HIDING IMAGES IN DIFFUSION MODELS BY EDITING LEARNED SCORE FUNCTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Hiding data in deep neural networks (DNNs) has achieved remarkable successes, including both discriminative and generative models. Yet, the potential for hiding images in diffusion models remains underdeveloped. Existing approaches fall short in extracting fidelity, secrecy, and efficiency. In particular, the intensive computational demands of the hiding process, coupled with the slow extraction due to multiple denoising stages, make these methods impractical for resource-limited environments. To address these challenges, we propose hiding images at a specific denoising stage in diffusion models by modifying the learned score functions. We also introduce a parameter-efficient fine-tuning (PEFT) approach that combines parameter selection with a variant of low-rank adaptation (LoRA) to boost secrecy and hiding efficiency. Comprehensive experiments demonstrate the effectiveness of our proposed method.

- 1 INTRODUCTION
- 025 026 027

004

010 011

012

013

014

015

016

017

018

019

021

023

I INTRODUCTION

Data hiding involves concealing secret messages within various forms of cover media, such as bit 028 streams (Cox et al., 2007), texts (Jassim, 2013), audios (Li & Yu, 2000), images (Baluja, 2019), 029 videos (Swanson et al., 1997), and neural networks (Adi et al., 2018; Zhang et al., 2020). The goal is to minimize distortion to the cover media while ensuring the accurate retrieval of the hidden mes-031 sages. Much like other areas in signal and image processing, data hiding has seen notable progress, especially with the integration of Deep Neural Networks (DNNs). Typically, DNN-based meth-033 ods employ an autoencoder architecture, where the encoding network embeds the secret message 034 into some cover media and the decoding network retrieves it. However, this scheme of hiding data with DNNs presents several limitations. First, the need to transmit the decoding network through a 035 secure subliminal channel diminishes its practicality. Second, current DNN-based detection methods (Boroumand et al., 2018; You et al., 2020) have a good chance of detecting the presence of 037 hidden data, undermining its secrecy. Last, hiding multiple secret messages for different recipients using the same encoding and decoding networks has proven challenging, thereby limiting its flexibility. 040

In stark contrast, the paradigm of hiding data in DNNs (Liu et al., 2020; Wang et al., 2021a;b; 041 Chen et al., 2022; Fei et al., 2022; Zhang et al., 2024) has immediately improved secrecy due to 042 the lack of detection methods taking DNN weights as input. Additionally, it has eliminated the 043 need for sharing a decoding network between the sender and receiver with enhanced practicality. 044 Initially, the focus was primarily on hiding data in discriminative models (Liu et al., 2020; Wang 045 et al., 2021a;b), but there has been a shift towards using generative models for this purpose as their 046 utility has become more recognized. Certain existing approaches (Chen et al., 2022; Fei et al., 047 2022; Zhang et al., 2024) have effectively concealed images in GANs (Goodfellow et al., 2014). 048 However, these techniques are insufficient and, in some cases, infeasible for diffusion models (Song & Ermon, 2019; 2020; Song et al., 2021; Ho et al., 2020; Dhariwal & Nichol, 2021; Karras et al., 2022), primarily due to two reasons: 1) The neural network in diffusion models learns the score 051 function (Song et al., 2020) of the data distribution, which differs from the neural network generator in GANs that learns to generate data samples directly, 2) The generative process in diffusion models 052 entails multi-step denoising utilizing a shared neural network, leading to a distinct training scheme that is more intricate and time-consuming compared to training GANs.

To address these challenges, recent approaches (Zhao et al., 2023; Peng et al., 2023; Xiong et al., 055 2023; Chou et al., 2024; Fernandez et al., 2023; Feng et al., 2024) have been proposed for hiding 056 data in diffusion models. However, these methods have their limitations. Some (Zhao et al., 2023; 057 Peng et al., 2023) require computationally intensive re-training of diffusion models, making them unfeasible in resource-constrained environments. Others (Xiong et al., 2023; Chou et al., 2024; 058 Fernandez et al., 2023; Feng et al., 2024) use fine-tuning to reduce computational costs but still suffer from limited hiding capacity and efficiency. Additionally, they are exclusively applicable to 060 latent diffusion models (Rombach et al., 2022), due to the necessity of modifying text input for text-061 to-image synthesis (Chou et al., 2024), latent representations produced by latent encoder(Feng et al., 062 2024), or latent decoder(Xiong et al., 2023; Fernandez et al., 2023). 063

This paper introduces a new approach for hiding images in diffusion models by modifying the 064 learned score function, distinct from previous methods, focusing on a secret time step in the genera-065 tive process (refer to Fig. 1), which offers increased flexibility, security, and efficiency. We introduce 066 a secrecy loss that regulates performance degradation in the original generation task, employing a 067 distillation framework with a pre-trained diffusion model as a reference model, as shown in Fig. 2b. 068 Furthermore, we construct a hybrid parameter-efficient fine-tuning (PEFT) method by combining 069 selective PEFT techniques (Han et al., 2024) with parameterized PEFT techniques (Kalajdzievski, 2023; Hayou et al., 2024), largely reducing the number of modified parameters and accelerating the 071 hiding process. Experiments demonstrate the proposed method yields: 1) high fidelity, extracting 072 the secret images with minimal distortion, 2) high secrecy, as the modified diffusion model behaves 073 normally, 3) high efficiency, significantly reducing the time cost for hiding images in diffusion mod-074 els, compared to existing methods, and 4) high flexibility, enabling the hiding multiple images for 075 different receivers.

076 077

079

081

2 RELATED WORK

In this section, we provide a review of the pertinent research fields related to this paper, encompassing neural network steganography, diffusion models, and parameter-efficient fine-tuning.

