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2z A Monte Carlo Approximation for f(j, v, m)

28 A.1 Derivation Process for f(j, v, m)

29 Considering that the mutual information is not directly tractable we approximate f(j,v, m) by:

K1 L
f(javam):_)\iz Zlog[ Z (m(kl ) |¢m ’ )]

kl 1l1 1 c1= 1
K> Lo Ca

K2 Loy - C2 Z Z Z log[ w(kz la, c2)|¢ (k2) )]

k’g 1l2 162 1

s0 where e = {(j,v), m} is the experiment to be designed, &) pE ~ p(pm|D), i)

ot pl|gh,€). 9fp) ~ p(dar|D). B ~ p(ldhy’), D) and i) ~ p(a|gfi ).
32 We present the detailed approximation process as follows:

£Grom) = s 1(a; dusle, D)

1
= 1 [H(zle, D) — H(|¢x e, D)

1
- )\7 [_Ep(w\e,D) Dogp(ide, D) + EP(d’M\D) [Ep(w|¢M,e) [Ing(w‘e’ ¢M)]]]]

1
= = [“Ep@le.n) [108Ep(g,.1e.0) [P(zle, $m)]]]

E

1
- [Ep(ér D) [Ep(ale.par) l0gp(x]€; P1r)]]]

F
33 For part F, we can estimate it by

E:‘F Z Zlog Z p(ai e )|

ki=111=1 c1=1
34 where for the first expectation on p(¢,,|e, D), we first sample ¢m1) from qb(kl ~ p(¢pm|e, D) for
K1) from {01 o (ac|¢(k1 e) for L, times.

ss For the second expectation on p(¢,|e, D), we sample (j)ml) ~ p(¢m|e, D) for C; times.

35 K times, and then for each (;5( 2 , we sample x;;,

37 For part F', we have

F=-—"[Epguip) [En@lsue) logp(@|dn,e)]]]

| Ep(gn|D) [/p(wqu,e) log p(x|pr, €) dm”

Ep(ons 1) [ [ [ @l ex(@nlon) dbntozsialdn. e dazH

Ep(¢r|D,e) [//p(w|¢m7e)p(¢m|¢M)10gp($|¢M7€) dx d(l)m”

= b\ ’ EP(¢A4|D,8) [/Ep(m¢m,8) [p(¢m‘d)M) 1ng($‘d)M,e)] d¢m:|:|

1
S [Epgrrin.e) [Ep(@nldnr) [Epldm.e) logp(@|dn,e)]]]] .

38 It can be estimated by
Ky Lo Co

A K2 L2 02 Z Z Z 10g|: }fz,lz,cz ‘¢(k2) ):| ,

]{3 _1l2 1lco= 1
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where for the expectation on p(¢ | D, €), we sample ¢§\§2) from ¢S\f}2) ~ p(¢ule, D) for Ky times.
For the expectation on p(¢,,|® ), for each qS%CZ), we sample ¢$,’§2’l2) from ¢(k2’l2) ~ (¢m\¢(k2 )

for Ly times. For the expectation on p(x|¢,,, €), for each ¢§\]}2) and (;5552’[2) we sample giketec2)
from z{5222) « p(x|p'h>"?)  e) for Cs times.

Therefore, we can conclude that f(j, v, m) can be estimated by

1 1
e or =70 O[O S )
1
kl 1l1 1 Cc1= 1
Ky Lo C»

K2 L - Cg Z Z Z log[ (k27l2,02)|¢§\]/€[2)7e)} ’

kz 112 162 1
where @i dn) ~ p(dn D). @i~ plalglit) ). ¢ ~ p(dulD). din
p(¢ m|¢M2>,D> and 4545 a1 o)
Obviously, the above approximation of f(j, v, m) only depends on p p(Pm|Pr, D) and
AZ A and

p(x|m, €). In the next, we show how to sample from them in Section A 4] respectively.

A.2  Sampling from p(¢,,|D)

Basically, sampling from the posterior of “p(-|D)” is not easy. To solve this problem, as mentioned

9 6, 9

in the main paper, we introduce a variational probability “q” to approximate “p”. In specific, in order
to sample from p(¢,,| D), we first obtain a sample ¢ from ¢»; ~ N (0, I), and then get ¢,,, from
the distribution ¢(¢,,|@1).

Since
q<¢m|¢1>=/ / (Do bt -+ G2|1) Ay . debs.

and

U Dms 1, Pal¢n) = [ [ al¢il i)

i=2
q(@ilpi1) = N(cipi1 + di, o7 1),
we have ¢(¢.,|¢1) is a Gaussian distribution, which is easy for sampling.

In our model, ¢; and o-,fI are diagonal matrices, which means that the dimensions in ¢; are indepen-
dent with each other. We denote ¢; = [¢i.1, P2 . . . ¢ 4], Where ¢; ; is the jth element of ¢;. Then,
we have

d
QD> D1, D2ld1) = [ [ a(Gmjs 15 25101,5)-
j=1

So our target can be converted to calculate the probability ¢(¢m, i, Pm—1,5- - - ; ¢2,i|$1,5) for all
dimensions V1 < j < d. Let ¢; 5,d; ; and a ; be the jth element of ¢;, d; and o?, respectvely. We

assume that o; ; = , /ci_lj +105-1 (> 4) and o3 ; = 09 ; = e, where e is the hyper-parameter.
Suppose 1i; ; is the mean of the Gaussian distribution for ¢(¢; j|$;—1 ;) that is,

pig = Cijdi-1j+dij (i =2),

then, the approximated joint distribution can be represented as

A DPmjs OPm—1>r-- > D2,

¢15) =[] a(6isl0i1,)
1=2
5o ($i,5—nig)?

