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APPENDIX

A PROOFS

A.1 PROOF OF CONVERGENCE FOR GATSBI

Proposition 1. Given a fixed generator fφ, the discriminator Dψ∗(θ, x) maximising equation 2
satisfies

Dψ∗(θ, x) =
p(θ|x)

p(θ|x) + qφ(θ|x)
,

and the corresponding loss function for the generator parameters is the Jensen-Shannon divergence
(JSD) between the true and approximate posterior:

Lψ∗(φ) = 2 JSD(p(θ|x) || qφ(θ|x))− log 4

Proof. We start with equation 2. The proof proceeds as for Proposition 1 and 2 in Goodfellow et al.
(2014). For convenience, we elide the arguments of the various quantities, so that qφ denotes qφ(θ|x),
p denotes p(θ|x) and Dψ denotes Dψ(θ, x).

L(φ, ψ) = Ep(x)

[
Ep log Dψ +Eqφ log

(
1−Dψ

)]
= Ep(x)

[∫
p log Dψ dθ +

∫
qφ log(1−Dψ) dθ

]

= Ep(x)

[ ∫ (
p log Dψ +qφ log(1−Dψ)

)
dθ
]
.

For any function g(x) = a log x+b log(1−x), where a, b ∈ R2 \{0, 0} and x ∈ (0, 1), the maximum
of the function is at x = a/a+ b. Hence, L(φ, ψ), for a fixed φ, achieves it’s maximum at:

Dψ∗ =
p

p+ qφ

Note that p(x) drops out of the expression for Dψ∗ since it is common to both terms in L(φ, ψ).
Plugging this into equation 2 and dropping the expectation over x without loss of generality:

Lψ∗(φ) = Ep log
p

p+ qφ
+ Eqφ log

qφ
p+ qφ

= Ep log
2 p

p+ qφ
+ Eqφ log

2 qφ
p+ qφ

− log 4

= 2 JSD(p || qφ)− log 4.

The JSD is always non-negative, and zero only when p(θ|x) = qφ(θ|x). Thus, the global minimum
Lψ∗(φ

∗) = − log 4 is achieved only when the GAN generator converges to the ground-truth posterior
p(θ|x).

A.2 PROOF FOR GATSBI MAXIMIZING ELBO LOSS

Proposition 2. If φ∗ and ψ∗ denote the Nash equilibrium of a min-max game defined by equation 2
then φ∗ also maximises the evidence lower bound of a VAE with a fixed decoder i.e.,

φ∗ = arg max
φ

LE(φ) (8)

= arg max
φ

Ep(x)Eqφ(θ|x)

(
log

π(θ)

qφ(θ|x)
+ log p(x|θ)

)
(9)

Proof. The proposition is trivially true if qφ∗(θ|x) = p(θ|x), i.e., p(θ|x) is the true minimum of both
the JSD and DKL. However, we here show that the equivalence holds even when qφ∗(θ|x) is not
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the true posterior, e.g. if qφ(θ|x) belongs to a family of distributions that does not include the true
posterior.

Given that φ∗ and ψ∗ denote the Nash equilibrium in equation 2, we know from Proposition 1 that
the optimal discriminator is given by

Dψ∗(θ, x) =
p(θ|x)

p(θ|x) + qφ∗(θ|x)
.

To lighten notation, we elide the parameters of the networks and their arguments, denoting Dψ∗(θ|x)
as Dψ∗ , qφ∗(θ|x) as q∗, and so on. If we plug Dψ∗ into Eq. 2, we have

φ∗ = arg min
φ

Ep(θ|x) log Dψ∗ +Eqφ
(

log
(
1−Dψ∗)

)
= arg min

φ
Eqφ log

(
1−Dψ∗

)
(10)

Note that this is true only at the Nash equilibrium, where Dψ∗ is a function of qφ∗ and not qφ. This
allows us to drop the first term from the equation. In other words, if we switch out qφ∗ with any other
qφ in the expectation, equation 10 is no longer minimum w.r.t φ, even though Dψ∗ is optimal.

Let us define Dψ := σ(Rψ), where σ(·) := 1/1 + exp(− ·). Then from equation 3,

σ(Rψ∗) =
p(θ|x)

p(θ|x) + qφ∗
=⇒ 1

1 + e−Rψ∗
=

1

1 + qφ∗/p(θ|x)

Comparing the l.h.s. and r.h.s. of the equation above, we get

Rψ∗ = log
p(θ|x)

qφ∗
. (11)

Since both log and σ are monotonically increasing functions, we also have from equation 10:
φ∗ = arg min

φ
Eqφ log

(
1− σ(R∗)

)
= arg min

φ
Eqφ

(
1− σ(Rψ∗)

)
= arg max

φ
Eqφ σ(Rψ∗)

= arg max
φ

Eqφ(Rψ∗) (12)

In other words, qφ∗ maximises the function Eqφ(Rψ∗). Now, to prove equation 9, we need to show
that LE(φ) < LE(φ∗) ∀ φ 6= φ∗.