082 Neural Network Steganography (NNS). Hiding data in neural networks can be applied in 083 NNS (Song et al., 2017; Liu et al., 2020; Wang et al., 2021a;b; Chen et al., 2022), which involves 084 concealing a secret message within a neural network for covert communication, striking a balance 085 between extraction accuracy and secrecy. Various existing NNS methods employ diverse strategies 086 to embed confidential information in the neural network. These strategies include replacing the least 087 significant bits (LSB) of model parameters (Song et al., 2017; Liu et al., 2020), replacing selected 088 redundant parameters (Liu et al., 2020; Wang et al., 2021a), mapping the values of model parameters to secret message (Song et al., 2017; Liu et al., 2020; Wang et al., 2021b), mapping the signs 089 of model parameters to secret bits string (Song et al., 2017; Liu et al., 2020), memorizing arbitrarily 090 labeled synthetic data whose labels encode secret information (Song et al., 2017), and concealing 091 secret image in neural network-based probabilistic models (Chen et al., 2022). However, NNS with 092 diffusion models has been relatively underexplored. This paper investigates the viability of diffusion 093 model-based NNS by introducing an image-hiding method for diffusion models.

094 095

Diffusion Models. Diffusion models employ a manageable forward corruption process that can 096 be reversed to generate data. The reverse process is learned by diffusion models, eliminating the need for carefully designed network architectures. UNet (Ronneberger et al., 2015) and Trans-098 former (Vaswani et al., 2017) are commonly employed architectures for diffusion models. Diffusion 099 models can be categorized into pixel-space diffusion models (Ho et al., 2020; Song et al., 2021; 100 Karras et al., 2022) and latent-space diffusion models (Rombach et al., 2022; Peebles & Xie, 2023; 101 Podell et al., 2024), depending on whether the diffusion process and its reverse apply to the pixels or 102 the latent representations of the image. This paper specifically concentrates on concealing images in pixel-space diffusion models, particularly the Denoising Diffusion Probabilistic Model (DDPM) 103 with UNet architecture, as an illustrative example. 104

105

Parameter-Efficient Fine-Tuning (PEFT). Parameter-efficient fine-tuning (PEFT) methods can
 be divided into reparameterized and selective fine-tuning (Han et al., 2024). Reparameterized fine-tuning introduces additional trainable parameters into the frozen pre-trained backbone. Low-rank

Figure 1: Comparison of existing method and our method. (a) Existing methods introduce image patterns as secret keys at each denoising step to trigger a guided denoising process that reconstructs the secret image x_s . (b) Our method uses the fixed Gaussian noise z_s and a secret time step t_s as secret keys, which are utilized to reconstruct the secret image with $F_{\theta}(z_s, t_s)$.

adaptation (LoRA) and its variants (Hu et al., 2022; Nam et al., 2022; Edalati et al., 2022; Zhang et al., 2023a; Lialin et al., 2023; Kalajdzievski, 2023; Liu et al., 2024; Hayou et al., 2024; Meng et al., 2024; Wang & Liang, 2024; Wang et al., 2024) are representative reparameterized methods. Selective methods, on the other hand, carefully select a subset of parameters using various strategies (Zaken et al., 2021; He et al., 2023; Zhang et al., 2023b) for fine-tuning. This paper introduces a hybrid PEFT method for hiding images in diffusion models, combining the benefits of reparameterized and selective PEFT techniques.

3 Method

In this section, we first provide a preliminary discussion on diffusion models. Next, we describe the scenario for our method. Finally, we detail the proposed method for hiding images in diffusion models.

3.1 PRELIMINARY

Diffusion models are commonly used generative models for data generation, especially in image generation. The training and inference of diffusion models involve the diffusion process and the reverse process. In this subsection, we discuss these procedures using the DDPM (Ho et al., 2020) as an example.

Diffusion Process. The diffusion process gradually introduces Gaussian noise to a clean image x_0 142 sampled from the data distribution \mathcal{P}_{data} . This noise is added from time step t = 1 to t = T, with 143 the variance of the noise determined by a predefined schedule β_1, \ldots, β_T . The diffusion process 144 can be described as a Markov chain:

$$q\left(\boldsymbol{x}_{1:T} \mid \boldsymbol{x}_{0}\right) := \prod_{t=1}^{T} q\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}\right), \tag{1}$$

$$q\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}\right) := \mathcal{N}\left(\boldsymbol{x}_{t}; \sqrt{1-\beta_{t}}\boldsymbol{x}_{t-1}, \beta_{t}\mathbf{I}\right).$$
(2)

At the final time step t = T, the clean image x_0 is diffused to Gaussian noise $x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

Reverse Process. In contrast to the diffusion process, the reverse diffusion process is a denoising process. It can be described by a Markov chain with learned Gaussian transitions parameterized by θ :

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0:T}) := p(\boldsymbol{x}_{T}) \prod_{t=1}^{T} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}).$$
(3)

The training objective of θ is to minimize the variational bound on the negative log-likelihood, which is equivalent to minimizing the expression derived in (Ho et al., 2020):

$$\mathbb{E}_{t,\boldsymbol{x}_{t},\boldsymbol{\epsilon}}\left[\left\|\boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t},t\right)\right\|_{2}^{2}\right],\tag{4}$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon_{\theta}$ is a neural network with parameter θ for predicting ϵ from $\mathbf{x}_t, \bar{\alpha}_t = \prod_{i=1}^t (1 - \beta_i)$, and time step $t \sim \text{Uniform}(\{1, ..., T\})$. During inference, the estimation of clean image \mathbf{x}_0 from \mathbf{x}_t can be derived as:

$$\boldsymbol{x}_{0} = \frac{1}{\sqrt{\bar{\alpha}_{t}}} \left(\boldsymbol{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, t \right) \right).$$
(5)

This estimation process of x_0 will be leveraged for hiding/extracting images in/from the diffusion models in the proposed method.