_H\/ﬂou



64 Then, we integrate ¢ ;, @3 j, ..., dm—1,; sequentially to obtain ¢(¢., j|P1 ;).

65 First of all, we integrate ¢, ; for the joint distribution, where we have:

q(¢m,j7 ¢m—1,j7 LR ¢3,j|¢17j)
- / Doy Gt o B30 b2,5|01.5) don

oz (Di—pi)’
| I i, d(/b?,j
/ 5 V 277024

H e (¢7 J M, J) ]. ].
4V 27‘(0’1 g \/ 2mo3,; V2moo

T@ [¢2,5—(w21,5+d3,5)]?
€72

2;51 ~[¢3,5—(ca,jb2,+ds ;)]
J .

dos ;.
66 Denote ¢y ; = co ; and do ; = do ;, and because of o3 ; = 0o ;, we have
3] 3] 3] 3] sJ sJ

U Pmj, Pm—1,js- - P3,5|H1,5)
1 Hm 1 5o (i —pig)? 1 /
— . e - e
vV 27‘(’0’27]' i—a A 27‘(’0’1'7]‘ vV 27‘(’0’37]‘

— _ = 2
72(,%1 ~[$2,5— (G251, 5+d2,5)]
5]

#é [¢3,5—(c3,5¢2,5+ds )]
2J .

dgs,j

m

1 H 1 2572 ‘(‘i)i,j*/»"l,J) 1 /
— . e Ui - .
V2mog ima V 2mo; V2103,

1 {[¢3,j — (ea, 02,5 +dsj)” + [p2,; — (Cojr,; + J2,j)]2}

e S1 d¢2’j.

67 For S, we have

S1 =057 — (c3jbay +dsj)]” + [0 — (Cojbry +day)]’
=¢3; + 3 05, +d5 ; + 2d3 jes b2 ; — 23 3,25 — 2ds ¢35 + B3
+ 07+ d3; + 2d2 G2 b1 — 262 b1, — 2ds b3
:(Cg,j +1)

_ _ 2
2(ds,jc3,j — c3,i%3,5 — C2,i%1,; — da,5) i (ds,jca,j — 3,03, — C2,jP1,5 — dz,j)

2
+
#2. ¢+ 1 ¢+ 1

 (dsjesj —c3,i03,5 — G201, — daj)”

+ 93+ 0%+ d3 ; + 2da ;T b1y — 2ds s

c;j +1
_ 2
2 €3,j03,j + C2,i¢1,5 +daj —dsjcs,;
=(c5,;+1)- P —

( 3,7 + ) <¢27J C§j+1

N 3055+ G301 ; + d3 ;63 + 2ds jCa jes b1 — 07 5 — d5 j — 2da ;o i 5
03,j +1

¢3 G0+ d5 4 2da T — 2d3 js 5 — CFd5  — 3 03 5 + 263 jds s

¢, 1

7 = 7 7oa 2 2
N 2¢3,jdg jds j — 2¢3,j¢3,jC2, 51,5 — 2€3,j93,5d2,j + 2d2,;C2 jC5 ;1,5 — 2d3 53 ;03,5
J .
3 +1



68 Then we have

_ 2
C3,j¢3, T C2,j01,5 +da,j —ds s
Sy —(c2 . 1 1)- o G3,P3,5 JPL,j J 13 63,5
1 (Cd’j + ) ¢2,] C%J» 1
+¢§f—ﬂég%a%u*ﬂ%d%J+dw%%J
cgﬁj +1
_ = 2
+(%ﬁw¢m+dm%a+%ﬂ —d3 ;- (c5;+1)
cg’j +1
_ 2
2 C3,j¢3,j + C2,jP1,5 +da,j —dsjcs;
=(c2 . +1)- _
(C3J + ) ¢2,] ng +1
1 _ - 2
+ o [b3; — (c3C0 5015 +dajes; +dsy)] —di
€3 +1

69 Therefore we have
Q((bm,j? (bm*l,j’ sy ¢3,j|¢1,j)
1 i 1 o5 (bii—hi)’
T .

— . -e
V2mog ; g V2mo;

= 7 2
€241 (B4 °3,j%3,5 422,511 d2, 5~ d5 503,
3,7 202 . b2,5— 2 11
Y - e 3,5 3,5 d¢2,j

vV 2’/T037j

Sa
. _ z 2 43
EW[¢3,j—(Cs,j02,j¢1,j+d2,103,j+d311)] .ezogd . 1

2
V6, 1
_ S 2
C3,iP3,j+C2,j¢1,5+d2,j—ds jc3 i 93,5 c ks
11 , C§Y7+1)’ which is

70 The Sy part is the integration form of ¢ ; ~ N (
71 equal to 1, so we have

Q((rbm,jv ¢nl—1,ja ceey ¢37j|¢1,j)

m _ _ _ = 2
1 1 T;(‘ﬁi,j—#i,j)z m[¢3,j—(Cs,jCQ,j¢1,j+d2,j03,j+d3,j)]
— H e Tig -e”73.3 V3. .
\/27’(0'27]' i—4 \/2’/TCTZ'7J'
d2 .
3,3
20%,]‘ . 1

Ve, t1

d2
3,7
_ _ - = -
72 We denote C3,j = C3,jC2.5 and d37j = dg,jC?,,j + dg,j, and denote ro; = CREER ﬁ, so we have
3,3
q(¢m,ja ¢m—1,j7 R ¢3,j |¢)1,j)
m _ _ _ -2
1 1 5o ($i,5—nig)? m[¢3,j—(03,j¢1,j+d3,j)]
— . H e % e85 V3. s T9 7
vV 27’1’0’ij i—a \/27’(’0’1',]'
m — -
1 H 1 5o (i —pig)? 1 %[¢>4*(C4¢3,j+d4)]2
= . . 1,7 “ — .
V2nog eV 2ro; V2o,
_ _ -2
mws,jf(%,j%,ﬁrd&j)]
e 3,7 V73,4 . fr=2 .
5J
m —1 2 1 2
1 1 Tizj(dh,y—ll«z,y) 1 eﬁ[¢4_(64¢3’j+d4)]