LE(φ) = Ep(x)Eqφ (log π(θ)− log qφ + log p(x|θ))

= Ep(x)Eqφ
(

log
p(θ|x)

qφ
+ log

p(x|θ)π(θ)

p(θ|x)

)
= Ep(x)Eqφ

(
log

p(θ|x)

qφ
+ log p(x)

)
= Ep(x)Eqφ

(
log

p(θ|x)

qφ∗
+ log p(x)

)
− Ep(x)(DKL(qφ||qφ∗))

< Ep(x)Eqφ
(

log
p(θ|x)

qφ∗
+ log p(x)

)
= Ep(x)Eqφ (Rψ∗ + log p(x)) from equation 11

< Ep(x)Eqφ∗ (Rψ∗) + Ep(x)Eqφ log p(x) from equation 12

= Ep(x)Eqφ∗ (Rψ∗ + log p(x)) + Ep(x)Eqφ log p(x)− Ep(x)Eqφ∗ log p(x)

= Ep(x)Eqφ∗
(

log
p(θ|x)

qφ∗
+ log p(x)

)
= LE(φ∗)

=⇒ LE(φ) < LE(φ∗)

Hence, the approximate posterior obtained by optimising the GAN objective also maximises the
evidence lower bound of the corresponding VAE.
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A.3 CONNECTION BETWEEN LFVI, DEEP POSTERIOR SAMPLING AND GATSBI

Adversarial inference approaches maximise the Evidence Lower Bound (ELBO) equation 6 to train a
VAE, and use a discriminator to approximate intractable ratios of densities in the loss (see Table 1).
Likelihood-free variational inference (Tran et al., 2017, LFVI) is one such method.

Table 1: Comparison of adversarial inference algorithms: BiGAN (Donahue et al., 2019), ALI
(Dumoulin et al., 2016), AAE (Makhzani et al., 2015), AVB (Mescheder et al., 2017), and LFVI
(Tran et al., 2017).

ALGORITHM DISCRIMINATOR RATIO GENERATOR LOSS FUNCTION

BIGAN, ALI pα(x|u)p(u)/qφ(u|x)p(x) JSD(pα(u, x)||qφ(u, x))
AAE p(u)/qφ(u) JSD(p(u)||qφ(u))
AVB p(u)p(x)/qφ(u|x)p(x) DKL(qφ(u|x)||p(u))
LFVI p(u|x)p(x))/qφ(u|x)p(x) DKL(qφ(u|x)||p(u|x))
GATSBI p(u|x)p(x)/qφ(u|x)p(x) JSD(p(u|x)||qφ(u|x))

In the most general formulation, LFVI learns a posterior over both latents u and global parameters β
which are latents shared across multiple observations i.e., qφ(z, β|x) and maximises the ELBO given
by

LLF(φ) = Eqφ(β) log
p(β)

qφ(β)
+ Eqφ(u|x)p′(x) log

p(x|u)p(u)

qφ(u|x)p′(x)
+ const. (13)

where p′(x),3 an empirical distribution over observations, and not necessarily p(x), the marginal
likelihood of the simulator. A discriminator, Dψ(x, u),4 is trained with the cross-entropy loss to
approximate the intractable ratio p(x|u)p(u)

qφ(u|x)p′(x) in the second term. Using the nomenclature from
Huszár (2017), we note that Dψ is joint-contrastive: it simultaneously discriminates between tuples
(x, u) ∼ p(x|u)p(u) and (x̂, û) ∼ qφ(û|x̂)p′(x̂). GATSBI, by contrast, is prior-contrastive: its
discriminator only discriminates between parameters θ, given a fixed x.

However, when p′(x) = p(x) and β is constant, the LFVI discriminator becomes prior-contrastive,
equation 13 is a function of both the discriminator parameters ψ and generator parameters φ, and it
differs from GATSBI only by a single term i.e., from equation 2 and equation 13 and ignoring the
constant:

LGATSBI(φ, ψ) = −LLF(φ, ψ) + Eqφ(u|x)p(x) log Dψ(x, u) (14)

The second term corresponds to the non-saturating GAN loss (Goodfellow et al., 2014). In this

1000 10 000 100 000
Number of simulations

0.50

0.75

1.00

C
2S

T 
(a

cc
ur

ac
y)

Two Moons

DPS
LFVI
GATSBI

1000 10 000 100 000
Number of simulations

0.50

0.75

1.00

C
2S

T 
(a

cc
ur

ac
y)

SLCPA B

Figure 6: GATSBI, LFVI and Deep Poseterior Sampling (DPS) on benchmark problems. Mean
C2ST score (± standard error of the mean) for 10 observations each. A. On Two Moons, the C2ST
scores for GATSBI (red), LFVI (navy) and Deep Posterior Sampling (DPS, yellow) are qualitatively
similar across all simulation budgets and on B. SLCP, DPS is slightly worse than LFVI and GATSBI.

3In Tran et al. (2017), p′(x) is denoted q(x)
4denoted rψ(x, u) in Tran et al. (2017)
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setting, with an optimal discriminator, GATSBI minimises a JSD, whereas LFVI minimises the
reverse DKL.

Adler and Öktem (2018) introduce Deep Posterior Sampling which also implements an adversarial
algorithm for posterior estimation. The set-up is similar to GATSBI, but GANs are trained using a
Wasserstein loss as in Arjovsky et al. (2017). The Wasserstein loss imposes stronger conditions on the
GAN networks in order for the generator to recover the target distribution, i.e., the discriminator has
to be 1-Lipschitz and the generator K-Lipschitz (Arjovsky et al., 2017; Qi, 2018). However, the JSD
loss function allowed us to outline GATSBI’s connection to adversarial VAEs and subsequently its
advantages for SBI (see Sec. 2.4, Suppl. Sec. A.2 and the discussion above). Whether this would also
be possible with the Wasserstein loss remains a subject for future work. Nevertheless, the sequential
extension of GATSBI using the energy-based correction (see Sec. 2.5 and Supp. Sec. A.4) could in
principle also be used with the Wasserstein metric.