3.2 IMAGE HIDING SCENARIO

Three entities are involved in the image-hiding scenario:

- The sender, who hides images within a pre-trained diffusion model and transmits the stego diffusion model.
- The receiver, who possesses the secret key to extract the hidden images from the received stego diffusion model.
- The inspector, who inspects the stego diffusion model before it reaches the receiver, using commonly used metrics to determine if the diffusion model meets expectations. If the stego diffusion model fails to meet the expectation, it will be considered suspicious and deleted.

In the given scenario, an image-hiding method should ensure: 1) The extracted secret image should closely resemble the ground truth secret image. 2) The generation performance of stego diffusion model should be similar to that of the original diffusion model.

187 3.3 PROPOSED METHOD

188

202

207 208

166 167

171

172 173

174

175

176 177

179

180

181

182

Previous studies (Zhao et al., 2023; Peng et al., 2023) modify the diffusion model to enable a guided reverse process, where the secret image is generated step by step using a predefined secret key (*e.g.*, a secret pattern blended with Gaussian noise), refer to Fig. 1a and Fig. 2a. However, such approaches result in inferior secret image reconstruction and notably reduce the original generation performance of diffusion models, particularly when the secret image is a natural image rather than a simple icon. Moreover, constructing a guided reverse process with a large number of steps results in slow extraction and hiding processes, resembling the standard inference and training processes of diffusion models.

Motivated by recent studies (Liu et al., 2023; Song et al., 2023; Sauer et al., 2023; Yin et al., 2023) that aim to accelerate the inference of diffusion models by distilling a one-step diffusion model from a pre-trained diffusion model, we propose hiding/extracting images in/from one secret time step of the denoising process. Our proposed hiding scheme allows the secret image to be concealed in an arbitrarily chosen secret time step, which serves as the component of the secret key along with the predefined fixed noise for secret image extraction, as shown in Fig 1b and Fig 2b.

203 3.3.1 HIDING PIPLINE

We denote the ground truth secret image as x_s , the secret key as z_s , and the secret time step as t_s . The one-step secret image reconstruction function is defined as:

$$\boldsymbol{F}_{\boldsymbol{\theta}}(\boldsymbol{z}_{\mathrm{s}}, t_{\mathrm{s}}) = \frac{1}{\sqrt{\bar{\alpha}_{t_{\mathrm{s}}}}} \left(\boldsymbol{z}_{\mathrm{s}} - \sqrt{1 - \bar{\alpha}_{t_{\mathrm{s}}}} \boldsymbol{\epsilon}_{\boldsymbol{\theta}} \left(\boldsymbol{z}_{\mathrm{s}}, t_{\mathrm{s}} \right) \right), \tag{6}$$

where $\epsilon_{\theta}(\cdot, t)$ is the modified learned score function. The expression of $F_{\theta}(z_{\rm s}, t_{\rm s})$ is adapted from the formula in Equation 5, which is originally used to estimate clean image x_0 in the step t of the reverse process.

213 Our objective is to modify the parameter θ in the neural network $\epsilon_{\theta}(\cdot, t)$ in order to ensure that the 214 output of $F_{\theta}(z_s, t_s)$ is a reconstruction of xs with minimal distortion. At the same time, we want 215 to preserve the functionality of $\epsilon_{\theta}(\cdot, t)$ in the standard denoising process of diffusion models. To achieve this objective, θ can be optimized using a loss function with fidelity and secrecy loss terms.

Figure 2: Hiding diagrams of existing method and our method. (a) Existing methods train a guided denoising process (refer to the upper pipeline) resembling the standard training of diffusion models (refer to the lower pipeline). In the guided denoising process, all intermediate noise contains predefined secret patterns. Additionally, the standard training process of diffusion models is utilized in parallel as regularization. (b) Our method modifies the $\epsilon_{\theta}(\cdot, t_s)$ to reconstruct the secret image with $F_{\theta}(z_s, t_s)$ only in one step (refer to the upper pipeline), with a regularization (refer to the lower pipeline) that forces the $\epsilon_{\theta}(\cdot, t)$ to maintain functionality as the pre-trained score function $\epsilon(\cdot, t)$.

Fidelity Loss. The objective of the fidelity loss is to ensure that the secret image reconstruction $\hat{x}_s = F_{\theta}(z_s, t_s)$ matches the ground truth secret image x_s . Using the squared error as the distortion function, the fidelity loss is defined as:

$$\mathcal{P}_{\mathrm{a}}(\boldsymbol{x}_{\mathrm{s}}, \boldsymbol{z}_{\mathrm{s}}, t_{\mathrm{s}}) = \|\boldsymbol{F}_{\boldsymbol{\theta}}(\boldsymbol{z}_{\mathrm{s}}, t_{\mathrm{s}}) - \boldsymbol{x}_{\mathrm{s}}\|_{2}^{2}.$$
 (7)

With the fidelity loss, we can optimize the score function $\epsilon_{\theta}(\cdot, t)$ to hide the secret image x_s with the secret key z_s and t_s , as illustrated in Fig 2b. However, the requirement of secrecy, which involves preserving the functionality of $\epsilon_{\theta}(\cdot, t)$ in the standard denoising process, has not been fulfilled. Consequently, a regularization term is introduced to ensure secrecy.

Secrecy Loss. The objective of the secrecy loss is to maintain the functionality of $\epsilon_{\theta}(\cdot, t)$ in the standard denoising process. Instead of relying on the standard training process of diffusion models as regularization (see Fig 2a), we choose to enforce the modified score function $\epsilon_{\theta}(\cdot, t)$ to match the output of the pre-trained score function $\epsilon(\cdot, t)$ (see Fig 2b), given the same noisy image inputs at time step t. In practice, $\epsilon(\cdot, t)$ is a clone of the score function from the pre-trained diffusion model with fixed parameters. The secrecy loss is then defined as:

$$\ell_{\rm b}(\boldsymbol{x}_t, t) = \mathbb{E}_{t, \boldsymbol{x}_t} \left[\|\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) - \boldsymbol{\epsilon}(\boldsymbol{x}_t, t)\|_2^2 \right], \tag{8}$$

where $t \sim \text{Uniform}(\{1, ..., T\})$ represents the uniformly sampled time step at each iteration, $x_t \sim \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t) I)$ is the noisy image in step t of the diffusion process.

