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Abstract001

We introduce an effective and scalable data002
selection technique to accelerate the pretrain-003
ing of large language models (LLMs). Given004
the variation in quality and informativeness of005
web-scale corpora, we present the Learn-Focus-006
Review (LFR) paradigm-a dynamic training007
approach that adapts to the model’s learn-008
ing progress. Inspired by human learning009
techniques like spaced repetition, LFR tracks010
the model’s learning performance across data011
instances and prioritizes revisiting challeng-012
ing and diverse regions of the dataset that013
are more prone to being forgotten, enabling014
better retention and more efficient learning.015
Through experiments spanning over 2200 GPU016
hours, we show that LFR significantly enhances017
data efficiency in pretraining while improv-018
ing downstream performance across common-019
sense reasoning, question answering, problem-020
solving, language modeling, and translation021
tasks. LFR consistently achieves lower perplex-022
ity and higher accuracy using just 5%–19% of023
the training tokens as models trained on the024
full dataset. Notably, LFR matches the per-025
formance of industry-standard Pythia models026
with up to 2× the parameter count while requir-027
ing only 3.2% of the training tokens. Unlike028
prior work on data selection, LFR models are029
Chinchilla-optimal demonstrating the effective-030
ness of our training methodology.031

1 Introduction032

LLMs have achieved remarkable success in under-033

standing and generating human language. This suc-034

cess is driven by the ever-increasing model param-035

eter sizes which require web-scale training datasets036

like SlimPajama (Soboleva et al., 2023), Common-037

Crawl (Penedo et al., 2023; Raffel et al., 2023),038

Pile (Gao et al., 2020), and OpenWebText (Rad-039

ford et al., 2019; ope), leading to unsustainable040

training costs. Between 2016 and 2023, model041

training costs have skyrocketed by a factor of 750×042
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Figure 1: Average accuracy norm across common-
sense reasoning, problem-solving, world knowledge,
and reading comprehension tasks. Across model sizes
(300M–1.1B), LFR (stars) outperforms full-dataset
training (RS in black circles) by 6%, Pythia (yellow
circles) by 1.5%, and Quad (Zhang et al., 2024) (red
circle) by 9%, using only 3–6% and 65% of the training
tokens of Pythia and Quad, respectively. Notably, Pythia
and Quad have larger parameter counts. See Section 5
for details.

every two years (Gholami et al., 2024), while GPU 043

memory has scaled at a much slower pace of 2× 044

every two years. For example, pretraining the GPT- 045

4 model (OpenAI et al., 2024) was estimated to 046

have cost around $100M USD over a period of 3-4 047

months using 25k NVIDIA A100 GPUs (gpt). 048

As such, a key challenge for unlocking the next 049

generation of language models is to significantly 050

reduce training costs while retaining or improving 051

downstream task performance. 052

Data quality and selection play a key role 053

in the development of cost-effective and high- 054

performance models (Hoffmann et al., 2022; 055

Brown et al., 2020; Tirumala et al., 2023; Abbas 056

et al., 2023; lla, 2024). In fact, DeepSeek-V3 057

technical report (DeepSeek-AI et al., 2025) and 058

the Llama 3.1 Technical Report (lla, 2024) high- 059

light the importance of data quality through curated 060

data mixes and sophisticated data preprocessing 061

pipelines to minimize redundancy and maximize 062
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corpus diversity.063

