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ABSTRACT

Hiding data in deep neural networks (DNNs) has achieved remarkable successes,
including both discriminative and generative models. Yet, the potential for hiding
images in diffusion models remains underdeveloped. Existing approaches fall
short in extracting fidelity, secrecy, and efficiency. In particular, the intensive
computational demands of the hiding process, coupled with the slow extraction
due to multiple denoising stages, make these methods impractical for resource-
limited environments. To address these challenges, we propose hiding images
at a specific denoising stage in diffusion models by modifying the learned score
functions. We also introduce a parameter-efficient fine-tuning (PEFT) approach
that combines parameter selection with a variant of low-rank adaptation (LoRA)
to boost secrecy and hiding efficiency. Comprehensive experiments demonstrate
the effectiveness of our proposed method.

1 INTRODUCTION

Data hiding involves concealing secret messages within various forms of cover media, such as bit
streams (Cox et al., 2007), texts (Jassim, 2013), audios (Li & Yu, 2000), images (Baluja, 2019),
videos (Swanson et al., 1997), and neural networks (Adi et al., 2018; Zhang et al., 2020). The goal
is to minimize distortion to the cover media while ensuring the accurate retrieval of the hidden mes-
sages. Much like other areas in signal and image processing, data hiding has seen notable progress,
especially with the integration of Deep Neural Networks (DNNs). Typically, DNN-based meth-
ods employ an autoencoder architecture, where the encoding network embeds the secret message
into some cover media and the decoding network retrieves it. However, this scheme of hiding data
with DNNs presents several limitations. First, the need to transmit the decoding network through a
secure subliminal channel diminishes its practicality. Second, current DNN-based detection meth-
ods (Boroumand et al., 2018; You et al., 2020) have a good chance of detecting the presence of
hidden data, undermining its secrecy. Last, hiding multiple secret messages for different recipi-
ents using the same encoding and decoding networks has proven challenging, thereby limiting its
flexibility.

In stark contrast, the paradigm of hiding data in DNNs (Liu et al., 2020; Wang et al., 2021a;b;
Chen et al., 2022; Fei et al., 2022; Zhang et al., 2024) has immediately improved secrecy due to
the lack of detection methods taking DNN weights as input. Additionally, it has eliminated the
need for sharing a decoding network between the sender and receiver with enhanced practicality.
Initially, the focus was primarily on hiding data in discriminative models (Liu et al., 2020; Wang
et al., 2021a;b), but there has been a shift towards using generative models for this purpose as their
utility has become more recognized. Certain existing approaches (Chen et al., 2022; Fei et al.,
2022; Zhang et al., 2024) have effectively concealed images in GANs (Goodfellow et al., 2014).
However, these techniques are insufficient and, in some cases, infeasible for diffusion models (Song
& Ermon, 2019; 2020; Song et al., 2021; Ho et al., 2020; Dhariwal & Nichol, 2021; Karras et al.,
2022), primarily due to two reasons: 1) The neural network in diffusion models learns the score
function (Song et al., 2020) of the data distribution, which differs from the neural network generator
in GANs that learns to generate data samples directly, 2) The generative process in diffusion models
entails multi-step denoising utilizing a shared neural network, leading to a distinct training scheme
that is more intricate and time-consuming compared to training GANs.
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To address these challenges, recent approaches (Zhao et al., 2023; Peng et al., 2023; Xiong et al.,
2023; Chou et al., 2024; Fernandez et al., 2023; Feng et al., 2024) have been proposed for hiding
data in diffusion models. However, these methods have their limitations. Some (Zhao et al., 2023;
Peng et al., 2023) require computationally intensive re-training of diffusion models, making them
unfeasible in resource-constrained environments. Others (Xiong et al., 2023; Chou et al., 2024;
Fernandez et al., 2023; Feng et al., 2024) use fine-tuning to reduce computational costs but still
suffer from limited hiding capacity and efficiency. Additionally, they are exclusively applicable to
latent diffusion models (Rombach et al., 2022), due to the necessity of modifying text input for text-
to-image synthesis (Chou et al., 2024), latent representations produced by latent encoder(Feng et al.,
2024), or latent decoder(Xiong et al., 2023; Fernandez et al., 2023).

