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APPENDIX

A DETAILS OF THE DATA COLLECTION

Our dataset has been obtained by reconstructing 2D aerial image sequences using SFM technology,
which recovers the camera extrinsics for every image. We have collected the 2D aerial image se-
quences through UAV oblique photography, using the DJI M300 RTK quadcopter and the five-lens
oblique camera SHARE PSDK 102s. The resolution of each image is 6144×4096. Figure 1 shows
the image acquisition equipment, and Table 1 describes the relevant parameters of the SHARE PSDK
102s camera.

Figure 1: Left: DJI M300 UAV used for data collection; Right: SHARE PSDK 102s five-camera
used for data collection.

Table 1: The parameters of the SHARE PSDK 102s camera

Performance parameters Numerical value

Lens number 5
Tilt angle 45◦

Image resolution 6144×4096
Focal lens Downward:25 mm, sideward:35 mm
Sensor size APS-C Format(23.5×15.6 mm)

During the UAV shooting process, we use a preplanned Z-shaped route. The image capture interval
is 2 seconds. The flight altitude for capturing the original aerial image sequence with UAV is 100
meters; the weather conditions on the day of data collection are clear, without any obstructive factors
such as clouds, haze, or strong winds, providing the drone with a good field of vision, visibility,
and stable flight conditions. The UAV is equipped with a five-lens camera, which can capture five
images in different directions every time. One lens captures images from a downward angle, while
the other four lenses capture images from the sides. To ensure the accuracy of the subsequent 3D
reconstruction model, we set up six manual control points at six take-off points for verification
during the shooting process. Figure 2 shows the locations of 6 artificial control points.
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Figure 2: When capturing raw aerial images with a UAV, the positions of ground control points are
manually set by the personnel on the ground.

We conduct aerial triangulation, 3D reconstruction, and other technical steps on the 2D aerial image
sequence to generate a 3D textured mesh model. To obtain the correspondence between 2D pixels
and 3D points, we constructed an affine transformation. First, we computed the relative pose trans-
formation between cameras by matching feature points in the images, and constructed the extrinsic
matrix to establish the relationship between the 3D vertex coordinate system and the camera co-
ordinate system. Then, using camera parameters such as focal length, we constructed the intrinsic
matrix to establish the relationship between the camera coordinate system and the pixel coordinate
system. Through coordinate transformation, we established the relationship between 2D pixels and
3D points. To identify the outliers, during the feature matching stage, the matching error of feature
points between two images is eliminated using the RANSAC algorithm to remove outliers, avoiding
impact on the pose estimation process. During the dense matching stage, the point cloud data is
denoised and smoothed to remove outliers and sparse point clouds. Figure 3 shows the dimensions
and overall appearance of the reconstructed 3D textured mesh model.

The entire area covers an approximate land area of 2.85 square kilometers and consists of approxi-
mately 289 million triangular meshes. The terrain in this area is relatively flat, typical of suburban
urban scenes, with a diverse range of features including buildings, roads, water systems, farmland,
and vegetation. Note that the entire reconstructed scene is divided into 93 tiles, but only 89 tiles
contain scene data. There are four tiles without any scene data, and their distribution is shown in
Figure 4. These four blank tiles will be ignored in subsequent labeling and experiments. To provide
a greater variety of 3D structures, we have also released point cloud data with true scene color infor-
mation. The textured mesh data have been down-sampled to a point-cloud density of 0.15 meters,
resulting in approximately 152 million points.

B DETAILS OF THE DATA ANNOTATION

We use the DP-Modeler software for semi-automated 3D annotation to ensure that every triangle
mesh is assigned the corresponding semantic labels. No triangle meshes are left unmarked. To pre-
vent annotation errors and omissions, we ensure that all of the labels undergo two rounds of manual
cross-checking to ensure accuracy. Figure 5 shows the issues discovered during the manual cross-
checking process and promptly corrected. The semantic annotation process starts by inputting the
source data, configuring the annotation categories according to requirements, and then performing
manual labeling. After labeling has been completed, the classified data are subjected to quality in-
spection. Abnormal data are reclassified, resulting in labeled output data. The entire annotation
process is illustrated in Figure 6, and the tool interface used in the semantic annotation process is
shown in Figure 7.

In the selection of semantic labeling strategiesthe CUS3D dataset abandons the previous fixed ur-
ban semantic labeling strategy and adopts a dynamic urban semantic labeling strategy that considers
both fully developed and developing semantic categories. For example, the categories of ”road”
and ”ground” may have some overlapping characteristics. However, ”road” belongs to fully devel-
oped functional objects, which can be used for urban transportation planning and peak traffic control
optimization research. ”Ground” belongs to undeveloped objects and labeling and recognition can
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Figure 3: Original unmarked 3D texture mesh model. High-resolution texture mesh model recon-
structed in 3D from a sequence of aerial images taken by a UAV, covering an area of 2.85 square
kilometers.

Figure 4: Blank Tile Distribution Chart (as indicated by the red box in the image).