Mescheder et al. (2018) state that the WGAN converges only when the discriminator minimizes the
Wasserstein metric at every step, which does not happen in practice. Fedus et al. (2017) argue that a
GAN generator does not necessarily minimise a JSD at every update step since the discriminator is
optimal only in the limit of infinite data. Hence, neither asymptotic property can be used to reason
about GAN behaviour in practice. As a consequence, it is difficult to predict the conditions under
which LFVI, or Deep Posterior Sampling would outperform GATSBI, or vice-versa. Nevertheless,
given the same networks and hyperperparameters (with slight modifications to the discriminator for
Deep Posterior Sampling, see App. D.1 for details), we found empirically that LFVI, Deep Posterior
Sampling and GATSBI are qualitatively similar on Two Moons, and that Deep Posterior Sampling
is slightly worse that the other two algorithms on SLCP: i.e., there is no advantage to using one
algorithm over the other on the problems investigated (see Fig. 6).

A.4 SEQUENTIAL GATSBI

For many SBI applications, the density estimator is only required to generate good posterior samples
for a particular experimentally observed data xo. This can be achieved by training the density
estimator using samples θ from a proposal prior π̃(θ) instead of the prior π(θ). The proposal prior
ideally produces parameters θ that are localised around the modes of p(θ|xo) and can guide the
density estimator towards inferring a posterior that is accurate for x ≈ xo. If we replace the true prior
π(θ) with a proposal prior π̃(θ) = qφ(θ|xo), i.e., the posterior estimated by GATSBI, and sample
from the respective distributions

θ, x ∼ π̃(θ)p(x|θ),
the corresponding GAN loss (from equation equation 2) is:

L̃(φ, ψ) = Eπ̃(θ)p(x|θ)p(z)
[

log Dψ(θ, x) + log(1−Dψ(fφ(z, x), x))
]

(15)

= Ep̃(θ|x)p̃(x) log Dψ(θ, x) + Eqφ(θ|x)p̃(x) log(1−Dψ(θ, x)). (16)

This loss would allow us to obtain a generator that produces samples θ that are likely to generate
outputs x close to xo, when plugged into the simulator. However, Proposition 1 in Appendix A.1
shows that this loss would result in qφ(θ|x) converging to the proposal posterior p̃(θ|x) rather than
the ground-truth posterior p(θ|x). In order to learn a conditional density that is accurate for x ≈ xo

but nevertheless converges to the correct posterior, we need to correct the approximate posterior for
the bias due to the proposal prior. We outline three different approaches to this correction step:

Using energy-based GANs Although it is possible to use correction factors directly in the GATSBI
loss function, as we outline in the next section, these corrections can lead to unstable training
(Papamakarios et al., 2019). Here, we outline an approach in which we train on samples from the
proposal prior without explicitly introducing correction factors into the loss function. Instead, we
change the setup of the generator to produce ‘corrected’ samples, which are then used to compute the
usual cross-entropy loss, and finally we train the discriminator and generator.

Let us start by introducing the correction factor ω(θ, x) = π(θ)
π̃(θ)

p̃(x)
p(x) , such that

p(θ|x) = p̃(θ|x) ω(θ, x). (17)

In the original formulation of GATSBI, sampling from qφ(θ|x) entails sampling latents z ∼ p(z), and
transforming them by a deterministic function fφ(x, z) to get parameters θ (see equation equation 1).
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Following the energy-based GAN formulation (Azadi et al., 2019; Che et al., 2020), we define an
intermediate latent distribution pt(z):

pt(z) = p(z)(ω(fφ(x, z), x))−1. (18)

pt(z) is the distribution of latent variables that, when passed through the function fφ(x, z), are most
likely to produce samples from the approximate proposal posterior q̃φ(θ|x) = qφ(θ|x)(ω(θ, x))−1.
For GANs, p(z) is typically a tractable distribution whose likelihood can be computed, and from
which one can sample, and thus, we can use MCMC or rejection sampling to also sample from pt(z)
(see Appendix D.1 for details). The resulting loss function is:

L̃(φ, ψ) = Ep̃(θ|x)p̃(x) log Dψ(θ, x) + Ept(z)p̃(x) log(1−Dψ(fφ(x, z), x)) = Ep̃(x)

[
L1 + L2

]
.

(19)

Note that there are no explicit correction factors in the loss.

We now show that optimising the loss function equation 19 leads to the generator converging to the
correct posterior distribution. Let us first focus on the second term L2:

L2 = Ept(z) log(1−Dψ(fφ(x, z), x))

=

∫
pt(z) log(1−Dψ(fφ(x, z), x))

=

∫
p(z) (ω(fφ(x, z), x))−1 log(1−Dψ(fφ(x, z), x)) from equation 18

=

∫
qφ(θ|x) (ω(θ, x))−1 log(1−Dψ(θ, x)) reparam. trick

=

∫
q̃φ(θ|x) log(1−Dψ(θ, x))

= Eq̃φ(θ|x) log(1−Dψ(θ, x)).