= . . 6 —_—
V2moo, g Vimo; V2moy

— _ - 2
5 (63— (Ca,561,5+ds.5)]
e?7s T2
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Similarly, then we integrate ¢3 ;

q(¢"17j7 ¢WL—1,ja ceey ¢4|¢1,j)
=/Q(¢m,j7¢m—1,j»~-~a¢3,j|¢1,j) dos,;

ECTIER - ! I Rk / L ahlon(eas )l
V2mog ; Pl V2mo; V2moy

_ _ S 2
eﬁ [¢3,j_(03,j¢1,j+d3,j)] d¢2,j~

The formulation is similar to the previous one, so we can utilize the process above to integrate
succesively, and we finally obtain

m—1 — _ = 2
Hi:Q 7,5 mwm,j*(cm,y‘d’l,ﬁdm,j)]

U(Pm,jlr;) = === G € g g
2,5

)

which indicates
m—1 1 _ - 2
Hi=2 Tij T ey [m.i—(Em1.5+dm. ;)]

- V2mog ’

where we have the iterative calculation by

P(Pm. jl¢1,4, D)

2
i1 1

\/ 022+1,j +1

Ci,j = Ci,jCi-1,, (1 2 3),
dij =di—1,¢ij +dij, (i>3).

’

202 .
rij=¢e Tit1l,5 .

A.3 Sampling from p(¢,,|Prr, D)

To sample from the distribution p(¢,,|@ s, D), we first obtain a sample ¢p; from the prior distribution
(i.e., ¢1 ~ N(0,I)), then get ¢, from a consecutive sampling process:

dri—1 ~ p(dr—1|ba, d1, D),
Pri—o ~ p(¢M—2\¢M—1, b1, D),

d)m ~ p(¢m‘¢m+17¢17D)7

because of the Markov property in our cascaded model. So our target is obtaining the distributions
p(Pi—1|¢i, 1, D). For a certain p(¢;—1|d;, ¢1, D), according to the Bayes rule, we have

‘ A _p(dilpi—1,¢1,D) - p(@i—1|$1, D)
p(¢271|¢17¢1,D) - p(¢1|¢1,D) .

Similarly with the last section, we use non-bold symbols to represent one dimension of the multi-
dimension parameters, where they are able to transfer independently, and finally construct the eventual
parameters by concatenating, that is,

d

p(bi—1|di, ¢1,D) = HP(@JWFLJ‘» ¢1.5, D).

Jj=1

So our target can be converted to calculate the probability p(¢; j|¢i—1;, ¢1,5, D) for all dimensions
V1 < j < d. According to the Markov property and the transportation probability, we have

P(Bijli-1.4, 01,5, D) = q(Pijlbi-1,4, ¢1,5)
1 ﬁ'[¢i,j—(ci¢i71,j+di,j)]2
€% .

N vV 27('0'1”' .




g8 According to the previous section, we have

Tissris | wrycymm bra @]
V2mog ’

o ~ ) ~ )
1 ) . H;:2 Tij ] 6—2"1‘2—1,j'(a1?—1,j+1) [¢i—1,j_(Ci—l,j¢1,j+di—1,j)]
J/) :

vV 27’(027]'

(@i jl91.5, D) =~ q(di jlé1;) =

P(di—1,5P1,5, D) = q(di—1,;

g9 Then we have

(131653, 615 D) ~ q(Pijldi14,P15) - a(bi-14l¢1;)

qa(¢i,5|91,5)
[¢i—1,—(eiz 1;¢1 o1 ]2
1 sz [¢ii—(cijbim1+di ) e 21y Gyt
= e 1,7 .
V2mo 5T [#i,5=Ceq glic 1,j+di,j>]2
’ e —207 (74D
1 207 [6i,5—(cijdi1,j+d; ]2 (65,5 (cijbi1,5+d; )] [pim1,;—(Ci1, b1 +di—1,)]?
Cij + FE 202, 202 202
e i o-e i+1,7 - e i,J - e 2V}
27T0'
0,7
Cij+1 2114_[4’1] (Ctj‘ﬁl 1J+d1J)]
= ’72 .e 'L,g Ti+1,4
27r0m-
di ;) c d, 2
o[ — (Cijdimng + i)l + [fi-1,j = (G151, + di-1,5)]
e (e}

90 Then we calculate the part C as

C = [6ij — (cijbirj +dif)|> + [dicrj — @11y + dic1y)]
=67+ (cijoiory +dig)® —2(cijdio1; + dij)di,
+ 67, S+ (Wim1¢1j +dia ) =201, (Cim1 0+ diza ;)
= @7+ 071+ di + 2ds 364, iGim1j — 26 jbi10i  — 2di b5+ Dy

+& ]¢1 i+ 7, 261 iy jdry — 281 51 i1y — 2dim1jdio1
2

Cijij + i1, 01+ dic1; —diyCiy | | p
)

cj+1

= (W], +1) |$i—1,; —

91 where B does not include ¢;, which indicates

_ 7 2
Ci,jPij + Ci1,j01,5 + dicrj — dijwia  Tij

i +1 e+l

p(di-1,j

¢i,ja¢1,j)D) NN(

).

92 A.4 Calculation of p(x|e,p.,)

93 In this section, we will show how to calculate the graph probability p(x|e, ¢.,, ). Remember the graph
94 parameters @y, = [0pn; Sim; T, sO we have

p(ele.dn) = [ plale.6, ) p(Ele. S, T,) dE
E
= ]EENP(E‘SWUTm,) [p(w‘e7 07717 E)] .
95 According to Monte Carlo sampling, we have

K
1
p(m‘e7¢7n) = ? : E p(m‘e7GM7El)7
=1

96 where E[i, j] ~ Bernoulli(o(SZ [i] - T,,[4])). In order to conduct intervention process, we change
97 the jth column of E; to zeros, and represent it with E;. Moreover, we replace the jth element of x
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with v, and get the result . We change the jth element of €,, with zero, and get the result €,,,. Then

according the definition of causal graphs, we have

1 & - i
p($|6,¢m) = E ZN(:E’ .f(x;Ela’Y’rn)aem)a

1=1
where f is the causal function that depends on the parameter ~,,, .