This paper introduces a new approach for hiding images in diffusion models by modifying the
learned score function, distinct from previous methods, focusing on a secret time step in the genera-
tive process (refer to Fig. 1), which offers increased flexibility, security, and efficiency. We introduce
a secrecy loss that regulates performance degradation in the original generation task, employing a
distillation framework with a pre-trained diffusion model as a reference model, as shown in Fig. 2b.
Furthermore, we construct a hybrid parameter-efficient fine-tuning (PEFT) method by combining
selective PEFT techniques (Han et al., 2024) with parameterized PEFT techniques (Kalajdzievski,
2023; Hayou et al., 2024), largely reducing the number of modified parameters and accelerating the
hiding process. Experiments demonstrate the proposed method yields: 1) high fidelity, extracting
the secret images with minimal distortion, 2) high secrecy, as the modified diffusion model behaves
normally, 3) high efficiency, significantly reducing the time cost for hiding images in diffusion mod-
els, compared to existing methods, and 4) high flexibility, enabling the hiding multiple images for
different receivers.

2 RELATED WORK

In this section, we provide a review of the pertinent research fields related to this paper, encompass-
ing neural network steganography, diffusion models, and parameter-efficient fine-tuning.

Neural Network Steganography (NNS). Hiding data in neural networks can be applied in
NNS (Song et al., 2017; Liu et al., 2020; Wang et al., 2021a;b; Chen et al., 2022), which involves
concealing a secret message within a neural network for covert communication, striking a balance
between extraction accuracy and secrecy. Various existing NNS methods employ diverse strategies
to embed confidential information in the neural network. These strategies include replacing the least
significant bits (LSB) of model parameters (Song et al., 2017; Liu et al., 2020), replacing selected
redundant parameters (Liu et al., 2020; Wang et al., 2021a), mapping the values of model parame-
ters to secret message (Song et al., 2017; Liu et al., 2020; Wang et al., 2021b), mapping the signs
of model parameters to secret bits string (Song et al., 2017; Liu et al., 2020), memorizing arbitrarily
labeled synthetic data whose labels encode secret information (Song et al., 2017), and concealing
secret image in neural network-based probabilistic models (Chen et al., 2022). However, NNS with
diffusion models has been relatively underexplored. This paper investigates the viability of diffusion
model-based NNS by introducing an image-hiding method for diffusion models.

Diffusion Models. Diffusion models employ a manageable forward corruption process that can
be reversed to generate data. The reverse process is learned by diffusion models, eliminating the
need for carefully designed network architectures. UNet (Ronneberger et al., 2015) and Trans-
former (Vaswani et al., 2017) are commonly employed architectures for diffusion models. Diffusion
models can be categorized into pixel-space diffusion models (Ho et al., 2020; Song et al., 2021;
Karras et al., 2022) and latent-space diffusion models (Rombach et al., 2022; Peebles & Xie, 2023;
Podell et al., 2024), depending on whether the diffusion process and its reverse apply to the pixels or
the latent representations of the image. This paper specifically concentrates on concealing images
in pixel-space diffusion models, particularly the Denoising Diffusion Probabilistic Model (DDPM)
with UNet architecture, as an illustrative example.

Parameter-Efficient Fine-Tuning (PEFT). Parameter-efficient fine-tuning (PEFT) methods can
be divided into reparameterized and selective fine-tuning (Han et al., 2024). Reparameterized fine-
tuning introduces additional trainable parameters into the frozen pre-trained backbone. Low-rank
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Figure 1: Comparison of existing method and our method. (a) Existing methods introduce image
patterns as secret keys at each denoising step to trigger a guided denoising process that reconstructs
the secret image xs. (b) Our method uses the fixed Gaussian noise zs and a secret time step ts as
secret keys, which are utilized to reconstruct the secret image with Fθ(zs, ts).

adaptation (LoRA) and its variants (Hu et al., 2022; Nam et al., 2022; Edalati et al., 2022; Zhang
et al., 2023a; Lialin et al., 2023; Kalajdzievski, 2023; Liu et al., 2024; Hayou et al., 2024; Meng
et al., 2024; Wang & Liang, 2024; Wang et al., 2024) are representative reparameterized methods.
Selective methods, on the other hand, carefully select a subset of parameters using various strate-
gies (Zaken et al., 2021; He et al., 2023; Zhang et al., 2023b) for fine-tuning. This paper introduces
a hybrid PEFT method for hiding images in diffusion models, combining the benefits of reparame-
terized and selective PEFT techniques.