Finally, the total loss function ℓ is the sum of fidelity loss ℓ_a and secrecy loss ℓ_b :

$$\ell = \ell_{\rm a}(\boldsymbol{x}_{\rm s}, \boldsymbol{z}_{\rm s}, t_{\rm s}) + \lambda \ell_{\rm b}(\boldsymbol{x}_t, t), \tag{9}$$

where λ is the trade-off parameter.

235

236

237

238 239

251

255 256 257

258

259 Hiding Multiple Images. Hiding multiple images for different recipients poses challenges, not 260 only due to the increased amount of information to conceal, but also because each recipient should only be able to extract a specific concealed image, and should not be able to extract other concealed 261 images (Wang et al., 2021b). Nevertheless, the proposed method can be extended to handle this 262 challenging task. Specifically, given a set of secret images $\mathcal{X}_s = \left\{ \boldsymbol{x}_s^{(1)}, \boldsymbol{x}_s^{(2)}, \dots, \boldsymbol{x}_s^{(C)} \right\}$ where $\boldsymbol{x}_s^{(i)}$ 263 264 denotes the *i*-th secret image, C is the number of secret images to be hidden, and each $x_s^{(i)}$ is paired 265 with a secret key $z_s^{(i)}$ from a set of secret keys $\mathcal{Z}_s = \left\{ z_s^{(1)}, z_s^{(2)}, \dots, z_s^{(C)} \right\}$ shared to C different 266 receivers, we modify the loss function ℓ in Equation 9 to: 267 268

$$\ell_{\text{multiple}} = \frac{1}{C} \sum_{i=1}^{C} \ell_{\text{a}}(\boldsymbol{x}_{\text{s}}^{(i)}, \boldsymbol{z}_{\text{s}}^{(i)}, t_{\text{s}}) + \lambda \ell_{\text{b}}(\boldsymbol{x}_{t}, t).$$
(10)

270 By optimizing the pre-trained diffusion model using ℓ_{multiple} , the *i*-th recipient is able to extract 271 the secret image $x_s^{(i)}$ using the assigned secret key $z_s^{(i)}$. Without additional secret keys, the *i*-th 272 recipient is unable to extract other secret images that are meant to be shared with other receivers. 273

274 3.3.2 PEFT METHOD 275

276 To enhance the efficiency of the hiding process and ensure better preservation of secrecy by mod-277 ifying fewer model parameters, we propose a hybrid PEFT algorithm that combines the strengths 278 of selective and reparameterized PEFT techniques. The proposed PEFT algorithm consists of three steps: computing parameter-level sensitivity, selecting the sensitive layers, and applying reparame-279 terized PEFT to the sensitive layers. 280

281 282

283

284 285

286

287

288

290

291 292 293

295

296

297

298

299

300

301

Parameter Sensitivity. The importance of parameters in a pre-trained neural network for a specific task can be indicated by the parameter sensitivity s, which is defined as the squared gradient of the loss function ℓ with respect to its parameter (He et al., 2023):

s

$$q_i = g_i^2, \tag{11}$$

where i is the parameter index, s_i is the i-th element of s, g_i is the i-th element of gradients g = $\partial \ell / \partial \theta$. We focus on parameter sensitivity because the highest sensitivity indicates the direction of the fastest convergence of the loss function, thereby aiding efficient gradient descent during fine-289 tuning. To obtain accurate parameter sensitivity, s is accumulated over M iterations before finetuning, to create the accumulated sensitivity S:

$$\boldsymbol{S} = \sum_{m=1}^{M} \boldsymbol{s}^{(m)},\tag{12}$$

where $s^{(m)}$ represents the s in the m-th iteration. We then select the top- τ largest elements from S, where the parameter budget $\tau = \gamma N$, N is the number of parameters in θ , and $\gamma \in [0,1]$ is a hyperparameter indicating the sparsity of the sensitive parameters. Finally, a set of sensitive parameters, denoted as θ_s , is obtained using the indices of the top- τ largest elements from S.

For PEFT, it is feasible to exclusively fine-tune the sensitive parameters θ_s , as done in (He et al., 2023), by masking the gradients of non-sensitive parameters during updates using a gradient mask M:

302 303 304

$$M_i = \begin{cases} 1 & \theta_i \in \boldsymbol{\theta}_{\mathrm{s}} \\ 0 & \theta_i \notin \boldsymbol{\theta}_{\mathrm{s}} \end{cases},\tag{13}$$

where M_i denotes the *i*-th element of M, and θ_i represents the *i*-th element of θ . However, such a 305 PEFT method does not eliminate the need to calculate the gradients of all parameters in θ , resulting 306 in computational costs identical to those of full fine-tuning. To improve the fine-tuning efficiency, 307 LoRA can be applied to selected layers of the neural network. By updating only the LoRA parame-308 ters, the number of learnable parameters is reduced, resulting in computational savings. 309

310 Sensitive Layers Selection. To determine the most appropriate layers to fine-tune, we select layers 311 based on parameter sensitivity, referred to as sensitive layers. Specifically, given a set of sensitive 312 parameters $\theta_{\rm s}$, we analyze the distribution of sensitive parameters across each layer of the pre-313 trained neural network. We define the sensitive layers as the top-n layers that contain the highest 314 number of sensitive parameters, where $n = \delta K$, K is the total number of layers in the pre-trained 315 neural network, and $\delta \in [0,1]$ is a hyperparameter indicating the sparsity of sensitive layers. Once 316 the sensitive layers are identified, we can proceed to apply LoRA to these selected layers. 317

318 LoRA-based PEFT. While numerous variants of LoRA techniques exist, offering improved effi-319 ciency over the basic approach, our method utilizes two variants of LoRA, namely rsLoRA (Kala-320 jdzievski, 2023) and LoRA+ (Hayou et al., 2024), to achieve faster convergence speed. It is impor-321 tant to note that the sensitive layers in the UNet architecture of the diffusion models can encompass both linear layers and convolutional layers. Since standard LoRA-based techniques are restricted to 322 linear layers, we employ the LoCon method from the LyCORIS library (Yeh et al., 2023), which 323 extends the standard LoRA for convolutional layers.