B Bayesian Optimization for Determining (;*, v*, m*)

We intend to find the best tuple for acquisition, that is,

(4" v%,m") = argmax f(j, v, m).
(Gv.m)

We define the best interventional value v under interventional node j and fidelity m as

v*(j,m) = argmax f(j,v,m)

= argmax f; ., (v).
v

where f;,,(v) is rewritten from f(j,v,m) under given j,m. Therefore, our task is calculat-
ing v*(j,m) for ¥j € [d],m € [M] with Bayesian optimization [I]. We utilize a Gaus-

sian Process (GP) [2] to model surrogate function distributions for each v*(j, m).

We denote

f ~ GP(0,K(v;,v;)), and K(v;,v;) is the kernel of GP. We sequentially find v; and calculate
fj.m(ve) to direct the process. According to GP, the previous ¢ functions and the ¢ + 1 function are

multivariate Gaussian distribution,

Fl:t Kt kt+1
{f”l} N (0’ [ktTH K(”tﬂﬂtﬂ)D ’

where we define

Fl:t = [f15f27"',ft]a
i1 = [K(Wi1,01), K(Weg1,02)s o K01, ver)]”
K(vi,v1) -+ K(vg,v1)
Ko=| @
K(vg,v1) - K(v,vp)

Given previous ¢ steps, we have the posterior probability is
P(fee1[{ (i, fim (i)Yot ver1) = N (ue(vet), 07 (0p41)),
with the non-parametric means and variances
pe(ver1) = kz:T+1(K + I)_lFlit’
o7 (V1) = K(0ug1,v641) = Rl (K +1) 7 Ry
We acquire the next v, with GP-UCB [3] function

at+1(v) = ,U/t(U) + 5(15 ' \/%7

Vi1 = arg max az41(v).
v

ey

(@)
(€)

where (,. is a hyper-parameter. Suppose the maximum of steps is 7, the final output of function

v*(j,m) is

v*(j,m) = argmax iz (v).

v

Then we choose the best interventional node j and fidelity m by their best values under O(d - M)

Jj5,m* = argmaxv*(j,m),
Jm

v = ().



1

8

119

120
121
122

123

124
125

126

127

128

129

130

C Detailed Training Process of ELBO

C.1 Derivation Process of ELBO

Because we use the distribution ¢(¢,,) to approximate the distribution p(¢,,), then we intend to
minimize the distance between these two distributions optimize the parameters of ¢(¢,, ), where we
utilize KL divergence to measure the distance, that is,

U* = arg min KL[q(®||p(®|D)].
N

According to the variational inference, we have

KL [g(®@)|[p(®|D)]

3 o 1(2)
_/q(i’)l 5 lap) 1
- /q(@)logq(‘l’) d® —/q(<I>)10gp(¢‘\D) d®

- &, D
_ Eq>~q(<l>) [log q(®)] — / q(®)log p(p(D) ) dP

= By log ()] - / 4(®)log p(®, D) d + / 4(®) log p(D) d®

= By [08¢(®)] — Eay(ar log p(®, D)) + / 4(®) log p(D) d
= Eg~q(a) [l0g ¢(®)] — Eg~q@) [logp(®, D)] + log p(D).

—ELBO

Because log p(D) is not related to ¥, minimizing KL [¢(®)||p(®|D)] is equivalent to maximizing
the ELBO part, and we have

ELBO = E‘i’qu(‘?) [10gp(¢’7 D)] E‘I>~q(‘1’ [10g q(q))]
= Egq@) [l0gp(D|®)] + Eg~q(a) [log p(®)] — Eg~q(a) [log ¢(®)]
= Eg~q(a) [logp(D|®) — logq(®) + log p(P)]

Above all, we can conclude that
¥* = arg min KL[g(®||p(®[D)]
v
is equivalent to maximize evidence lower bound
U* = arg max ELBO
v

= argmax Eg~q@) [logp(D|®) — log ¢(®) + log p(®)] .

C.2 Estimation of ELBO
We represent the equation of ELBO as
ELBO = Egq(e) [log p(D|®) —log q(®) + log p(®)]

= Esq@) logp(D[®)] — Egq(e) [log ¢(®) — log p(P)] .

A B

For the part A, we have

N
A=Egya) |log [[o(@®;®, 0@, m®, &)
i=1

10



131 where IV is the current number of samples in buffer. Then we have

N
=1

N
—Egqa) [Z log (@], v, m), @)

i=1

N

= Z E<1>Nq(<1>) |:1ng($(%) |j(l)7 v(i)a m(z)v (I))i|
=1
N

= Z ]E¢m(1:) ~q(b, (1)) [logp(w(i) |j(i)7 v(i)’ m(i)v ¢m('i> )} .

i=1

132 Using Monte Carlo sampling [4]], we can calculate the expectation by Ng samples for each point.

N Ng
A— Z Z log p(z @ [j@, v @ m(®, ¢£fj7-,> ),
i=1 j=1

133 where we sample (,b(]m ~ q(¢,, ) with size Ng.

134 Then we denote the distribution ¢(®) = N(fau, Y.), and similarly, we have p(®) =

135 Hff,l —B:f(Sm,Tm) . N (pau, o). Both the parameter fiq, Ea” can be represented by the
136 parameters in W, while p,;; and 3,;; are constant. Then we calculate part B

B =Eg~q) [log ¢(®) — log p(P)]

~a, 7204
/ N (fau, all) log —57 Nl 2 @
Hm e~ Bf(8m,Tm) . N(I»Lalla Eﬂll)

N (frair, Sarn)
7’ d® —|—/ N (frau, Xau) lo
N(Halh all) ” g ”) &

1
HM e B (Sm Tm)

/Nl»Lallz 3an)log

M
=KL (fatt, Zai) [N (ttat; San)] /Nuazl, a)log [T ¥/ EmTm) % .
c m=1

D

137 According to KL divergence of Gaussian distribution, we can calculate C' in a close-form.

C =KLIN (ftait, ) |IN (Bairs Zanr)]

1 3
! g 12l

Sl —d+ (25 Zan) + (o — Bar) " E 5 (fan — Hall):| -
all

138 Then we calculate D by the following steps:

D= /Nuau, ait) log H P fEmTm) 1

m=1

:/Nﬂazz, all Zloge FEmTm) 1@

m=1

/ N(Halla E(Lll) Z 5 ' .f(smva) d®
@ m=1
M

= ﬁ : E@NN(/.L&”,EGZZ) lz f(S7n7 Tm)

m=1
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Using Monte Carlo sampling, we can calculate the expectation by N samples for each point.