Thus, from Proposition 1, we can conclude that by optimising the loss function equation 19,
q̃φ(θ|x) → p̃(θ|x). This implies that the generator network, which represents qφ(θ|x), converges
to p(θ|x), since both the approximate and target proposal posteriors are related respectively to the
approximate and true posteriors by the same multiplicative factor ω(θ, x). Note that the generator is
more accurate in estimating the posterior given xo (or x ≈ xo), i.e., p(θ|xo) than given x far from xo,
since it is trained on samples from the proposal prior.

In practice, this scheme does produce improvements in the learned posterior. However, it is compu-
tationally expensive, because every update to the generator and discriminator requires a round of
MCMC or rejection sampling to obtain the ‘corrected’ samples. Moreover, if we use the generator
from the previous round as the proposal prior in the next round, we need to train a classifier to
approximate ω(θ, x) at every round.5 Finally, this approach has additional hyperparameters that
need to be tuned during GAN training, which could make it prohibitively difficult to use for most
applications.

Below, we outline theoretical arguments for two additional approaches, although we only provide
empirical results for the second approach.

Using importance weights Lueckmann et al. (2017) solve the problem of bias from using a
proposal prior by introducing importance weights in their loss function. One can use the same trick
for GATSBI,by introducing the importance weights ω(θ, x) = π(θ)

π̃(θ)
p̃(x)
p(x) into the loss defined in

equation 16:

L̃(φ, ψ) = Eπ̃(θ)p(x|θ)p(z)
[
ω(θ, x) log Dψ(θ, x) + log(1−Dψ(fφ(z, x), x))

]
= L1 + L2. (20)

5Note that the correction factor could be computed in closed form if we had a generator with an evaluable
density: we would not have to train a classifier to approximate it.

5



Under review as a conference paper at ICLR 2022

Optimising this loss allows qφ(θ|x) to converge to the true posterior p(θ|x). Let us focus on the first
term L1:

L1 = Ep̃(θ|x)p̃(x)ω(θ, x) log Dψ(θ, x)

=

∫
x

∫
θ

p̃(x)p̃(θ|x)
π(θ)

π̃(θ)

p̃(x)

p(x)
log Dψ(θ, x)

=

∫
x

∫
θ

p(x|θ)π̃(θ)
π(θ)

π̃(θ)

p̃(x)

p(x)
log Dψ(θ, x)

=

∫
x

∫
θ

p(x|θ)π(θ)
p̃(x)

p(x)
log Dψ(θ, x)

=

∫
x

∫
θ

p(x)p(θ|x)
p̃(x)

p(x)
log Dψ(θ, x)

=

∫
x

∫
θ

p̃(x)p(θ|x) log Dψ(θ, x)

= Ep̃(x)p(θ|x) log Dψ(θ, x).

Thus, from Proposition 1, we can conclude that by optimising the loss function equation 20, the
generator qφ(θ|x) converges to the true posterior. However, the importance-weight correction could
lead to high-variance gradients (Papamakarios et al., 2019). This would be particularly problematic
for GANs, where the loss landscape for each network is modified with updates to its adversary, and
there is no well-defined optimum. High-variance gradients could cause training to take longer or even
prevent it from converging altogether.

Using inverse importance weights Since using importance weights in the loss can lead to
high-variance gradients, we could instead consider using the inverse of the importance weights
(ω(θ, x))−1 = π̃(θ)

π(θ)
p(x)
p̃(x) in the second term in equation 16:

L̃(φ, ψ) = Ep̃(θ|x)p̃(x) log Dψ(θ, x) + Eqφ(θ|x)p̃(x) (ω(θ, x))−1 log(1−Dψ(θ, x)) = L1 + L2.

(21)

Optimising L̃(φ, ψ) from equation 21 will result in the generator approximating the true posterior at
convergence. Focusing on the second term of the loss function L2:

L2 = Eqφ(θ|x)p̃(x) (ω(θ, x))−1 log(1−Dψ(θ, x))

=

∫∫
p̃(x)qφ(θ|x)

π̃(θ)

π(θ)

p(x)

p̃(x)
log(1−Dψ(θ, x))

=

∫∫
p̃(x)q̃φ(θ|x) log(1−Dψ(θ, x))

= Ep̃(x)q̃φ(θ|x) log(1−Dψ(θ, x)).

Thus, from Proposition 1, we can conclude that by optimising the loss function equation 21, q̃φ(θ|x)
converges to p̃(θ|x). Since q̃φ(θ|x) differs from qφ(θ|x) by the same factor as p̃(θ|x) from p(θ|x),
i.e., (ω(θ, x))−1 (see equation equation 17), this implies that qφ(θ|x)→ p(θ|x).
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B TRAINING ALGORITHMS

Algorithm 1 GATSBI
Input : prior π(θ), simulator p(x|θ), generator fφ, discriminator Dψ , learning rate λ
Output: Trained GAN networks fφ∗ and Dψ∗

Θ = {θ1, θ2, . . . , θn}
i.i.d∼ π(θ)

X = {x1, x2, . . . , xn} ∼ p(xi|θi)
while not converged do

for discriminator iterations do
Sample mini-batch Xd, Θd from X, Θ

Z ∼ p(z), Θ̂d = fφ(Z,Xd)

L =
∑

Xd

(∑
Θd

log Dψ(Θd,Xd) +
∑

Θ̂d
log(1−Dψ(Θ̂d,Xd))

)
ψ ← ψ + λ∇ψL

end for
for generator iterations do

Sample mini-batch Xg , Θg from X, Θ

Z ∼ p(z), Θ̂g = fφ(Z,Xg)