3 METHOD

In this section, we first provide a preliminary discussion on diffusion models. Next, we describe
the scenario for our method. Finally, we detail the proposed method for hiding images in diffusion
models.

3.1 PRELIMINARY

Diffusion models are commonly used generative models for data generation, especially in image
generation. The training and inference of diffusion models involve the diffusion process and the
reverse process. In this subsection, we discuss these procedures using the DDPM (Ho et al., 2020)
as an example.

Diffusion Process. The diffusion process gradually introduces Gaussian noise to a clean image x0

sampled from the data distribution Pdata. This noise is added from time step t = 1 to t = T , with
the variance of the noise determined by a predefined schedule β1, . . . , βT . The diffusion process
can be described as a Markov chain:

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) , (1)

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
. (2)

At the final time step t = T , the clean image x0 is diffused to Gaussian noise xT ∼ N (0, I).

Reverse Process. In contrast to the diffusion process, the reverse diffusion process is a denoising
process. It can be described by a Markov chain with learned Gaussian transitions parameterized by
θ:

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) . (3)

The training objective of θ is to minimize the variational bound on the negative log-likelihood,
which is equivalent to minimizing the expression derived in (Ho et al., 2020):

Et,xt,ϵ

[
∥ϵ− ϵθ (xt, t) ∥22

]
, (4)

3
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where ϵ ∼ N (0, I), xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵθ is a neural network with parameter θ for predict-

ing ϵ from xt, ᾱt =
∏t

i=1(1 − βi), and time step t ∼ Uniform({1, ..., T}). During inference, the
estimation of clean image x0 from xt can be derived as:

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt, t)

)
. (5)

This estimation process of x0 will be leveraged for hiding/extracting images in/from the diffusion
models in the proposed method.

3.2 IMAGE HIDING SCENARIO

Three entities are involved in the image-hiding scenario:

• The sender, who hides images within a pre-trained diffusion model and transmits the stego
diffusion model.

• The receiver, who possesses the secret key to extract the hidden images from the received
stego diffusion model.

• The inspector, who inspects the stego diffusion model before it reaches the receiver, using
commonly used metrics to determine if the diffusion model meets expectations. If the stego
diffusion model fails to meet the expectation, it will be considered suspicious and deleted.

In the given scenario, an image-hiding method should ensure: 1) The extracted secret image should
closely resemble the ground truth secret image. 2) The generation performance of stego diffusion
model should be similar to that of the original diffusion model.

3.3 PROPOSED METHOD

Previous studies (Zhao et al., 2023; Peng et al., 2023) modify the diffusion model to enable a guided
reverse process, where the secret image is generated step by step using a predefined secret key
(e.g., a secret pattern blended with Gaussian noise), refer to Fig. 1a and Fig. 2a. However, such
approaches result in inferior secret image reconstruction and notably reduce the original generation
performance of diffusion models, particularly when the secret image is a natural image rather than
a simple icon. Moreover, constructing a guided reverse process with a large number of steps results
in slow extraction and hiding processes, resembling the standard inference and training processes of
diffusion models.

Motivated by recent studies (Liu et al., 2023; Song et al., 2023; Sauer et al., 2023; Yin et al., 2023)
that aim to accelerate the inference of diffusion models by distilling a one-step diffusion model from
a pre-trained diffusion model, we propose hiding/extracting images in/from one secret time step of
the denoising process. Our proposed hiding scheme allows the secret image to be concealed in an
arbitrarily chosen secret time step, which serves as the component of the secret key along with the
predefined fixed noise for secret image extraction, as shown in Fig 1b and Fig 2b.