Np M
Dzﬁ'zzf T()
i=1 m=1
= ﬁ'z Z Ep(E|s(m>,Tm (A [tr (eE) —d] + X - ||E]]]
i=1 m=1

where we samples ®(*) ~ N (pair, Xou) with size Np. Using Monte Carlo sampling again, we can
calculate the expectation by N samples.

Np M Ng

D=p-% % > [M-[w(e®) —d +x|[E]],

i=1 m=1j=1

where we samples EU) ~ p(E\SﬁfL), T£,"3) with size Ng.

Finally, we obtain the estimation

N N
ELBO =Y Y logp(a|j, v, m®, o), )
i=1 j=1
1 DI 5 1~
-3 [log M —d+ (S an) + (Fan — tan) " E 00 (Fatt — Han)
[ aull
Np M Ng

B335 [ (€F) —d] + - [[EN].

i=1 m=1j=1

C.3 Gaussian Reparameterization Trick

In the last section, we derive the objection function for optimizing the model parameters, where we
can use methods of the gradient decent to solve it. However, a significant problem rises due to the
sampling process, because the gradient of model parameters can not pass backward from the naive
sampling process(i.e., untraceable). Therefore, we use Gaussian reparameterization trick to make the
Gaussian sampling process traceable.

In specific, we will demonstrate the traceable calculation of ¢ by Gaussian reparameterization
trick. In order to sample ¢ ~ N(u,X), we first sample § ~ N(0,1) instead, and then obtain
¢ = p+ 6 © X. Therefore, the gradient can be traced from ¢ to p and 3. In specific, both p and 3
can be represented with the function of learnable parameter .

C.4 Gumbel-softmax Reparameterization Trick

Besides of the Gaussian sampling process, the Bernoulli sampling in our equation is not traceable
either, so we utilize Gumbel-softmax reparameterization trick to make it traceable.

We demonstrate the traceable calculation of E ~ p(E|S, T) by Gumbel-max reparameterization
trick. According to Gumbel-max [5]], we have

Bernoulli(p) <= 1[G; +1logp > Go + log(1l —p)], Go,G1 ~ Gumbel(0, 1).
Instead of using unit step function, we utilize sigmoid function
0(G1 +logp > Go + log(1 — p)).
Therefore, we have
E;; =o(Li; +8] - T)),

where L; ; ~ L(0,1). Therefore, we sample L; ; ~ L(0, 1) instead, where L(0,1) is logistic
distribution, and calculate E; ; = o(L; ; + S;TF -'T;) to trace gradients. Specifically, both .S; and T;
can be represented with the function of learnable parameter .
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C.5 Optimization of ELBO

With the estimation and reparameterization trick, we are able to conduct gradient descent methods to
optimize our parameters with the objection function

U* = arg max ELBO.
v

The format of stochastic gradient descent (SGD) is

OELBO
ov

U0y

where 7 is the learning rate.

D Training Process of Constraint based ELBO

We intend to optimize our parameter with

U= arg max Egq(@) [log p(D|®) — log q(®) + log p(®)] ,

s.t. Z I(xs; xi|dpr, {€s,€e:}, D) <e.

{es,et}

However, the objection has a constraint, which is hard to optimize with gradient descent methods. So
we utilize Lagrange multiplier [6] to convert it to a constraint-free method:

V" = argmaxEgq() log p(D|®) —log¢(®) +1ogp(®)] + A+ D I(wsizi|par, {es. e}, D),
v {es.er}
where ) is the Lagrange multiplier. Then, we intend to calculate the constraint part.

First of all, we have

I(ms;xt|¢M7{esaet}?D)
:H(m9|¢M; {esa et}a D) + H(mt|¢]\/fv {687 et}7D) - H(m57mt|¢ﬂf7 {657 et}7D)
:H(5B5|¢]\4,63,D) + H(mt|¢JWaet;D) - H(ms;mt|¢1\47 {esaet}7D)7

For the term H (xs|¢ar, €5, D), we have

H(ms‘(pj\/[aesaD) = —/p(ﬂfs|¢]\/j,es7D) 10gp(:1:3|¢M,es,D) dms

= —Ep(a.|¢n.e.,D) l0gp(Ts|Par, s, D)] .
We use Monte Carlo sampling to estimate H (xs|¢ar, es, D), and we have

K1 Ks

1
1 (kl,kg) S
Ky Ky Z Z ogp(x e®, du),

ki1=1ks=1

H($S|¢M765,D) ~

where we sample graphs ¢F1 ~ ¢(¢é,,|€®, dar), and obtain samples x(F1:52) ~ p(x|e®, pF1).
Similarly, we can calculate

K1 K>

1
H(@i|¢as, e1, D) ~ > logp(a™ el ),
k?1:1 k}2:1

where we sample graphs ¢*! ~ q(¢,,|€!, d1s), and obtain samples 2(¥1:52) ~ p(x|et, pF1).
And we have

1 K1y Kz K>

1 2
H (g, xi|ar, {€s, €4}, D) ~ A SN Y logp(a®E), 2tk (e, e}, ),
ki=1k}=1k2=1
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where we sample graphs ¢! ~ q(¢m|{es, s}, dar), obtain samples & *1:+2) ~ p(x|e®, ¢k1), and

. 2
obtain samples x(kuhk2) p(zle’, ¢fr§)-

Therefore, we add constraint on the original loss function to obtained the estimation of constraint
based ELBO, that is,