L = −
∑

Xg

∑
Θ̂g

log(1−Dψ(Θ̂g,Xg))

φ← φ+ λ∇φL
end for

end while

Algorithm 2 Sequential GATSBI with energy-based correction
Input: π(θ), simulator p(x|θ), classifier ω = 1, observation xo, fφ, Dψ , learning rate λ
Output: Trained GAN networks fφ∗ and Dψ∗

for i = 1 · · · number of rounds do
Θi = {θ1, θ2, . . . , θn}

i.i.d∼ π(θ)
Xi = {x1, x2, . . . , xn} ∼ p(x|θ)
if i > 1 then:

ωθ ← max
ωθ

log σ(ωθ(Θ0)) + log(1− σ(ωθ(Θi)))

ωx ← max
ωx

log σ(ωx(X0)) + log(1− σ(ωx(Xi)))

ω = ωθ
ωx

end if
while not converged do

for discriminator iterations do
Sample mini-batch Xd, Θd from Xi, Θi

Z ∼ pt(Z) = p(Z)(ω(fφ(Z,Xd),Xd))
−1

Θ̂d = fφ(Z,Xd)

L =
∑

Xd
(
∑

Θd
log Dψ(Θd,Xd) +

∑
Θ̂d

log(1−Dψ(Θ̂d,Xd)))
ψ ← ψ + λ∇ψL

end for
for generator iterations do

Sample mini-batch Xg , Θg from Xi, Θi

Z ∼ pt(Z) = p(Z)(ω(fφ(Z,Xg),Xg))
−1

Θ̂g = fφ(Z,Xg)

L = −
∑

Xg

∑
Θ̂g

log(1−Dψ(Θ̂g,Xg))

φ← φ+ λ∇φL
end for

end while
π(θ) = fφ(θ;xo)

end for
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Algorithm 3 Sequential GATSBI with inverse importance weights
Input: π(θ), simulator p(x|θ), classifier ω = 1, observation xo, fφ, Dψ , learning rate λ
Output: Trained GAN networks fφ∗ and Dψ∗

for i = 1 · · · number of rounds do Θi = {θ1, θ2, . . . , θn}
i.i.d∼ π(θ) Xi = {x1, x2, . . . , xn} ∼

p(x|θ)
if i > 1 then:

ωθ ← max
ωθ

log σ(ωθ(Θ0)) + log(1− σ(ωθ(Θi)))

ωx ← max
ωx

log σ(ωx(X0)) + log(1− σ(ωx(Xi)))

ω = ωθ
ωx

end if
while not converged do

for discriminator iterations do
Sample mini-batch Xd, Θd from Xi, Θi

Z ∼ p(Z)

Θ̂d = fφ(Z,Xd)

L =
∑

Xd
(
∑

Θd
log Dψ(Θd,Xd) +

∑
Θ̂d

(ω(Θ̂d,Xd))
−1 log(1−Dψ(Θ̂d,Xd)))

ψ ← ψ + λ∇ψL
end for
for generator iterations do

Sample mini-batch Xg , Θg from Xi, Θi

Z ∼ p(Z)

Θ̂g = fφ(Z,Xg)

L = −
∑

Xg

∑
Θ̂g

(ω(Θ̂g,Xg))
−1 log(1−Dψ(Θ̂g,Xg))

φ← φ+ λ∇φL
end for

end while
π(θ) = fφ(θ;xo)

end for
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C ADDITIONAL RESULTS

C.1 POSTERIORS FOR BENCHMARK PROBLEMS

We show posterior plots for the benchmark problems: SLCP (Fig. 7) and Two Moons (Fig. 8). In
both figures, panels on the diagonal display the histograms for each parameter, while the off-diagonal
panels show pairwise posterior marginals, i.e., 2D histograms for pairs of parameters, marginalised
over the remaining parameter dimensions.

Figure 7: Inference for one test observation of the SLCP problem. Posterior samples for GATSBI
trained on 100k simulations (red), and reference posterior samples (black). The GATSBI posterior
samples cover well the disjoint modes of the posterior, although GATSBI sometimes produces
samples in regions of low density in the reference posterior.

C.2 SEQUENTIAL GATSBI

We found that sequential GATSBI with the energy-based correction produced a modest improvement
over amortised GATSBI for the Two Moons model with 1k and 10k simulation budgets, and no
improvement at all with 100k (see Fig. 9). The inverse importance weights correction did not produce
an improvement for any simulation budget. Sequential GATSBI performance was also sensitive
to hyperparameter settings and network initialisation. We hypothesise that further improvement is
possible with better hyperparameter or network architecture tuning.
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Figure 8: Inference for one test observation of the Two Moons problem. Posterior samples for
GATSBI trained on 100k simulations (red), and reference posterior samples (black). GATSBI
captures the global bi-modal structure in the reference posterior, but not the local crescent shape. It
also generates some samples in regions of low density in the reference posterior.
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Figure 9: Sequential GATSBI performance for the Two Moons Model. The energy-based correction
(EBM) results in a slight improvement over amortised GATSBI for 1k and 10k simulations, but the
inverse importance weights correction does not.
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D IMPLEMENTATION DETAILS

All networks and training algorithms were implemented in PyTorch (Paszke et al., 2019). We used
Weights and Biases (Biewald, 2020) to log experiments with different hyperparameter sets and
applications. We ran the high-dimensional experiments (camera model and shallow water model) on
Tesla-V100 GPUs: the shallow water model required training to be parallelised across 2 GPUs at a
time, and took about 4 days to converge and about 1.5 days for the camera model on one Tesla V100.
We used RTX-2080Tis for the benchmark problems: the amortised GATSBI runs lasted a maximum
of 1.5 days for the 100k budget; the sequential GATSBI runs took longer with the maximum being 8
days for the energy-based correction with a budget of 100k. On similar resources, NPE took about 1
day to train on the shallow water model, and 3 weeks and 2 days to train on the camera model. NPE
took about 10 min for 100k simulations on both benchmark problems. SMC-ABC and rejection-ABC
both took about 6s on the benchmark problems with a budget of 100k.