324 325 326 327 328 (a) Baluja17 (b) HiDDeN (c) Weng19 (d) HiNet (e) PRIS (f) Chen22 (g) BadDiffusion (h) TrojDiff (i) WDI (j) Ours Ground truth

Figure 3: Error maps of extracted secret image.

Table 1: Extraction fidelity comparison for 32×32 and 256×256 secret images. To measure fidelity, PSNR, SSIM, LPIPS, and DISTS are calculated between the extracted and ground truth secret images. "
": larger is better, and vice versa. The top two methods are highlighted in boldface.

Method		32	$\times 32$		256 imes 256			
methou	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	PSNR↑	SSIM↑	LPIPS↓	DISTS↓
Baluja17	25.40	0.89	0.116	0.051	26.46	0.90	0.200	0.089
HiDDeN	25.24	0.88	0.252	0.075	27.13	0.91	0.233	0.100
Weng19	26.66	0.93	0.059	0.035	33.85	0.95	0.089	0.047
HiNet	30.39	0.94	0.033	0.026	35.31	0.96	0.087	0.041
PRIS	29.83	0.94	0.041	0.027	37.42	0.97	0.050	0.029
Chen22	47.72	0.99	0.001	0.002	36.44	0.96	0.073	0.035
BadDiffusion	22.08	0.86	0.129	0.060	17.68	0.81	0.386	0.137
TrojDiff	46.54	0.99	0.001	0.004	24.74	0.94	0.057	0.076
WDP	36.49	0.99	0.003	0.008	17.97	0.83	0.245	0.144
Ours	52.90	0.99	0.001	0.001	39.33	0.97	0.043	0.018

EXPERIMENTS 4

4.1 EXPERIMENTAL SETUP

354 Model and Dataset. We conduct experiments using DDPM, although our approach can be easily 355 applied to other categories of diffusion models such as EDM (Karras et al., 2022) and consistency 356 models (Song et al., 2023). The architecture and hyperparameters of DDPM follow the specification 357 of Ho et al. (2020). The default secret time step t_s for hiding/extracting the secret image is 500. For 358 better demonstration, we not only hide low-resolution (32×32) images in the DDPM pre-trained 359 on CIFAR10 (Krizhevsky & Hinton, 2009) but also hide high-resolution images (256×256) in the 360 DDPM pre-trained on LSUN bedroom (Yu et al., 2015).

361

330 331

332

333

334

351 352 353

362 Secret Image and Secret Key. Prior studies (Zhao et al., 2023; Peng et al., 2023) commonly 363 employ secret images with simple content, such as QR code images, icon-like images, or images from MNIST/Fashion-MNIST datasets. However, we contend that simple secret images may not 364 adequately demonstrate the effectiveness of the hiding approaches. Therefore, to address this limitation, we constructed a secret image dataset by aggregating images from several widely used natural 366 image datasets, including COCO (Lin et al., 2014), DIV2K (Agustsson & Timofte, 2017), LSUN church (Yu et al., 2015), and Places (Zhou et al., 2018). The secret key is predefined to guide the 368 modified score function ϵ_{θ} in generating the secret image. In our experiments, the secret key is the 369 fixed Gaussian noise randomly sampled from $\mathcal{N}(\mathbf{0},\mathbf{I})$, which can be reproduced by specifying the 370 seed of the pseudo-random generator for generating Gaussian noise.

371 372

373

367

4.2 EVALUATION METRICS

374 Fidelity. Fidelity refers to the level of distortion (lower is better) or similarity (higher is better) 375 between the extracted and ground truth secret images. To evaluate fidelity, we employ image quality metrics, including peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) (Wang 376 et al., 2004), learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018), and deep image 377 structure and texture similarity (DISTS) (Ding et al., 2020).

378Table 2: Secrecy and hiding efficiency, when hiding 32×32 secret images. For secrecy measurement,379FID is the population-level metric, while PSNR, SSIM, LPIPS, and DISTS are the sample-level380metrics. Time is with respect to GPU hours, which measures hiding efficiency.

Method	FID↓	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	Time↓
Pretrained	4.79	N/A	N/A	N/A	N/A	N/A
BadDiffusion	6.88	23.78	0.80	0.222	0.082	4.87
TrojDiff	4.64	28.72	0.91	0.114	0.049	12.72
WDP	5.09	22.50	0.84	0.228	0.083	2.35
Ours	4.77	31.06	0.94	0.077	0.037	0.04

Table 3: Secrecy and hiding efficiency, when hiding 256×256 secret images.

Method	FID↓	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	Time↓
Pretrained	7.46	N/A	N/A	N/A	N/A	N/A
BadDiffusion	15.75	16.40	0.60	0.452	0.224	31.92
TrojDiff	14.36	18.73	0.70	0.407	0.169	83.68
WDP	15.07	18.59	0.67	0.445	0.200	11.36
Ours	8.39	23.31	0.83	0.235	0.112	0.18

Secrecy. For assessing the image generation performance of generative models, the commonly used metric is Fréchet inception distance (FID) (Heusel et al., 2017), measuring the quality of generated images at the population level. Previous studies calculate FID on the pre-trained diffusion model and the modified diffusion model, respectively, with the discrepancy indicating the level of secrecy. However, such a population-level image quality metric may not reflect the nuances in individual images. Therefore, we measure the secrecy at the individual sample level by computing the individual image distortion (indicated by PSNR, SSIM, LPIPS, and DISTS) between images generated from the pre-trained and edited diffusion models using the same initial noise.