N Ns
ELBO = > logp(x”|j, v, m®, %), )
i=1j=1
1 3 e - 1~
) [10 H —d+ tr(zaz}zall) + (frau — l"'all)TEal}(/J’all — Mall)
all
Np M Ng

=B 3> [ [ (€F) —d] + Ax - [[E]]] + A+ [I(s; ze|par, {es, €:}, D))

i=1 m=1 j=1

E Proof of Theory 3

Proof. To begin with, we introduce two anchor variables x, e, indicating existing samples and
experiments in the system, which are independent with the following experiments. Since x5, x; are
e-independent given ¢y, {es, e;} and D, we have:

I(zxs; x| dun, {es, e}, D) = [(xs; x| dnr, x, e Ules, e}, D) < e
& H(xs|ou,x,eU{es, e}, D)+ H(xi|ppr, x, e U{es, e}, D)
— H(xs, x¢|prr, x, e U{es, e}, D) <,
Since
I(ws; ¢Af‘x7 eV {687 et}v D) :H((ES|£IJ7 eU {357 et}a D) - H(ms|¢M7ma el {eSa et}7 D)
I(x; o, e U{es, e}, D) =H (x¢|x,e U{es, e}, D) — H(xi|drr, z, e U{es, e}, D)
We have:
I(zs; pu|z, e U{es, e}, D) + I(x; pu|x, e U{es, e}, D)
=H(xzs|r,eU{es, e}, D)+ H(x|xz,eU{es e}, D)
—H(zs|onr, z,eU{es, e}, D) — H(xi|dprr, z, e U{es, e}, D)
>H(xs, x|z, e U{es, e}, D) — H(xs, x¢|dpr, x, e U{es, e}, D) — €
=I(xs,xt; drr|x, e U{es, e}, D) —e.

According to the basic mutual information property I(A, B; C') — I(B; C) = I(A; C|B), we have:
IHxUxs; dpleU{es, e}, D) — I(x; parle U {es, e}, D)
+I(x Uz prrleU{es, e}, D) — I(x; pple U{es, e}, D)
2I(xwU{m, . }; drleU{es, e}, D) — I(w; parle U {es, e}, D) —e.
Thus, we have:
IwUzs; dpuleU{es e}, D) + I(w Uz puleU {es, e}, D)
>I(x Uz, zshsdmleU{es, e}, D) + I(x; duleUfes, e}, D) —e.
Since different experiments are independent, we have:
IxUxs;opmleU{es}, D)+ I(x Uz dpleU{e}, D)
>IHxeU{x,zs}; dule U{es, e}, D) + I(x; pale, D) —e.
Thus, I(+; ¢+, D) is e-submodular. O

F Proof of Theory 4

For clear presentation, we denote g({e;}?_,) = I({x;}11; dam|{ei}_;, D), then we need to solve
the following problem:

argmax g({e;}iL,), “)

{eitin,
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Suppose S* = {e}}?, is the optimal solution for objective ( , and the results of the greedy method
is S = {e;},, Where the experiments are sequentially determined from e; to e,,. We denote
S1.; = {ei}l_;, and A(e|S1.;) = g(S1.; Ue) — g(Si.;), according to the greedy method, we have:
A(e]S1;)
€j+1 = argmax T,
where )\, is the cost of experiment e.

Based on all the above notations, we have:
9(8%) < g(S5" U S1y)
= g(sl:j) + g<51:j Uel) — g(Sl:j)
+9(S1;; Vet Ue;) — g(S1;; Uet)
+...
+9(515U e eh}) = 9K U fel i)

9(S15) + Z (Si;U{el, .. ef}) — g(XiiU{ef, . ef_1})]
< 9(51;) + Z l9(S1:5 U{er}) — g(S1y) + €

9(51;5) +Z ({ex}S15) + ¢,

where the first inequality holds because of the non-decreasing property, and the second inequality
holds because of the e-submodular property.

A(elS1:5) A(elS1:5) < A(ej+1]S1:5)
Ae Ae

, we have < ]
€j+1

Since e;; = arg maxe
7+

for any e, thus A(e|S.;) <

(ej+1151:j) < BaA(e;+1|S1:5). By bringing this result into the above equation, we have:

9(S*) < g(S15) + > [A({er}S1;5) + €]

NE

k

9(Si5) + Y [BaA(e;j1]S1;) +
k=1
= g(S1:j) + nBrA(ej+1|S1:5) + ne

—

sl

LetT; = g(S*) — g(S1:;), we have:

T, —ne
Tj — Tjs1 = g(S1j+1) — 9(S15) = Alej1]S1) >
TLB)\

Then 1 ] ]
€ €
T, <(1—— )1+ —<[1-—)PTh o+(1—- —)— +—
7( nB>\) 1+B,\ [( nB,\)] 2+( nB)\)B)\—'_B)\

1 € €
<. 1— —)|"T; 1- 4+ —
< S (0T 0 g g g
Let B = [(1— nBA )] lBi + ot B = B Sl - %)]i , and considering that [(1 —

1
nBy

) =e Bx B , we have:
g(S™) — g(S1:m) < e Prg(S*)+ B
Thus, we have g(S1.,) > (1 —e BLA) (S*)-B

G Algorithm

The algorithm for Licence method for single-target interventiion scenario is shown in Algorithm T}
Moreover, the algorithm for Licence method for multi-target interventiion scenario is shown in
Algorithm[2}
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Algorithm 1: Algorithm of Licence for Single-target Intervention Scenario

Input: Variable set Xy, number of oracles M, cost of oracles A, observational data DO, total
budget C, and learning rate 7.
Output: Causal graph ¢ ;.
Initialize the model parameter W .
Optimize ¥ with the training process of ELBO under D©.
Initialize D' = 0.
while Budget C' does not run out do
Initialize j*, m*, v* and let * = —oc.
for (j,m)in {1,2,...,d} x {1,2,..., M} do
Calculate v*(j, m) with BO.
if £(j,v* (j,m),m) > C* then
Update j* < j,m* < m and v* + v*(j, m).
Update C* « f(ja U*(j7 m)a m)
end
end
Subtract the budget with C' <— C' — \j,.
Acquire (j*,v*, m*) towards the true causal graph to obtain * ~ p,,(Xv|do(X; = v)).
Update D! < DT U {z*}.
Optimize W with training process of ELBO under D U D,

end

Sample ¢ s from p(¢as| D)
return Causal graph ¢ ;.