3.3.1 HIDING PIPLINE

We denote the ground truth secret image as xs, the secret key as zs, and the secret time step as ts.
The one-step secret image reconstruction function is defined as:

Fθ(zs, ts) =
1

√
ᾱts

(
zs −

√
1− ᾱtsϵθ (zs, ts)

)
, (6)

where ϵθ (·, t) is the modified learned score function. The expression of Fθ(zs, ts) is adapted from
the formula in Equation 5, which is originally used to estimate clean image x0 in the step t of the
reverse process.

Our objective is to modify the parameter θ in the neural network ϵθ (·, t) in order to ensure that the
output of Fθ(zs, ts) is a reconstruction of xs with minimal distortion. At the same time, we want
to preserve the functionality of ϵθ (·, t) in the standard denoising process of diffusion models. To
achieve this objective, θ can be optimized using a loss function with fidelity and secrecy loss terms.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

...

...

Existing methods Our method

L2 Loss

L2 Loss

L2 Loss

Existing methods Our method

L2 Loss

(a) Existing hiding diagram

...

...

Existing methods Our method

L2 Loss

L2 Loss

L2 Loss

Existing methods Our method

L2 Loss

(b) Our hiding diagram

Figure 2: Hiding diagrams of existing method and our method. (a) Existing methods train a guided
denoising process (refer to the upper pipeline) resembling the standard training of diffusion models
(refer to the lower pipeline). In the guided denoising process, all intermediate noise contains pre-
defined secret patterns. Additionally, the standard training process of diffusion models is utilized
in parallel as regularization. (b) Our method modifies the ϵθ(·, ts) to reconstruct the secret image
with Fθ(zs, ts) only in one step (refer to the upper pipeline), with a regularization (refer to the lower
pipeline) that forces the ϵθ (·, t) to maintain functionality as the pre-trained score function ϵ (·, t).

Fidelity Loss. The objective of the fidelity loss is to ensure that the secret image reconstruction
x̂s = Fθ(zs, ts) matches the ground truth secret image xs. Using the squared error as the distortion
function, the fidelity loss is defined as:

ℓa(xs, zs, ts) = ∥Fθ(zs, ts)− xs∥22. (7)

With the fidelity loss, we can optimize the score function ϵθ (·, t) to hide the secret image xs with the
secret key zs and ts, as illustrated in Fig 2b. However, the requirement of secrecy, which involves
preserving the functionality of ϵθ (·, t) in the standard denoising process, has not been fulfilled.
Consequently, a regularization term is introduced to ensure secrecy.

Secrecy Loss. The objective of the secrecy loss is to maintain the functionality of ϵθ (·, t) in the
standard denoising process. Instead of relying on the standard training process of diffusion models
as regularization (see Fig 2a), we choose to enforce the modified score function ϵθ (·, t) to match
the output of the pre-trained score function ϵ (·, t) (see Fig 2b), given the same noisy image inputs at
time step t. In practice, ϵ (·, t) is a clone of the score function from the pre-trained diffusion model
with fixed parameters. The secrecy loss is then defined as:

ℓb(xt, t) = Et,xt

[
∥ϵθ(xt, t)− ϵ(xt, t)∥22

]
, (8)

where t ∼ Uniform({1, ..., T}) represents the uniformly sampled time step at each iteration, xt ∼
N (xt;

√
ᾱtx0, (1− ᾱt) I) is the noisy image in step t of the diffusion process.

Finally, the total loss function ℓ is the sum of fidelity loss ℓa and secrecy loss ℓb:

ℓ = ℓa(xs, zs, ts) + λℓb(xt, t), (9)

where λ is the trade-off parameter.