Hiding Efficiency. We record the time cost (in terms of GPU hours) for the hiding process as an
indicator of hiding efficiency. All methods in our experiment are implemented on the same device
equipped with AMD EPYC 7F52 16-Core CPU and NVIDIA GeForce RTX3090 GPU.

4.3 EXPERIMENTAL RESULTS

Fidelity. Table 1 presents a quantitative comparison of our method with existing image steganography (Baluja, 2019; Zhu et al., 2018; Weng et al., 2019; Jing et al., 2021; Yang et al., 2024) and NNS (Chen et al., 2022) methods. Additionally, we include the results of applying existing back-door attack methods (Chou et al., 2023; Chen et al., 2023) and a diffusion model watermarking method (Peng et al., 2023) for diffusion model-based NNS. Our method achieves the highest fi-delity for both 32×32 and 256×256 resolution images. A qualitative comparison of the fidelity, in the form of an error map between the extracted and ground truth secret images with 256×256 resolution, is presented in Fig.3.

Secrecy. Table 2 and Table 3 provide a quantitative comparison of secrecy. Our method achieves the most similar FID to that of the pre-trained diffusion model, while also exhibiting the best PSNR, SSIM, LPIPS, and DISTS for individual samples. These results indicate that our method provides the best secrecy when hiding images in diffusion models. Fig. 4 visually demonstrates the qualitative comparison of sample-level distortion for the generated LSUN-bedroom images (256×256). The secrecy evaluation of image steganography methods is based on the fidelity of the stego image, which is not directly comparable to the secrecy (fidelity of stego neural network models) of NNS methods. However, we still include the results in Appendix. The secrecy results for the NNS method are also included in the Appendix for clarity, as their stego neural network model is not diffusion model.

Figure 4: Qualitative comparison of generated samples.

Table 4: Fidelity and secrecy comparison, when hiding multiple 32×32 secret images.

# of Images	Fideli	ty (Extrac	ted Secret	(mage)	Secrecy (Generated Image)			
	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓
1	52.90	0.99	0.001	0.001	31.06	0.94	0.077	0.037
4	49.38	0.99	0.001	0.001	30.93	0.95	0.064	0.033
8	43.11	0.99	0.001	0.002	30.59	0.94	0.076	0.038

Table 5: Fidelity and secrecy comparison, when hiding multiple 256×256 secret images.

	Fideli	tv (Extrac	ted Secret]	[mage]	Secrecy (Generated Image)			
# of Images	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓
1	39.33	0.97	0.043	0.018	23.31	0.83	0.235	0.112
4	38.31	0.96	0.058	0.029	17.78	0.74	0.394	0.165
8	33.55	0.91	0.161	0.066	14.08	0.62	0.510	0.187

Hiding Efficiency. Table 2 and Table 3 demonstrate that our method exhibits the lowest time cost (in terms of GPU hours), indicating superior hiding efficiency. Other compared methods require re-training or full fine-tuning for a large number of iterations, resulting in high time costs. Among them, WDP (Peng et al., 2023) has the lowest time cost, although it is still significantly higher compared to our method.

Hiding Multiple Images. Tables 4 and 5 show the fidelity and secrecy of our hiding method when multiple images are concealed. In general, as the number of secret images increases, the fidelity decreases. However, the overall image-hiding performance of our method remains acceptable. It can be observed that hiding low-resolution images is easier compared to high-resolution images, given the same number of secret images.

ABLATION EXPERIMENTS

Different Secret Time Steps. The proposed hiding scheme enables the hiding of a secret image in an arbitrarily selected secret time step t_s , which acts as a component of the secret key. In this experiment, we investigate the impact of the selected secret time step t_s on the hiding performance. As depicted in Fig. 5, different choices of t_s result in similarly good hiding performance in terms of fidelity and secrecy (measured by PSNR and DISTS). More results can be found in Appendix. Notably, the highest fidelity is achieved when t_s falls between 700 and 900, and a better trade-off between fidelity and secrecy is observed.

Comparison with Full Fine-tuning. To demonstrate the effectiveness of our PEFT method, we compare it with full fine-tuning. Table 6 presents the results, showing that replacing our PEFT method with full fine-tuning leads to a noticeable decline in secrecy without enhancing fidelity. This highlights the advantage of our PEFT method, which improves secrecy without sacrificing fidelity due to its modification of fewer parameters for image hiding.

Figure 5: Ablation of different selected time steps. The fidelity is indicated by blue lines and the secrecy is indicated by orange lines. More results can be found in the Appendix.

Method	Fideli	ty (Extrac	ted Secret	[mage)	crecy (Gei	enerated Image)		
memou	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓
$\begin{array}{c} \mbox{FFT (32 \times 32)} \\ \mbox{Ours (32 \times 32)} \end{array}$	$51.30 \\ 52.90$	$0.99 \\ 0.99$	$0.001 \\ 0.001$	$0.001 \\ 0.001$	$22.53 \\ 31.06$	$\begin{array}{c} 0.83\\ 0.94 \end{array}$	$0.200 \\ 0.077$	$\begin{array}{c} 0.075\\ 0.037\end{array}$
FFT (256×256) Ours (256×256)	$38.36 \\ 39.33$	$\begin{array}{c} 0.97 \\ 0.97 \end{array}$	$0.057 \\ 0.043$	$0.022 \\ 0.018$	$17.87 \\ 23.31$	$0.65 \\ 0.83$	$0.474 \\ 0.235$	$0.197 \\ 0.112$

Table 6: Fidelity and secrecy comparison. FFT means replacing our PEFT with full fine-tuning.

Table 7: Fidelity and secrecy comparison, when hiding image in other types of diffusion models.