H More Experiments

H.1 Experimental Settings
H.1.1 Datasets

The details of our experimental datasets are presented as follows:

e Erdds-Rényi (ER) [7] graph is a random graph introduced by Paul Erdds and Alfréd Rényi. For
ER graph, a graph with n vertices is generated by connecting each pair of vertices with a probability

D.
o Scale-Free (SF) [8] graph is a type of random graph that has a degree distribution following power

law. A small number of vertices in SF graph own a large number of edges, while the vast majority of
vertices have relatively few edges.

¢ DREAM [9] is the abbreviation for Dialogue for Reverse Engineering Assessments and Methods,
which can estimate the reverse quality that causal discovery methods perform. Specifically, we use a
biological graph generator GeneNetWeaver for our experiments, which is a real-word public dataset.

H.1.2 Baselines

The details of experimental baselines are demonstrated as follows. We utilize DiBS [10]] as our basic
graph representation component. For acquisition methods, we use AIT and CBED and obtain the
query tuples of node and value.

o AIT [[11]] is an active learning method that utilize f-score to select intervention queries.

e CBED [12] is based on the calculation of mutual information (MI), which intend to select interven-
tion queries with maximal MI scores after obtaining new samples under current queries.

For the multi-target intervention scenario, we extend above methods with greedy strategy, which can
promise an lower bound for approximation with submodular property. For choosing the fidelities to
query, we use two circumstances, i.e., REAL and RANDOM.
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Algorithm 2: Algorithm of Licence for Multi-target Intervention Scenario

Input: Variable set Xy, number of oracles M, cost of oracles A, observational data DO, total
multi-target experiment step 7', total budget C, and learning rate 7).
Output: Causal graph ¢ ;.
Initialize the model parameter WV .
Optimize ¥ with training process of constraint based ELBO under D©.
Initialize B! =0
fortinl,2,...,T do
while Budget C does not run out do
Initialize j*, m*, v* and let (* = —o0.
for (j,m)in {1,2,...,d} x {1,2,..., M} do
Calculate v*(j, m) with BO.
if £(j, v (j,m),m) > (* then
Update j* < j,m* < m and v* < v*(j,m).
Update C*  f(j,v* (j,m), m).
end
end
Subtract the budget with C' <— C' — A,
Update BY «+ BT U {(j*,v*,m*)}.

end
Acquire B! towards the true causal graph to obtain
{z* ~ pp(Xv|do(X; = v))}(jvmyenr-
Update D' <= D' U{x*}; , m)en!-
Optimize ¥ with training process of constraint based ELBO under D® U D'.

end

Sample ¢ from p(¢as| D)
return Causal graph ¢y.

o REAL fidelity means the model always choose the highest fidelity to conduct experiments. This
strategy is aligned with classic causal discovery under active learning paradigm without multi-fidelity
settings, which can just choose the most accurate samples to conduct discovery process.

o RANDOM fidelity means the model choose different fidelities randomly with uniform probability.

H.1.3 Maetrics

The details of experimental metrics are demonstrated as follows. We utilize SHD and AUPRC to
reflect the topological structure discovering performance, and design MSE to reflex the predicting
performance of functional relations.

o SHD [13] is the abbreviation for Structural Hamming Distance, and it estimate the topological
structure by counting the number of different edges on adjacency matrix. We calculate the expectation
of SHD under multiple graph samplings.

o AUPRC [14] is the area under precision-recall curve, where we consider entities on the adjacency
matrix as binary classification problem. The AUPRC is also under the expectation for multiple graph
sampling.

e MSE is designed for estimating the performance of grasping functional relations. We obtain several
samples from the true causal graph, and let our model and the true causal function to conduct forward
process respectively, then calculate the MSE between the two results. We calculate MSE by sampling
graphs for multiple times.

H.2 Details of Configurations and Computation
The details of the configurations of device and platform are demonstrate in Table [I[left). We will

show the details of the time cost on computation. We measure the time cost on the generation of each
intervention per fidelity for all models, and the results are shown in Figure[T(right). We find that our
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Table 1: The left table demonstrate the details of the configuration of device and platform. The right
table shows the details of time cost on computation.

Name Details Model Time (secs)
CPU Intel Xeon Platinum 8350C 2.60GHz AIT-REAL 7.686
GPU RTX A5000 (24GB) AIT-RANDOM 7.451
Memory 42GB RAM CBED-REAL 7.998
Python Version 3.8 CBED-RANDOM 7.989
Java Version 1.8.0 (Necessary for DREAM) Licence 8.320

Table 2: The details of experimental settings.

Name Explanation Value
budget The total budget for interventional experiments, (i.e., C).  10/20/30/40/50
oracle number The number of oracles, (i.e., M) 3
oracle cost The cost for each oracle, (i.e., A) 2,8,32
oracle noise The extra additive noise for each oracle. 0.04, 0.02, 0.00
observation number The number of observational samples. 1000
expect edge number The number of expect edges. 2
additive noise The value of additive noise during data generations. 0.01

method cost a little more than the baselines, which is probably due to the more complex sampling
process in our model.

We also show the details of experimental settings for our overall experiments in Table[2} We carefully
tune the hyper-parameters for baselines and our model, and the final values can be obtained in the
configuration file in our codes.

H.3 Experiments on DREAM Dataset

We conduct experiments on a real-world biological dataset, called DREAM. Note that, DREAM does
not support the calculation of MSE, because of the lack of interface in this real-world dataset. We use
two sub-datasets Ecoli and Yeast as our true causal graphs. The results are shown in Figure[I] We
find that our model outperforms that other baselines on both Ecoli and Yeast, and both single-target
and multi-target intervention scenario.