D.1 SIMPLE-LIKELIHOOD COMPLEX POSTERIOR (SLCP) AND TWO-MOONS

Prior and simulator For details of the prior and simulator, we refer to Lueckmann et al. (2021).

GAN architecture The generator was a 5-layer MLP with 128 hidden units in the first four layers.
The final layer had output features equal to the parameter dimension of the problem. A leaky ReLU
nonlinearity with slope 0.1 followed each layer. A noise vector sampled from a standard normal
distribution (two-dimensional for Two Moons, and 5-dimensional for SLCP) was injected at the
fourth layer of the generator. The generator received the observations as input to the first layer, used
the first three layers to embed the observation, and multiplied the embedding with the injected noise
at the fourth layer, which was then passed through the subsequent layers to produce an output of the
same dimensions as the parameters. The discriminator was a 6-layer MLP with 2048 hidden units
in the first five layers and the final layer returned a scalar output. A leaky ReLU nonlinearity with
slope 0.1 followed each layer, except for the last, which was followed by a sigmoid nonlinearity.
The discriminator received both the observations and the parameters sampled alternatively from the
generator and the prior as input. Observations and parameters were concatenated and passed through
the six layers of the network. For Deep Posterior Sampling, the discriminator did not have the final
sigmoid layer.

Training details The generator and discriminator were trained in parallel for 1k, 10k and 100k
simulations, with a batch size = min(10% of the simulation budget, 1000). For each simulation
budget, 100 samples were held out for validation. We used 10 discriminator updates for 1k and 10k
simulation budgets, and 100 discriminator updates for the 100k simulation budget, per generator
update. Note that the increase in discriminator updates for 100k simulations is intended to compensate
for the reduced relative batch size i.e., 1000 batches = 0.01%. The networks were optimised with the
cross-entropy loss. We used the Adam optimiser (Kingma and Ba, 2015) with learning rate=0.0001,
β1=0.9 and β2=0.99 for both networks. We trained the networks for 10k, 20k and 20k epochs for
the three simulation budgets respectively. To ensure stable training, we used spectral normalisation
(Miyato et al., 2018) for the discriminator network weights. For the comparison with LFVI, we
kept the architecture and hyperparameters the same as for GATSBI, but trained the generator to
minimise L(φ) = Eqφ(θ|x)[log

1−Dψ(θ,x)
Dψ(θ,x) ]. Similarly, for Deep Posterior Sampling we kept the same

architecture (minus the final sigmoid layer for the discriminator) and hyperparameters, but trained the
generator and discriminator on the Wasserstein loss: L(φ, ψ) = Ep(θ|x) Dψ(θ)− Eqφ(θ|x) Dψ(θ).

Optimised hyperparameters for Two Moons model The generator was a 2-layer MLP with 128
hidden units in the first layer and 2 output features in the second layer (same as the parameter
dimension). Each layer was followed by a leaky ReLU nonlinearity with slope 0.1. Two-dimensional
white noise was injected into the second layer, after it was multiplied with the output of the first layer.
The discriminator was a 4-layer MLP with 2048 hidden units in the first 3 layers each followed by
a leaky ReLU nonlinearity of slope 0.1, and a single output feature in the last layer followed by a
sigmoid nonlinearity. We trained the networks in tandem for approximately 10k, 50k and 25k epochs
for the 1k, 10k and 100k simulation budgets respectively. There were 10 discriminator updates and
10 generator updates per epoch, with the batch size set to 10% of the simulation budget (also for
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100k simulations). All other hyperparameters (learning rate, β1, β2, etc.) were the same as for the
non-optimised architecture.

Hyperparameters for sequential GATSBI The architecture of the generator and discriminator
were the same as for amortised GATSBI. We trained the networks for 2 rounds. In the first round,
the networks were trained with the same hyperparameters as for amortised GATSBI, on samples
from the prior: the only exceptions were the number of samples we held out for the 1k budget (10
instead of 100) and the number of discriminator updates per epoch for the 100k budget (10 instead of
100). Both exceptions were to ensure that there were always 10 discriminator updates per epoch, and
speeding up training as much as possible. In the second round, the networks were trained using the
energy-based correction with samples from the proposal prior, as well as samples from the prior used
in the first round. All other hyperparameters were the same as for round one. The simulation budget
was split equally across the two rounds, and the networks were trained anew for each of 10 different
observations. The number of epochs was the same for the first and second round: 5k, 10k and 20k for
the 1k, 10, and 100k budget respectively. We trained 2 classifiers at the beginning of round two: one
to approximate the ratio π(θ)