Recent work on data selection for pretraining064

has achieved great strides in reducing the overall065

training time. Methods like D4 (Tirumala et al.,066

2023), SemDeDup (Abbas et al., 2023), MiniP-067

ile (Kaddour, 2023; min), DSIR (Xie et al., 2023),068

and perplexity-based filtering (Marion et al., 2023;069

Chen et al., 2024; Muennighoff et al., 2023) rely on070

similarity metrics, clustering, or perplexity to filter071

data. However, data importance evolves through-072

out training and depends on model architecture,073

making static filtering inherently limited in effec-074

tiveness. While (Zhang et al., 2024) employ a075

dynamic data selection approach using the multi-076

armed bandit technique, they select 30B tokens077

from the SlimPajama dataset to train a 1.3B pa-078

rameter model. However, according to the Chin-079

chilla scaling laws (Hoffmann et al., 2022), this080

token count exceeds the optimal range for models081

of this size, suggesting that their selected subsets082

may contain redundant or lower-quality data. Other083

studies propose leveraging state-of-the-art (SOTA)084

pretrained LLMs like GPT-4 (Wettig et al., 2024) or085

proxy models, as seen in MATES (Yu et al., 2024)086

and RHO-1 (Lin et al., 2024), to assess data quality087

for a target model. However, these approaches rely088

on existing separately trained models, which may089

introduce a mismatch between the data needed for090

optimal convergence and the data selected.091

We address the high training cost of LLMs and092

the shortcomings of existing data selection meth-093

ods by drawing inspiration from spaced repeti-094

tion (Smolen et al., 2016a; spa). This scientifically095

proven technique enhances retention by strategi-096

cally presenting information at optimal intervals,097

ensuring that the most relevant data is introduced098

at the right time for efficient learning. Building099

on this foundation, we propose the Learn-Focus-100

Review (LFR) training paradigm. Figure 1 displays101

the overall efficacy of LFR. Our work offers the102

following contributions:103

1. Profile LLM pretraining to observe multiple104

descent behavior in 25-78% of the training105

tokens from web-scale corpuses, which are106

forgotten multiple times during training.107

2. Develop a Learn-Focus-Review (LFR) train-108

ing pipeline that dynamically gauges the109

LLM’s learning pace, focusing on complex110

data blocks while regularly reviewing all data111

blocks to prevent forgetting.112

3. Conduct over 2200 GPU hours of training 113

experiments using the AMD MI250, AMD 114

MI210, and AMD MI100 GPUs. We pretrain 115

Llama and GPT models of varying sizes from 116

scratch on the SlimPajama (627B) and Open- 117

WebText (9B) datasets and evaluate them on 118

several downstream tasks from the common- 119

sense reasoning, question-answering, problem 120

solving, language modeling, and translation 121

domains. 122

4. LFR results in significantly lower perplex- 123

ity and higher accuracy compared to baseline 124

models trained on the full dataset, achieving 125

these improvements by training on just 5-19% 126

of the training tokens used by the baseline. 127

All our models are Chinchilla-optimal. 128

5. LFR outperforms the performance on 70% of 129

tasks of the Pythia models with up to 2× the 130

parameter count while requiring only 3-6% of 131

the training tokens. 132

6. LFR outperforms prior state-of-the-art data 133

selection work by 9-13% in downstream task 134

accuracy while using only 65% of the training 135

tokens. 136

7. Observe that LLMs first learn conversational 137

and anecdotal data, before being able to retain 138

factual, instructional, and coding language in- 139

formation in long-term memory. 140

In the following sections, we examine prior 141

works on efficient LLM pretraining before diving 142

deeper into our proposed training strategies and 143

design decisions. 144

2 Related Work 145

Prior works on efficient pretraining of LLMs using 146

data selection have primarily focused on using dis- 147

tance metrics and clustering techniques. Tirumala 148

et al. (2023) proposes D4, which deduplicates and 149

selects cluster centers in the embedding space gen- 150

erated by pretrained models. SemDeDup (Abbas 151

et al., 2023) prunes semantic duplicates using pre- 152

trained models. It can successfully prune 50% of 153

the training data with minimal performance loss. 154

MiniPile (Kaddour, 2023; min) uses the pretrained 155

E5-Large (Wang et al., 2024) model to embed docu- 156

ments in the Pile dataset and clusters them to select 157

a smaller pretraining corpus of ∼6GB. DSIR (Xie 158

et al., 2023) proposes selecting subsets from large 159
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Figure 2: PPL trajectories of data samples from the
SlimPajama dataset as processed by the Llama-300M
model, focusing on a subset of 50 samples for clarity.
Notably, 78.5% of the samples exhibit this behavior,
characterized by multiple descent patterns rather than a
steady decline. This indicates that the model frequently
forgets and relearns data during training, highlighting
inefficiencies in traditional training dynamics

unlabeled datasets through importance resampling160

to match the distribution of the target dataset. How-161

ever, considering the high cost of training, it is162

unsustainable to sample a new subset and pretrain163

the LLM from scratch for every new downstream164

task.165

More recently, perplexity-based and influence166

function-based filtering techniques have been pro-167

posed (Marion et al., 2023; Lin et al., 2024; Muen-168

nighoff et al., 2023; Chen et al., 2024; Wettig et al.,169

2024; Yu et al., 2024), which use proxy models170

to obtain perplexity/influence scores for different171

data points and assess sample importance. How-172

ever, these methods require an additional pretrained173

model, increasing computational overhead. More-174

over, if the proxy model has a different architec-175

ture from the target model, its assessment of data176

importance may not accurately transfer, leading177

to suboptimal data selection and inefficiencies in178

training.179

Furthermore, we observe that several of the prior180

works discussed in this Section do not incorporate181

Chinchilla scaling laws (Hoffmann et al., 2022)182

into their data selection strategies, leading to sub-183

optimal filtering of web-scale corpora and potential184

overtraining. For example, Zhang et al. (2024)185

present Quad, a data selection method which cal-186

culates influence scores to measure a data point’s187

impact on model performance. They select 30B to-188

kens from the SlimPajama dataset (627B) for their189

1.3B model and continual pretraining of the 7B190

model. This indicates that the models have been191

overtrained or trained on redundant tokens.192

Figure 3: PPLs of data samples being forgotton by the
GPT2-345M model. This multi-descent behavior is
exhibited by 20% of the data.