Hiding Multiple Images. Hiding multiple images for different recipients poses challenges, not
only due to the increased amount of information to conceal, but also because each recipient should
only be able to extract a specific concealed image, and should not be able to extract other concealed
images (Wang et al., 2021b). Nevertheless, the proposed method can be extended to handle this
challenging task. Specifically, given a set of secret images Xs =

{
x
(1)
s ,x

(2)
s , . . . ,x

(C)
s

}
where x(i)

s

denotes the i-th secret image, C is the number of secret images to be hidden, and each x
(i)
s is paired

with a secret key z
(i)
s from a set of secret keys Zs =

{
z
(1)
s , z

(2)
s , . . . ,z

(C)
s

}
shared to C different

receivers, we modify the loss function ℓ in Equation 9 to:

ℓmultiple =
1

C

C∑
i=1

ℓa(x
(i)
s , z(i)

s , ts) + λℓb(xt, t). (10)
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By optimizing the pre-trained diffusion model using ℓmultiple, the i-th recipient is able to extract
the secret image x

(i)
s using the assigned secret key z

(i)
s . Without additional secret keys, the i-th

recipient is unable to extract other secret images that are meant to be shared with other receivers.

3.3.2 PEFT METHOD

To enhance the efficiency of the hiding process and ensure better preservation of secrecy by mod-
ifying fewer model parameters, we propose a hybrid PEFT algorithm that combines the strengths
of selective and reparameterized PEFT techniques. The proposed PEFT algorithm consists of three
steps: computing parameter-level sensitivity, selecting the sensitive layers, and applying reparame-
terized PEFT to the sensitive layers.

Parameter Sensitivity. The importance of parameters in a pre-trained neural network for a spe-
cific task can be indicated by the parameter sensitivity s, which is defined as the squared gradient of
the loss function ℓ with respect to its parameter (He et al., 2023):

si = g2i , (11)

where i is the parameter index, si is the i-th element of s, gi is the i-th element of gradients g =
∂ℓ/∂θ. We focus on parameter sensitivity because the highest sensitivity indicates the direction of
the fastest convergence of the loss function, thereby aiding efficient gradient descent during fine-
tuning. To obtain accurate parameter sensitivity, s is accumulated over M iterations before fine-
tuning, to create the accumulated sensitivity S:

S =

M∑
m=1

s(m), (12)

where s(m) represents the s in the m-th iteration. We then select the top-τ largest elements from
S, where the parameter budget τ = γN , N is the number of parameters in θ, and γ ∈ [0, 1]
is a hyperparameter indicating the sparsity of the sensitive parameters. Finally, a set of sensitive
parameters, denoted as θs, is obtained using the indices of the top-τ largest elements from S.

For PEFT, it is feasible to exclusively fine-tune the sensitive parameters θs, as done in (He et al.,
2023), by masking the gradients of non-sensitive parameters during updates using a gradient mask
M :

Mi =

{
1 θi ∈ θs
0 θi /∈ θs

, (13)

where Mi denotes the i-th element of M , and θi represents the i-th element of θ. However, such a
PEFT method does not eliminate the need to calculate the gradients of all parameters in θ, resulting
in computational costs identical to those of full fine-tuning. To improve the fine-tuning efficiency,
LoRA can be applied to selected layers of the neural network. By updating only the LoRA parame-
ters, the number of learnable parameters is reduced, resulting in computational savings.

Sensitive Layers Selection. To determine the most appropriate layers to fine-tune, we select layers
based on parameter sensitivity, referred to as sensitive layers. Specifically, given a set of sensitive
parameters θs, we analyze the distribution of sensitive parameters across each layer of the pre-
trained neural network. We define the sensitive layers as the top-n layers that contain the highest
number of sensitive parameters, where n = δK, K is the total number of layers in the pre-trained
neural network, and δ ∈ [0, 1] is a hyperparameter indicating the sparsity of sensitive layers. Once
the sensitive layers are identified, we can proceed to apply LoRA to these selected layers.