Figure 5: Artificial cross-checking detection of unmarked vehicles. (a) Unmarked vehicles detected;
(b) Select unmarked vehicles; (c) Change the marking to vehicles.

help with early planning judgments in urban development. ”Building sites” belong to the category
of ongoing semantic objects and can be transformed into building in future semantic updates. The
semantic labeling strategy of the CUS3D dataset considers the application, functionality, and tem-
poral aspects of objects, making it more suitable for practical applications such as urban planning,
transportation planning, and construction decision-making.
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Figure 6: The pipeline of semantic tagging work.

Figure 7: Semantic labeling software work interface.

We classify different objects in the scene into 10 semantic categories. Considering that the scarcity
of certain objects does not affect the planning and research of large-scale scenes, we categorize
some high-granularity object information (e.g., pedestrians, utility poles, and solar panels) into their
respective larger categories. These 10 semantic categories comprehensively represent the scene
information in cities and suburbs. Every semantic label is assigned a specific color information.
Table 2 provides the RGB values and grayscale values corresponding to every semantic label. Figure
8 shows the semantic labeling results of certain regions.

Regarding 2D image semantic labeling, the entire 2D image sequence consists of 10,840 images
from 5 different perspectives. Due to the high similarity in the poses of four cameras tilted at 45°,
we only selected 4,336 image sequences with a 90° top-down view and one 45° oblique view for
semantic annotation. We have adopted the ABAVA data engineering platform developed by an
outsourced company in our project team. The data labeling module of this platform provides an
automated instance segmentation tool based on the SAM algorithm. During the labeling process,
the samples are first pre-labeled using the automated labeling module, and then manual adjustments
are made to achieve high-precision pixel-level 2D image semantic labeling.

C DETAILS OF THE EXPERIMENT

To verify the applicability of the CUS3D dataset on existing semantic segmentation networks, we
conduct benchmark tests on seven 3D baseline methods. The hardware configurations are standard-
ized for the seven 3D benchmark tests, and the detailed hardware information is shown in Table 3.
To ensure consistency in the benchmark tests, we ensure that the training, testing, and validation
sets use the same regions and data quantities for the seven 3D test networks: PointNet(Qi et al.,
2017a), PointNet++(Qi et al., 2017b), RandLA-Net(Hu et al., 2020), KPConv(Thomas et al., 2019),
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Table 2: Semantic label color information table
Category RGB value Grayscale value

Building (254,1,252) 105
Road (0,255,255) 179
Car (200,191,154) 189

Grass (91,200,31) 99
High vegetation (0,175,85) 112

Playground (130,30,30) 0
Water (0,0,255) 29

Farmland (140,139,30) 59
Building sites (30,140,201) 201

Ground (154,0,255) 75

Figure 8: Partial region semantic labeling results. (a) Partial region original mesh; (b) Partial region
semantic labeling results.

SPGraph(Landrieu & Simonovsky, 2018), SQN(Hu et al., 2022), and Stratified Transformer (Lai
et al., 2022). Therefore, the dataset is uniformly partitioned. Additionally, owing to the influence
of down-sampling on RandLA-Net(Hu et al., 2020) and SQN(Hu et al., 2022), some tile files have
too few points. Therefore, the following seven LAS files are excluded when partitioning the dataset:
Tile +001+000, Tile +001+006, Tile +004+007, Tile +005+000, Tile +010+001, Tile +011+007,
and Tile +012+002. In the main text, we show the distribution of the training, testing, and valida-
tion sets in the entire scene, as well as the distribution of every category in the mesh data. Table 4
shows the parameter settings of the baseline experiment.

Table 3: Baseline test experimental hardware environment configuration table.

Name Model

System 4029GP-TRT2
CPU Intel Xeon 4210R

Memory SAMSUNG 32GB DDR4 ECC 293
System Disk Intel S4510

Data Disk Intel S4510
GPU Nvidia Tesla V100
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Table 4: Baseline experiment parameter settings

Epoch Batch size Num point Learning rate Optimizer Momentum Parameters Time

PointNet 100 24 4096 0.001 Adam 0.9 0.97M 6.4h
PointNet++ 200 32 4096 0.001 Adam 0.9 1.17M 6h

RandLA-Net 100 16 4096 0.01 Adam 0.9 4.99M 7.5h
KPConv 500 10 - 0.01 Adam 0.9 14.08M 8h
SPGraph 500 2 4096 0.01 Adam 0.9 0.21M 5.5h

SQN 100 48 4096 0.01 Adam 0.9 3.45M 7h
Stratified Transformer 500 8 4096 0.001 Adam 0.9 34.63M 41h

During the data partitioning for the experiment, a total of 82 tiles were used for the train-
ing/validation/testing sets. Among them, 4 tiles did not have mesh data because they were located
at the edge of the measurement area, where the number of feature points for 3D reconstruction was
too small to construct mesh data. Additionally, 7 tiles were not included in the dataset partition be-
cause, during the testing of the RandLA-Net network, the point cloud data of these 7 tiles had fewer
than 4000 points, which did not meet the network’s num points requirement. In order to ensure the
consistency of the input data for the network, these 7 tiles were deliberately ignored during the data
partitioning.