H.4 Experiments on More Nodes

In this section, we conduct further experiments on datasets with more nodes. We extend the number
of nodes from 10 to 20, and experiment on the ER graph. The results are shown in Figure 3] We find
that our model is still effective on the scenario of more nodes, and is better than baselines.

I Potentially Negative Social Impact

Causal discovery focuses on understanding causal relationships between variables. While causal
discovery has the potential to bring about positive social impacts, it is important to consider both the
positive and negative implications of its applications. In this response, I will focus on the negative
impact of causal discovery.

o Reductionism and Oversimplification. Causal discovery techniques often aim to identify simple
cause-and-effect relationships. However, complex social phenomena often involve a multitude of
interconnected factors, making it difficult to capture the full complexity of the system. Relying
solely on causal discovery may lead to oversimplification and reductionism, neglecting the nuanced
interactions between variables.

e Ethical Concerns. Causal discovery can involve analyzing sensitive data, such as personal
information or medical records. If not handled carefully, the use of this data can raise significant
ethical concerns related to privacy, consent, and potential discrimination. Improper handling of data
could lead to violations of privacy and unfair treatment of individuals or groups.
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Figure 1: The performance among models on DREAM datasets with different datasets and budgets.
Lower SHD, MSE indicate better performances. We conduct each experiment for ten times, and
report the average performances and error bars.

Table 3: SHD results of 20 nodes graphs on different budgets. Lower SHD indicates better perfor-
mances. We conduct each experiment for ten times, and report average performances and error bars.

Model Budget(10) Budget(20) Budget(30) Budget(40) Budget(50)
AIT-REAL 63.36+4.89 64.36+5.18 64.53+£6.83 63.2844.86 64.35+5.19
AIT-RANDOM 63.62+4.61 62.164+5.75 64.60+523 66.87+6.47 63.53+5.27
DiBS-REAL 63.58+6.35 61.50+£7.69 63.50+£6.86 63.56+6.34 61.45+7.69
DiBS-RANDOM  63.68+6.77 65.07+£6.41 63.91+7.14 63.994+4.46 63.86+3.00
Licence 49.67+t11.64 49.61+8.08 55.68+8.63 51.34+11.24 51.36+9.11

e Overreliance on Correlation. Causal discovery often relies on identifying statistical correlations
between variables. However, correlation does not imply causation, and there is a risk of mistakenly
inferring causal relationships based solely on correlation. Overreliance on such methods can lead to
erroneous conclusions, leading to misguided decision-making and ineffective interventions.

e Social Bias and Inequality. Causal discovery relies on the data used for analysis, which can reflect
existing biases and inequalities present in society. If the data used is biased, the causal relationships
discovered may perpetuate or exacerbate existing social inequalities. Causal discovery methods need
to be sensitive to potential biases and strive for fairness and inclusivity in both data collection and
analysis.

In conclusion, while causal discovery holds promise in understanding complex systems, it is crucial
to consider its potential negative impacts. Oversimplification, ethical concerns, overreliance on
correlation, and social bias are all factors that need to be addressed to ensure responsible and
beneficial applications of causal discovery. It is essential to approach this field with caution and
incorporate broader societal considerations to mitigate the negative impacts and harness its potential
for positive social change.

19



305

306
307

308
309
310

311
312
313

314
315

316
317

318
319

320
321

322
323

324
325
326

327
328
329

330
331
332

333
334
335

336
337

338
339

References

[1] Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. 1964.

[2] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced Lectures on
Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003,
Tiibingen, Germany, August 4-16, 2003, Revised Lectures, pages 63—71. Springer, 2004.

[3] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[4] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method. John Wiley
& Sons, 2016.

[5] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[6] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

[7] Paul Erdds, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17-60, 1960.

[8] Lun Li, David Alderson, John C Doyle, and Walter Willinger. Towards a theory of scale-free
graphs: Definition, properties, and implications. Internet Mathematics, 2(4):431-523, 2005.

[9] Thomas Schaffter, Daniel Marbach, and Dario Floreano. Genenetweaver: in silico benchmark
generation and performance profiling of network inference methods. Bioinformatics, 27(16):
2263-2270, 2011.

[10] Lars Lorch, Jonas Rothfuss, Bernhard Scholkopf, and Andreas Krause. Dibs: Differentiable
bayesian structure learning. Advances in Neural Information Processing Systems, 34:24111-
24123, 2021.

[11] Yashas Annadani, Jonas Rothfuss, Alexandre Lacoste, Nino Scherrer, Anirudh Goyal, Yoshua
Bengio, and Stefan Bauer. Variational causal networks: Approximate bayesian inference over
causal structures. arXiv preprint arXiv:2106.07635, 2021.

[12] Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Scholkopf, Yarin Gal, and Stefan
Bauer. Interventions, where and how? experimental design for causal models at scale. In
Advances in Neural Information Processing Systems.

[13] Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing
bayesian network structure learning algorithm. Machine learning, 65:31-78, 2006.

[14] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd international conference on Machine learning, pages 233-240, 2006.

20



	Monte Carlo Approximation for f(j,v,m)
	Derivation Process for f(j,v,m)
	Sampling from p(m | D)
	Sampling from p(m | M, D)
	Calculation of p(x|e,m)

	Bayesian Optimization for Determining (j*,v*,m*)
	Detailed Training Process of ELBO
	Derivation Process of ELBO
	Estimation of ELBO
	Gaussian Reparameterization Trick
	Gumbel-softmax Reparameterization Trick
	Optimization of ELBO

	Training Process of Constraint based ELBO
	Proof of Theory 3
	Proof of Theory 4
	Algorithm
	More Experiments
	Experimental Settings
	Datasets
	Baselines
	Metrics

	Details of Configurations and Computation
	Experiments on DREAM Dataset
	Experiments on More Nodes

	Potentially Negative Social Impact