LoRA-based PEFT. While numerous variants of LoRA techniques exist, offering improved effi-
ciency over the basic approach, our method utilizes two variants of LoRA, namely rsLoRA (Kala-
jdzievski, 2023) and LoRA+ (Hayou et al., 2024), to achieve faster convergence speed. It is impor-
tant to note that the sensitive layers in the UNet architecture of the diffusion models can encompass
both linear layers and convolutional layers. Since standard LoRA-based techniques are restricted to
linear layers, we employ the LoCon method from the LyCORIS library (Yeh et al., 2023), which
extends the standard LoRA for convolutional layers.
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(a) Baluja17 (b) HiDDeN (c) Weng19 (d) HiNet (e) PRIS (i) WDP(h) TrojDiff (j) Ours(f) Chen22 (g) BadDiffusionGround truth

Figure 3: Error maps of extracted secret image.

Table 1: Extraction fidelity comparison for 32 × 32 and 256 × 256 secret images. To measure
fidelity, PSNR, SSIM, LPIPS, and DISTS are calculated between the extracted and ground truth
secret images. “↑”: larger is better, and vice versa. The top two methods are highlighted in boldface.

Method 32× 32 256× 256

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓
Baluja17 25.40 0.89 0.116 0.051 26.46 0.90 0.200 0.089
HiDDeN 25.24 0.88 0.252 0.075 27.13 0.91 0.233 0.100
Weng19 26.66 0.93 0.059 0.035 33.85 0.95 0.089 0.047
HiNet 30.39 0.94 0.033 0.026 35.31 0.96 0.087 0.041
PRIS 29.83 0.94 0.041 0.027 37.42 0.97 0.050 0.029
Chen22 47.72 0.99 0.001 0.002 36.44 0.96 0.073 0.035

BadDiffusion 22.08 0.86 0.129 0.060 17.68 0.81 0.386 0.137
TrojDiff 46.54 0.99 0.001 0.004 24.74 0.94 0.057 0.076
WDP 36.49 0.99 0.003 0.008 17.97 0.83 0.245 0.144

Ours 52.90 0.99 0.001 0.001 39.33 0.97 0.043 0.018

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model and Dataset. We conduct experiments using DDPM, although our approach can be easily
applied to other categories of diffusion models such as EDM (Karras et al., 2022) and consistency
models (Song et al., 2023). The architecture and hyperparameters of DDPM follow the specification
of Ho et al. (2020). The default secret time step ts for hiding/extracting the secret image is 500. For
better demonstration, we not only hide low-resolution (32 × 32) images in the DDPM pre-trained
on CIFAR10 (Krizhevsky & Hinton, 2009) but also hide high-resolution images (256× 256) in the
DDPM pre-trained on LSUN bedroom (Yu et al., 2015).

Secret Image and Secret Key. Prior studies (Zhao et al., 2023; Peng et al., 2023) commonly
employ secret images with simple content, such as QR code images, icon-like images, or images
from MNIST/Fashion-MNIST datasets. However, we contend that simple secret images may not
adequately demonstrate the effectiveness of the hiding approaches. Therefore, to address this limi-
tation, we constructed a secret image dataset by aggregating images from several widely used natural
image datasets, including COCO (Lin et al., 2014), DIV2K (Agustsson & Timofte, 2017), LSUN
church (Yu et al., 2015), and Places (Zhou et al., 2018). The secret key is predefined to guide the
modified score function ϵθ in generating the secret image. In our experiments, the secret key is the
fixed Gaussian noise randomly sampled from N (0, I), which can be reproduced by specifying the
seed of the pseudo-random generator for generating Gaussian noise.

4.2 EVALUATION METRICS

Fidelity. Fidelity refers to the level of distortion (lower is better) or similarity (higher is better)
between the extracted and ground truth secret images. To evaluate fidelity, we employ image qual-
ity metrics, including peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) (Wang
et al., 2004), learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018), and deep image
structure and texture similarity (DISTS) (Ding et al., 2020).
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Table 2: Secrecy and hiding efficiency, when hiding 32×32 secret images. For secrecy measurement,
FID is the population-level metric, while PSNR, SSIM, LPIPS, and DISTS are the sample-level
metrics. Time is with respect to GPU hours, which measures hiding efficiency.