To evaluate the performance of the CUS3D dataset, we choose ACC, Recall, F1 score, and IoU
as evaluation metrics for every category. Overall, we choose mIoU, OA, and mAcc as evaluation
metrics. In the main text, we present the metrics results for overall category testing and mIoU for
every category. Tables 5, 6, 7, 8, 9, 10, and 11 show the test results for every semantic category in
the seven networks.

Table 5: Evaluation metrics results of PointNet for every category

Ground Building Road High vegetation Water Car Playground Farmland Grass Building site

Acc(%) 95.96 96.47 90.44 98.03 92.14 98.77 99.90 99.90 86.72 99.18
Recall(%) 88.35 80.95 91.77 88.80 40.42 25.32 9.98 9.98 50.53 20.10

F1 Score(%) 87.85 79.34 87.84 84.56 40.17 33.58 16.17 16.17 56.21 28.40
IoU(%) 78.36 65.81 78.34 73.32 25.22 20.35 8.76 8.76 39.11 16.66

Table 6: Evaluation metrics results of PointNet++ for every category

Ground Building Road High vegetation Water Car Playground Farmland Grass Building site

Acc(%) 90.43 93.62 96.11 93.66 99.16 99.13 99.86 97.56 95.16 97.57
Recall(%) 42.37 89.62 83.14 91.72 65.01 46.83 18.64 72.42 53.42 16.09

F1 Score(%) 40.77 89.07 73.07 92.55 72.45 52.61 18.67 57.50 56.89 22.58
IoU(%) 25.78 80.36 57.77 86.18 57.52 36.13 11.38 40.88 40.17 13.28

Table 7: Evaluation metrics results of RandLA-Net for every category

Ground Building Road High vegetation Water Car Playground Farmland Grass Building site

Acc(%) 88.24 94.49 95.12 90.15 98.67 97.64 97.32 96.67 93.31 96.59
Recall(%) 42.56 80.52 83.02 80.44 81.33 55.31 57.31 49.56 70.68 65.00

F1 Score(%) 26.04 86.38 65.17 87.88 76.43 66.04 51.87 58.84 56.42 45.38
IoU(%) 15.29 76.18 49.51 78.42 62.30 49.89 35.91 42.11 39.74 9.86
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Table 8: Evaluation metrics results of KPConv for every category

Ground Building Road High vegetation Water Car Playground Farmland Grass Building site

Acc(%) 93.79 95.00 97.50 93.94 99.51 99.26 99.90 98.21 96.18 98.76
Recall(%) 35.43 92.38 80.80 95.71 60.41 58.87 13.84 62.39 54.83 17.83

F1 Score(%) 40.19 90.54 65.16 94.52 63.81 60.27 12.58 57.87 61.53 25.14
IoU(%) 25.73 82.89 48.69 89.64 48.43 44.69 25.72 41.86 44.84 15.50

Table 9: Evaluation metrics results of SPGraph for every category

Ground Building Road High vegetation Water Car Playground Farmland Grass Building site

Acc(%) 92.73 69.59 96.03 21.90 99.03 98.98 99.89 97.16 92.39 98.09
Recall(%) 14.24 38.48 42.68 90.88 40.51 4.75 8.91 51.30 42.14 42.56

F1 Score(%) 21.30 48.48 46.59 77.49 47.91 8.78 16.04 53.30 47.54 46.18
IoU(%) 12.05 32.10 30.56 63.40 31.71 4.40 7.65 36.66 31.36 28.84

Table 10: Evaluation metrics results of SQN for every category

Ground Building Road High vegetation Water Car Playground Farmland Grass Building site

Acc(%) 86.09 95.36 95.06 91.98 98.28 98.04 97.87 96.52 93.22 96.45
Recall(%) 40.26 90.12 72.07 95.92 71.00 62.74 73.31 47.47 64.61 65.87

F1 Score(%) 46.44 87.76 74.74 87.73 73.81 70.70 50.94 56.37 61.96 46.32
IoU(%) 30.65 78.63 60.22 79.07 59.21 55.46 34.77 39.88 45.54 30.73

Table 11: Evaluation metrics results of Stratified Transformer for every category

Ground Building Road High vegetation Water Car Playground Farmland Grass Building site

Acc(%) 91.22 94.43 96.12 94.67 99.34 99.21 99.85 97.89 96.12 97.88
Recall(%) 33.44 90.1 83.3 91.56 59.32 57.01 14.55 62.45 55.78 18.32

F1 Score(%) 41.34 90.22 66.19 90.44 62.63 52.78 12.89 57.85 57.03 22.68
IoU(%) 60.23 70.02 75.44 83.36 58.47 58.66 32.45 39.66 34.59 39.33
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