π̃(θ) and the other to approximate p(x)
p̃(x) . Both classifiers were 4-layer MLPs

with 128 hidden units in each layer, and a ReLU nonlinearity following each layer. The classifiers
were trained on samples from the proposal prior and prior, and the proposal marginal likelihood
and likelihood respectively, using the MLPClassifier class with default hyperparameters (except for
"max_iter"=5000) from scikit-learn (Pedregosa et al., 2011). For the energy-based correction, we used
rejection sampling to sample from the corrected distribution pt(z): for a particular observation x, we
sampled z p(z) = N (0, 1), evaluated the probability of acceptance p = (ω(fφ(z, x), z))−1/M , and
accepted z if u < p where u is a uniform random variable. To compute the scale factor M , we simply
took the maximum value of p(z)ω(fφ(z, x), z))−1 within each batch. For the inverse importance
weights correction, we computed (ω(θ, x))−1, used it to calculate the loss as in Equation equation 21
for each discriminator and generator update in the second round.

D.2 SHALLOW WATER MODEL

Prior θ ∼ N (µ1100,Σ), θ ∈ R100

µ = 10,Σij = σ exp(−(i− j)2/τ), σ = 15, τ = 100.

The values for µ and Σ were chosen to ensure that the different depth profile samples produced
discernible differences in the corresponding simulated surface waves, particularly in Fourier space.
For example, combinations of µ values > 25 (deeper basins), σ values < 10 and τ values > 100
(smoother depth profiles) resulted in visually indistinguishable surface wave simulations.

Simulator

x|θ = f(θ) + 0.25ε

ε =

 ε1,1 . . . ε1,100

...
. . .

...
ε200,1 . . . ε200,100

 εij ∼ N (0, 1).

f(θ) is obtained by solving the 1D Saint-Venant equations on a 100-element grid, performing a 2D
Fourier transform and stacking the the real and imaginary part to form a 2×100×100-dimensional
array.

The equations were solved using a semi-implicit solver (Backhaus, 1983) with a weight of 0.5 for each
time level, implemented in Fortran (F90). The time-step size dt was set to 300s and the simulation
was run for a total of 3600s. The grid spacing dx was 0.01, with dry cells at both boundaries using a
depth of −10. We used a bottom drag coefficient of 0.001 and gravity=9.81m/s2. An initial surface
disturbance of amplitude 0.2 was injected at x = 2, to push the system out of equilibrium.

We chose to perform inference with observations in the Fourier domain for the following reason.
Since waves are a naturally periodic delocalised phenomenon, it makes sense to run inference on
their Fourier-transformed amplitudes, so that convolutional filters can pick up on localised features.
We used the scipy fft2 package (Virtanen et al., 2020).
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GAN architecture The generator network was similar to the DCGAN generator (Radford et al.,
2015). There were five sequentially stacked blocks of the following form: a 2D convolutional layer,
followed by a batch-norm layer and ReLU nonlinearity, except for the last layer, which had only a
convolutional layer followed by a tanh nonlinearity. The observations input to the generator were of
size batch size × 200 × 100. The input channels, output channels, kernel size, stride and padding
for each of the six convolutional layers were as follows: 1 - (2, 512, 4, 1, 0), 2 - (512, 256, 4, 2, 1),
3 - (256, 128, 4, 2, 1), 4 - (128, 128, 4, 2, 1), 5 - (128, 1, 4, 2, 1). The final block was followed by
a fully-connected readout layer that returned a 100-dimensional vector. Additionally, we sampled
25-dimensional noise, where each element of the array was drawn independently from a standard
Gaussian. and added it to the output of the tanh layer, just before the readout layer.

The discriminator network was similar to the DGCAN discriminator: it contained embedding layers
that mirrored the generator network minus the injected noise, followed by 4 fully-connected layers
with 256 units each and a leaky ReLU nonlinearity of slope 0.2 after each fully-connected layer. The
final fully-connected layer, however, was followed by a sigmoid nonlinearity. The discriminator
received both the Fourier-transformed waves and a depth profile alternatively from the generator and
the prior as input. The Fourier-transformed waves were passed through the embedding layers, the
embedding was concatenated with the input depth profile and then passed through the fully-connected
layers.

Training details The two networks were trained in parallel for ∼40k epochs, with 100k training
samples, of which 100 were held out for testing. We used a batch size of 125, the cross-entropy loss
and the Adam optimiser with learning rate= 0.0001, β1 = 0.9 and β2 = 0.99 for both networks.
In each epoch, there was 1 discriminator update for every generator update. To ensure stability of
training, we used spectral normalisation for the discriminator weights, and clipped the gradient norms
for both networks to 0.01, unrolled the discriminator(Metz et al., 2017) with 10 updates i.e., in each
epoch, we updated the discriminator 10 times, but reset it to the state after the first update following
the generator update.

NPE and NLE We trained NPE and NLE as implemented in the sbi package (Tejero-Cantero et al.,
2020) on the shallow water model. We set training hyperparameters as described in Lueckmann et al.
(2021), except for the training batch size which we set to 100 for NPE and NLE. The number of
hidden units in the density and ratio estimators which we set to 100 (default is 50). For NPE, we
included an embedding net to embed the 20k-dimensional observations to the number of hidden units.
This embedding net was identical to the one used for the GATSBI discriminators, and it was trained
jointly with the corresponding density or ratio estimators. We trained with exactly the same 100k
training samples used for GATSBI. MCMC sampling parameters for NLE were set as in Lueckmann
et al. (2021).