Method FID↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓ Time↓
Pretrained 4.79 N/A N/A N/A N/A N/A
BadDiffusion 6.88 23.78 0.80 0.222 0.082 4.87
TrojDiff 4.64 28.72 0.91 0.114 0.049 12.72
WDP 5.09 22.50 0.84 0.228 0.083 2.35

Ours 4.77 31.06 0.94 0.077 0.037 0.04

Table 3: Secrecy and hiding efficiency, when hiding 256× 256 secret images.

Method FID↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓ Time↓
Pretrained 7.46 N/A N/A N/A N/A N/A
BadDiffusion 15.75 16.40 0.60 0.452 0.224 31.92
TrojDiff 14.36 18.73 0.70 0.407 0.169 83.68
WDP 15.07 18.59 0.67 0.445 0.200 11.36

Ours 8.39 23.31 0.83 0.235 0.112 0.18

Secrecy. For assessing the image generation performance of generative models, the commonly
used metric is Fréchet inception distance (FID) (Heusel et al., 2017), measuring the quality of gen-
erated images at the population level. Previous studies calculate FID on the pre-trained diffusion
model and the modified diffusion model, respectively, with the discrepancy indicating the level of
secrecy. However, such a population-level image quality metric may not reflect the nuances in in-
dividual images. Therefore, we measure the secrecy at the individual sample level by computing
the individual image distortion (indicated by PSNR, SSIM, LPIPS, and DISTS) between images
generated from the pre-trained and edited diffusion models using the same initial noise.

Hiding Efficiency. We record the time cost (in terms of GPU hours) for the hiding process as an
indicator of hiding efficiency. All methods in our experiment are implemented on the same device
equipped with AMD EPYC 7F52 16-Core CPU and NVIDIA GeForce RTX3090 GPU.

4.3 EXPERIMENTAL RESULTS

Fidelity. Table 1 presents a quantitative comparison of our method with existing image steganog-
raphy (Baluja, 2019; Zhu et al., 2018; Weng et al., 2019; Jing et al., 2021; Yang et al., 2024) and
NNS (Chen et al., 2022) methods. Additionally, we include the results of applying existing back-
door attack methods (Chou et al., 2023; Chen et al., 2023) and a diffusion model watermarking
method (Peng et al., 2023) for diffusion model-based NNS. Our method achieves the highest fi-
delity for both 32 × 32 and 256 × 256 resolution images. A qualitative comparison of the fidelity,
in the form of an error map between the extracted and ground truth secret images with 256 × 256
resolution, is presented in Fig.3.

Secrecy. Table 2 and Table 3 provide a quantitative comparison of secrecy. Our method achieves
the most similar FID to that of the pre-trained diffusion model, while also exhibiting the best PSNR,
SSIM, LPIPS, and DISTS for individual samples. These results indicate that our method provides
the best secrecy when hiding images in diffusion models. Fig. 4 visually demonstrates the qualitative
comparison of sample-level distortion for the generated LSUN-bedroom images (256 × 256). The
secrecy evaluation of image steganography methods is based on the fidelity of the stego image,
which is not directly comparable to the secrecy (fidelity of stego neural network models) of NNS
methods. However, we still include the results in Appendix. The secrecy results for the NNS method
are also included in the Appendix for clarity, as their stego neural network model is not diffusion
model.
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Figure 4: Qualitative comparison of generated samples.

Table 4: Fidelity and secrecy comparison, when hiding multiple 32× 32 secret images.

# of Images Fidelity (Extracted Secret Image) Secrecy (Generated Image)

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓
1 52.90 0.99 0.001 0.001 31.06 0.94 0.077 0.037
4 49.38 0.99 0.001 0.001 30.93 0.95 0.064 0.033
8 43.11 0.99 0.001 0.002 30.59 0.94 0.076 0.038

Table 5: Fidelity and secrecy comparison, when hiding multiple 256× 256 secret images.

