independent of i). This is exactly the homogeneous RPM that we
consider. This assumption is easy to remove and we can work with the inhomogeneous
RPM that allows this probability to depend on i.

We do not lose anything in Step 1. Steps 3 and 4 are simplifying steps that are taken for the ease of
understanding and presentation. The main assumption is Step 2, the approximation by the product of
marginals. Below we provide some hard evidence that this is very reasonable in the Bayesian setting.

E.2 HARD EVIDENCE OF NEAR-INDEPENDENCE

We consider the problem of recovering the clusters in a stochastic block model (SBM) which is a
random network model with latent node clusters. Figure 5 shows the Sequential NMI plot for a Gibbs
sampler on a non-parametric SBM (with a Dirichlet Process prior on labels). The sequential NMI
means that we compute the NMI of the partition at iteration t relative to that at iteration t− 1, and
the x-axis shows t. The plot suggests that the chain enters stationarity roughly around iteration 100.

We use the MMD-based approach, described in (19; 20; 38), to compare the posterior joint distribution
of the labels to its approximate versions:

- Figure 6(a) shows the result for samples from iterations 100 to 1000 of the Gibbs sampler.
This is the stationary joint distribution.

- Figure 6(b) shows the result for samples from iterations 1 to 100 of the Gibbs sampler.
This is based on the transient samples (effectively, average joint behavior over the transient
period).

- Figure 6(c) shows the results on a movie rating dataset with complicated dependent joint
distribution (that has nothing to do with SBM).

We refer to (19; 20; 38) for details of how these experiments are performed. The bootstrap MMD
serves as the baseline; those methods whose MMD is closer to the bootstrap are better approximations
of the joint distribution. In general smaller MMD means a better approximation of the joint. Ind Mult
is exactly the approximation by independent multinomials (i.e. product of marginals). The Copula
Mult is a good joint model for the discrete multivariate distribution.
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Figure 5: Sequential NMI for the SBM Gibbs sampler

(a) (b) (c)

Figure 6: MMD histograms between the posterior distribution and its various approximations

We see that for the movie rating data and the transient chain, indeed Copula Mult has a much lower
MMD, than Ind Mult, showing that there is dependence in the joint that is not captured by Ind Mult.
However, for the stationary distribution (Figure 6(a)), the Ind Mult has comparable (and even slightly
smaller MMD) relative to the Copula Mult, and is close to bootstrap. This shows that the product of
marginals is a good approximation in this case, and justifies Step 2 in our reduction.

F COMPARISON WITH STOCHASTIC BLOCK MODEL

Below we outline some of the similarities and differences between the problem of cluster recovery in
SBM and the consensus clustering problem we consider in this paper. Suppose that A is the adjacency
matrix generated from the stochastic block model (SBM) and X is the association matrix generated
from the RPM.

Similarity: A larger value of Xij increases the likelihood of i and j being in the same cluster in
RPM. Similarly, Aij = 1, i.e., there is an edge between i and j, increases the likelihood of i and
j being in the same community in SBM. Therefore, both X and A can be considered proximity
matrices and we can utilize a min-cut algorithm on them to find the clusters. To approximate the
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min-cut algorithm, various researchers have proposed the approach of using a good initialization plus
a local refinement step. This idea can be applied to many clustering problems, including community
detection. In this paper, we show that it can also be applied to consensus clustering.

Difference: The entries of the adjacency matrixA are independent, but the entries of the association
matrix X are not. Indeed, the entries on the same row of X have very strong dependence. The
likelihood function of X is very different from A, but we can still show that a simple local refinement
step outputs optimal labels. The error rate is comparable to the Bayes error rate given by likelihood
ratio test.
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