Type	Fideli	ty (Extrac	ted Secret	[mage)	Secrecy (Generated Image)				
1) PC	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	PSNR ↑	SSIM↑	LPIPS↓	DISTS↓	
DDPM	52.90	0.99	0.001	0.001	31.06	0.94	0.077	0.037	
EDM	51.30	0.99	0.002	0.001	28.80	0.94	0.090	0.056	
СМ	35.93	0.98	0.012	0.008	25.57	0.91	0.112	0.073	

Other Types of Diffusion Models. While we have demonstrated the proposed method using DDPM as an example in this paper, it is worth noting that the proposed method can be applied to other types of diffusion models. In this ablation experiment, we extend the application of our method to hide images in EDM (Karras et al., 2022) and consistency model (Song et al., 2023). The pre-trained models utilized in this experiment include an EDM trained on ImageNet 64×64 , and a consistency model distilled from such EDM. As shown in Table 7, satisfactory fidelity and secrecy are achieved when employing the proposed method for hiding images in other types of diffusion models.

6 CONCLUSION

In conclusion, this research addresses the limitations of current methods for hiding images in diffusion models by introducing a new approach that hides images at a secret time step in the denoising process, leveraging a hybrid PEFT method that combines the advantages of selective and reparameterized PEFT techniques to improve hiding efficiency. Extensive analyses and experiments demonstrate the superiority of the proposed approach in terms of fidelity, secrecy, and hiding efficiency. Future work could explore potential enhancements and applications of our approach in more advanced multi-modal diffusion models.

540 REFERENCES

566

567

568

- Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu *rity Symposium*, pp. 1615–1631, 2018.
- Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:
 Dataset and study. In *The IEEE Conference on Computer Vision and Pattern Recognition Work-shops*, 2017.
- Shumeet Baluja. Hiding images within images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(7):1685–1697, 2019.
- Mehdi Boroumand, Mo Chen, and Jessica Fridrich. Deep residual network for steganalysis of digital
 images. *IEEE Transactions on Information Forensics and Security*, 14(5):1181–1193, 2018.
- Haoyu Chen, Linqi Song, Zhenxing Qian, Xinpeng Zhang, and Kede Ma. Hiding images in deep probabilistic models. *Advances in Neural Information Processing Systems*, 35:36776–36788, 2022.
- Weixin Chen, Dawn Song, and Bo Li. TrojDiff: Trojan attacks on diffusion models with diverse tar gets. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 pp. 4035–4044, 2023.
- Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion models? In *Proceed-ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4015–4024, 2023.
- Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. VillanDiffusion: A unified backdoor attack
 framework for diffusion models. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. *Digital Watermarking and Steganography*. Morgan Kaufmann, 2007.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 2021.
- Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli. Image quality assessment: Unifying structure and texture similarity. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(5):2567–2581, 2020.
- Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J. Clark, and Mehdi Rezagholizadeh. KronA: Parameter efficient tuning with kronecker adapter. *The Third Workshop on Efficient Natural Language and Speech Processing*, 2022.
- Jianwei Fei, Zhihua Xia, Benedetta Tondi, and Mauro Barni. Supervised GAN watermarking for
 intellectual property protection. In *IEEE International Workshop on Information Forensics and Security*, pp. 1–6, 2022.
- Weitao Feng, Wenbo Zhou, Jiyan He, Jie Zhang, Tianyi Wei, Guanlin Li, Tianwei Zhang, Weiming Zhang, and Nenghai Yu. AquaLoRA: Toward white-box protection for customized stable diffusion models via watermark lora. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235, pp. 13423–13444, 2024.
- Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The stable signature: Rooting watermarks in latent diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 22466–22477, 2023.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2014.
- ⁵⁹³ Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning for large models: A comprehensive survey. *arXiv preprint arXiv:2403.14608*, 2024.

594 595	Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large models. <i>International Conference on Machine Learning</i> , 2024.
596 597 598	Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual parameter-efficient fine-tuning. In <i>Proceedings of the IEEE/CVF International Conference on</i>
599	<i>Computer Vision</i> , pp. 11825–11835, 2023.
600	Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
601	GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Advances in
602	Neural Information Processing Systems, 30, 2017.
604	Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
605	Neural Information Processing Systems, 33:6840–6851, 2020.
606	Edward I. Hu. velong shen Phillip Wallis, Zevuan Allen-Zhu. Yuanzhi I.i. Shean Wang, I.u. Wang
607 608	and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In <i>International Con-</i> <i>ference on Learning Representations</i> , 2022.
609 610 611	Firas A. Jassim. A novel steganography algorithm for hiding text in image using five modulus method. <i>arXiv preprint arXiv:1307.0642</i> , 2013.
612	Junneng Jing Xin Deng Mai Xu, Jianyi Wang and Zhenyu Guan, HiNet: Deen image hiding
613	by invertible network. In <i>Proceedings of the IEEE/CVF International Conference on Computer</i>
614	<i>Vision</i> , pp. 4733–4742, 2021.
615	Damian Kalaidzievski. A rank stabilization scaling factor for fine tuning with lora arXiv preprint
616	arXiv:2312.03732, 2023.
617	
618	Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
619	based generative models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022
620	2022.
622 623	Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. <i>Technical Report, University of Toronto</i> , 2009.
624 625	Xin Li and Hong H. Yu. Transparent and robust audio data hiding in cepstrum domain. In <i>IEEE International Conference on Multimedia and Expo</i> , pp. 397–400, 2000.
626 627 628	Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReLoRA: High- rank training through low-rank updates. In <i>International Conference on Learning Representa-</i> <i>tions</i> , 2023.
630 631 632	Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In <i>European Conference on Computer Vision</i> , pp. 740–755, 2014.
633 634 635	Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang- Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In <i>arXiv:2402.09353</i> , 2024.
636 637 638	Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li. StegoNet: Turn deep neural network into a stegomalware. In <i>Proceedings of the 36th Annual Computer Security Applications Conference</i> , pp. 928–938, 2020.
039 640	Vingehao Liu Viwen 7hang Jianzhu Ma Jian Dang and Olang Liu Installows One star is snowsh
641 642	for high-quality diffusion-based text-to-image generation. In <i>International Conference on Learn-</i> <i>ing Representations</i> , 2023.
643 644 645	Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal singular values and singular vectors adaptation of large language models. <i>arXiv preprint arXiv:2404.02948</i> , 2024.
646 647	Hyeon-Woo Nam, Ye-Bin Moon, and Oh Tae-Hyun. FedPara: Low-rank hadamard product for communication-efficient federated learning. In <i>International Conference on Learning Representations</i> , 2022.