To calculate correlation coefficients for the GATSBI and NPE posteriors, we sampled 1000 depth
profiles from the trained networks for each of 1000 different observations from a test set. We then
calculated the mean of the 1000 depth profile samples per observation, and computed the correlation
coeffiecient of the mean with the corresponding groundtruth depth profile. Thus, we had 1000
different correlation coefficients; we report the mean and the standard deviation for these correlation
coefficients.

Simulation-based calibration (Talts et al., 2020) offers a way to evaluate simulation-based inference
in the absence of ground-truth posteriors. SBC checks whether the approximate posterior qφ(θ|x),
when marginalised over multiple observations x, converges to the prior π(θ). A posterior that
satisfies this condition is well-calibrated, although it is not a sufficient test of the quality of the
learned posterior, since a posterior distribution that is equal to the prior would also be well-calibrated.
However, when complemented with posterior predictive checks it provides a good test for intractable
inference problems.

We performed SBC on the shallow water model. To obtain a test data set {θi, xi}Ni=1, we sampled
N = 1000 parameters θi from the prior and generated corresponding observations xi from the
simulator. For each xi, we then obtained a set of L = 1000 posterior samples using the GATSBI
generator and calculated the rank of the test parameter θi under the L GATSBI posterior samples
as described in algorithm 1 in Talts et al. (2020), separately for each posterior dimension. For
the ranking we used a Gaussian random variable with zero mean and variance 10. We then used
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bins of n = 20 to compute and plot the histogram of the rank statistic. According to SBC, if the
marginalised approximate posterior truly matched the prior, the rank statistic for each dimension
should be uniformly distributed. Performing SBC can be computationally expensive because the
inference has to be repeated for every test data point. In our scenario it was feasible only because
GATSBI and NPE perform amortised inference and do not require retraining or MCMC sampling
(as in the case of NLE) for every new x. We followed the same procedure to do SBC on NPE as for
GATSBI.

D.3 NOISY CAMERA MODEL

Prior The parameters θ were 28×28-dimensional images sampled randomly from the 800k images
in the EMNIST dataset.

Simulator The simulator takes a clean image as input, and corrupts it by first adding Poisson noise,
followed by a convolution with a Gaussian point-spread function: m ∼ Poisson(θ)

x|th = f ∗m; f(t) = exp(− t2

σ2 )) where ∗ denotes a convolution operation with a series of 1D
Gaussian filters given by f . We set the width of the Gaussian function σ = 3.

GAN architecture The generator network was similar to the Pix2Pix generator (Isola et al., 2016):
there were 9 blocks stacked sequentially; the first 4 blocks consisted of a 2D convolutional layer,
followed by a leaky ReLU nonlinearity with slope 0.2 and a batchnorm layer; the next 4 blocks
consisted of transpose a convolutional layer, followed by a leaky ReLU layer of slope 0.2 and
a batchnorm layer; the final block had a transposed convolutional layer followed by a sigmoid
nonlinearity. The input channels, output channels, kernel size, stride and padding for each of the
convolutional or transposed convolutional layers in the 9 blocks were as follows: 1 - (1, 8, 2, 2, 1),
2 - (8, 16, 2, 2, 1), 3 - (16, 32, 2, 2, 1), 4 - (32, 64, 3, 1, 0), 5 - (128, 32, 3, 2, 1), 6 - (64, 16, 2, 2,
1), 7 - (32, 8, 3, 2, 1), 8 - (16, 4, 2, 2, 1), 9 - (4, 1, 1, 1, 0). There were skip-connections from block
1 to block 8, block 2 to block 7, block 3, to block 6 and from block 4 to block 5. 200-dimensional
white noise was injected into the fifth block, after convolving it with a 1D convolutional filter and
multiplying it with the output of the fourth block.

The discriminator network was again similar to the Pix2Pix discriminator: we concatenated the image
from the generator or prior with the noisy image from the simulator, and passed this through 4 blocks
consisting of a 2D convolutional layer, a leaky ReLU nonlinearity of slope 0.2 and a batch-norm
layer, and finally through a 2D convolutional layer and a sigmoid nonlinearity. The input channels,
output channels, kernel size, stride and padding for each of the convolutional were as follows: 1 - (2,
8, 2, 2, 1), 2 - (8, 16, 2, 2, 1), 3 - (16, 32, 2, 2, 1), 4 - (32, 64, 2, 2, 1), 5 - (64, 1, 3, 1, 0).

Training details The generator and discriminator were trained in tandem for 10k epochs, with
800k training samples, of which 100 were held out for testing. We used a batch size of 800, the
cross-entropy loss and the Adam optimiser with learning rate= 0.0002, β1 = 0.5 and β2 = 0.99 for
both networks. In each epoch, there was a single discriminator update for every second generator
update. To ensure that training was stable, we used spectral normalisation for the discriminator
weights, and clipped the gradient norms for both networks to 0.01.

NPE We trained NPE using the implementation in the sbi package (Tejero-Cantero et al., 2020).
We set training hyperparameters as described in Lueckmann et al. (2021), except for the training
batch size which we set to 1 (in order to ensure that we did not run out of memory while training),
and the number of hidden units in the density estimators which we set to 100. 28×28 dimensional
observations were passed directly to the flow, without an embedding net or computing any summary
statistics, as was also the case for GATSBI. We trained with exactly the same 800k training samples
used for GATSBI.
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