# of Images Fidelity (Extracted Secret Image) Secrecy (Generated Image)

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓
1 39.33 0.97 0.043 0.018 23.31 0.83 0.235 0.112
4 38.31 0.96 0.058 0.029 17.78 0.74 0.394 0.165
8 33.55 0.91 0.161 0.066 14.08 0.62 0.510 0.187

Hiding Efficiency. Table 2 and Table 3 demonstrate that our method exhibits the lowest time cost
(in terms of GPU hours), indicating superior hiding efficiency. Other compared methods require
re-training or full fine-tuning for a large number of iterations, resulting in high time costs. Among
them, WDP (Peng et al., 2023) has the lowest time cost, although it is still significantly higher
compared to our method.

Hiding Multiple Images. Tables 4 and 5 show the fidelity and secrecy of our hiding method when
multiple images are concealed. In general, as the number of secret images increases, the fidelity
decreases. However, the overall image-hiding performance of our method remains acceptable. It
can be observed that hiding low-resolution images is easier compared to high-resolution images,
given the same number of secret images.

5 ABLATION EXPERIMENTS

Different Secret Time Steps. The proposed hiding scheme enables the hiding of a secret image
in an arbitrarily selected secret time step ts, which acts as a component of the secret key. In this
experiment, we investigate the impact of the selected secret time step ts on the hiding performance.
As depicted in Fig. 5, different choices of ts result in similarly good hiding performance in terms
of fidelity and secrecy (measured by PSNR and DISTS). More results can be found in Appendix.
Notably, the highest fidelity is achieved when ts falls between 700 and 900, and a better trade-off
between fidelity and secrecy is observed.

Comparison with Full Fine-tuning. To demonstrate the effectiveness of our PEFT method, we
compare it with full fine-tuning. Table 6 presents the results, showing that replacing our PEFT
method with full fine-tuning leads to a noticeable decline in secrecy without enhancing fidelity. This
highlights the advantage of our PEFT method, which improves secrecy without sacrificing fidelity
due to its modification of fewer parameters for image hiding.
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(a) PSNR↑ (b) DISTS↓

Figure 5: Ablation of different selected time steps. The fidelity is indicated by blue lines and the
secrecy is indicated by orange lines. More results can be found in the Appendix.

Table 6: Fidelity and secrecy comparison. FFT means replacing our PEFT with full fine-tuning.

Method Fidelity (Extracted Secret Image) Secrecy (Generated Image)

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓
FFT (32× 32) 51.30 0.99 0.001 0.001 22.53 0.83 0.200 0.075
Ours (32× 32) 52.90 0.99 0.001 0.001 31.06 0.94 0.077 0.037

FFT (256× 256) 38.36 0.97 0.057 0.022 17.87 0.65 0.474 0.197
Ours (256× 256) 39.33 0.97 0.043 0.018 23.31 0.83 0.235 0.112

Table 7: Fidelity and secrecy comparison, when hiding image in other types of diffusion models.

Type Fidelity (Extracted Secret Image) Secrecy (Generated Image)

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓
DDPM 52.90 0.99 0.001 0.001 31.06 0.94 0.077 0.037
EDM 51.30 0.99 0.002 0.001 28.80 0.94 0.090 0.056
CM 35.93 0.98 0.012 0.008 25.57 0.91 0.112 0.073

Other Types of Diffusion Models. While we have demonstrated the proposed method using
DDPM as an example in this paper, it is worth noting that the proposed method can be applied
to other types of diffusion models. In this ablation experiment, we extend the application of our
method to hide images in EDM (Karras et al., 2022) and consistency model (Song et al., 2023). The
pre-trained models utilized in this experiment include an EDM trained on ImageNet 64× 64, and a
consistency model distilled from such EDM. As shown in Table 7, satisfactory fidelity and secrecy
are achieved when employing the proposed method for hiding images in other types of diffusion
models.

6 CONCLUSION

In conclusion, this research addresses the limitations of current methods for hiding images in diffu-
sion models by introducing a new approach that hides images at a secret time step in the denoising
process, leveraging a hybrid PEFT method that combines the advantages of selective and repa-
rameterized PEFT techniques to improve hiding efficiency. Extensive analyses and experiments
demonstrate the superiority of the proposed approach in terms of fidelity, secrecy, and hiding effi-
ciency. Future work could explore potential enhancements and applications of our approach in more
advanced multi-modal diffusion models.
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