648 William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of 649 the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023. 650 Sen Peng, Yufei Chen, Cong Wang, and Xiaohua Jia. Protecting the intellectual property of diffusion 651 models by the watermark diffusion process. arXiv preprint arXiv:2306.03436, 2023. 652 653 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe 654 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image 655 synthesis. In International Conference on Learning Representations, 2024. 656 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-657 resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-658 ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022. 659 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomed-661 ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, pp. 662 234-241, 2015. 663 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-664 tillation. arXiv preprint arXiv:2311.17042, 2023. 665 666 Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models that remem-667 ber too much. In ACM SIGSAC Conference on Computer and Communications Security, pp. 668 587-601, 2017. 669 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. 670 Advances in Neural Information Processing Systems, 32, 2019. 671 672 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. 673 Advances in Neural Information Processing Systems, 33:12438–12448, 2020. 674 675 Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach 676 to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584, 2020. 677 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben 678 Poole. Score-based generative modeling through stochastic differential equations. International 679 Conference on Learning Representations, 2021. 680 681 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Proceedings of the 40th International Conference on Machine Learning, 2023. 682 683 Mitchell D. Swanson, Bin Zhu, and Ahmed H. Tewfik. Data hiding for video-in-video. In IEEE 684 International Conference on Image Processing, pp. 676–679, 1997. 685 686 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, 687 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017. 688 689 Shaowen Wang, Linxi Yu, and Jian Li. LoRA-GA: Low-rank adaptation with gradient approxima-690 tion. arXiv preprint arXiv:2407.05000, 2024. 691 692 Zhengbo Wang and Jian Liang. LoRA-Pro: Are low-rank adapters properly optimized? arXiv 693 preprint arXiv:2407.18242, 2024. 694 Zhi Wang, Chaoge Liu, and Xiang Cui. Evilmodel: Hiding malware inside of neural network 695 models. In IEEE Symposium on Computers and Communications, pp. 1-7, 2021a. 696 697 Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment: From error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4): 699 600-612, 2004. 700 Zichi Wang, Guorui Feng, Hanzhou Wu, and Xinpeng Zhang. Data hiding in neural networks for 701 multiple receivers. IEEE Computational Intelligence Magazine, 16(4):70-84, 2021b.

702 703 704	Xinyu Weng, Yongzhi Li, Lu Chi, and Yadong Mu. High-capacity convolutional video steganogra- phy with temporal residual modeling. In <i>International Conference on Multimedia Retrieval</i> , pp. 87–95, 2019.
705 706 707 708	Cheng Xiong, Chuan Qin, Guorui Feng, and Xinpeng Zhang. Flexible and secure watermarking for latent diffusion model. In <i>Proceedings of the 31st ACM International Conference on Multimedia</i> , pp. 1668–1676, 2023.
709 710	Hang Yang, Yitian Xu, Xuhua Liu, and Xiaodong Ma. PRIS: Practical robust invertible network for image steganography. <i>Engineering Applications of Artificial Intelligence</i> , 133:108419, 2024.
712 713 714	Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B. W. Yang, Giyeong Oh, and Yanmin Gong. Navigating text-to-image customization: From LyCORIS fine-tuning to model evaluation. In <i>International Conference on Learning Representations</i> , 2023.
715 716 717	Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T. Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. <i>arXiv preprint arXiv:2311.18828</i> , 2023.
718 719 720	Weike You, Hong Zhang, and Xianfeng Zhao. A siamese CNN for image steganalysis. <i>IEEE Transactions on Information Forensics and Security</i> , 16:291–306, 2020.
721 722 723	Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. <i>arXiv</i> preprint arXiv:1506.03365, 2015.
724 725 726	Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple parameter-efficient fine- tuning for transformer-based masked language-models. <i>arXiv preprint arXiv:2106.10199</i> , 2021.
727 728 729	Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou, Hao Cui, and Nenghai Yu. Model watermarking for image processing networks. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 34, pp. 12805–12812, 2020.
730 731 732	Li Zhang, Yong Liu, Xinpeng Zhang, and Hanzhou Wu. Generative model watermarking suppress- ing high-frequency artifacts. In <i>Proceedings of the 2024 ACM Workshop on Information Hiding</i> <i>and Multimedia Security</i> , pp. 223–234, 2024.
733 734 735 736 737	Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. AdaLoRA: Adaptive budget allocation for parameter- efficient fine-tuning. In <i>The Eleventh International Conference on Learning Representations</i> , 2023a.
738 739 740	Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In <i>IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 586–595, 2018.
741 742 743 744	Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou, and Shang- hang Zhang. Gradient-based parameter selection for efficient fine-tuning. <i>arXiv preprint</i> <i>arXiv:2312.10136</i> , 2023b.
745 746	Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Ngai-Man Cheung, and Min Lin. A recipe for watermarking diffusion models. <i>arXiv preprint arXiv:2303.10137</i> , 2023.
747 748 749 750	Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil- lion image database for scene recognition. <i>IEEE Transactions on Pattern Analysis and Machine</i> <i>Intelligence</i> , 40(6):1452–1464, 2018.
751 752 753 754 755	Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. HiDDeN: Hiding data with deep net- works. In European Conference on Computer Vision, pp. 657–672, 2018.