3 Problem Formulation and Profiling 193

3.1 LLM Pretraining Objective 194

Given an LLM model parameterized by weights 195

θ and a web-scale dataset D, we first tokenize all 196

documents in the dataset and obtain context-length- 197

sized sequences of tokens, called data blocks, 198

si such that the training corpus becomes D = 199

{s1, s2, s3, ...sn}. For the SlimPajama and Open- 200

WebText datasets used in this paper, the context 201

length is 1024 tokens, with a total of 627B and 202

9B tokens, respectively. Given one such sequence 203

of tokens or data block, si = {x1, x2, ...xn}, the 204

training objective is to autoregressively predict the 205

next M tokens: 206

pθ(y | x) =
M∏
i=1

pθ(yi | y1:i−1, x). (1) 207

3.2 Observations from Training on Randomly 208

Sampled Data 209

In order to better understand the drawbacks of this 210

traditional training technique, we profile the pre- 211

training process for the Llama and GPT models. 212

The training hyperparameters and model configu- 213

rations are provided in the Appendix. Similarly 214

to Marion et al. (2023), we use perplexity as a met- 215

ric to monitor the training progress. Given a token 216

sequence si = {x1, x2, ..., xn} from the dataset D, 217

perplexity is computed as: 218

PPL(si) = exp

 1

|si|
∑
xj∈si

NLL(xj)

 , (2) 219

where NLL(xj) is the negative log likelihood of 220

token xj computed as follows: 221

NLL(xj) = − logP (xj | x<j ; θ). (3) 222
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Using this metric, models exhibiting lower perplex-223

ities are considered better since this indicates a224

high probability of selecting text closest to the raw225

dataset.226

The observed PPL values associated with each227

data block are classified as one of the following:228

1. Learned: recorded perplexities monotonically229

decrease.230

2. Unlearned: recorded perplexities monotoni-231

cally increase.232

3. Forgotten: recorded perplexities first increase233

and then decrease. Such an upward and down-234

ward trend may repeat any number of times235

during training.236

Based on this classification, we observe that237

78.5% of the data blocks are forgotten at least once238

in the Llama model (Figure 2), compared to 25%239

in the GPT model (Figure 3). We hypothesize that240

more data blocks are frequently forgotten in the241

Llama model due to the higher complexity and242

challenge posed by the SlimPajama dataset, as op-243

posed to the OpenWebText dataset. It is important244

to note that the SlimPajama dataset is an aggrega-245

tion of seven datasets, including sources such as246

GitHub, Wikipedia, and CommonCrawl. In fact, of247

the data blocks that are forgotten, 82% are forgot-248

ten multiple times during training, i.e., they display249

multiple descent behavior (Figure 3). Xia et al.250

(2022) reported a double-descent behavior for the251

OPT models (Zhang et al., 2022), and our above ex-252

periment further demonstrates that the “forgetting”253

can happen multiple times in LLM pretraining.254

4 LFR Training Methodology255

Based on our profiling observations in Section 3.2256

we propose to replace traditional autoregressive257

language modeling methods with Spaced Repeti-258

tion (Tabibian et al., 2019). Spaced Repetition is an259

evidence-based learning method proven to improve260

information retention and learning pace in humans261

(Smolen et al., 2016b). In this technique, challeng-262

ing pieces of information are reviewed more often,263

at regular intervals, and easier pieces of informa-264

tion are presented to the learner less often. Our265

algorithm is detailed in Algorithm 1. We pretrain266

our models with a combination of the following267

three steps:268

1. Learn: Initially, we present the model with269

the entire dataset and train on randomly se-270

lected data blocks for p1 steps, as normally 271

seen in the traditional approach (line 1 in 272

Alg. 1). p1 can be configured by the user based 273

on the available compute budget, model, and 274

dataset. In single-epoch training (lines 3-7 in 275

Alg. 1), we measure the perplexities (PPLs) of 276

all data samples in the training set and cluster 277

the data embeddings (inputs to the model’s 278

last layer). For multi-epoch training (lines 8- 279

11 in Alg 1), we record the perplexities for all 280

data blocks during the p1 steps. Depending 281

on the training style (single or multi-epoch), 282

we either pass the clustered embeddings and 283

PPL values or the PPL values observed dur- 284

ing training to the next step. The following 285

two phases can be repeated up to reps times, 286

depending on the available compute budget. 287

2. Focus: We provide two variations of the Fo- 288

cus stage based on the number of training 289

epochs. 290

(a) Single-epoch training: We discard s1% 291

of the clusters (line 6 in Alg 1). 292

Within the retained clusters, we perform 293

weighted sampling from sub-clusters, pri- 294

oritizing regions of the retained clusters 295

which the model finds most challeng- 296

ing (line 7 in Alg. 1). Sub-clusters with 297

higher PPL are assigned greater sam- 298

pling weights, enabling a hierarchical fo- 299

cus on the most critical regions. For in- 300

stance, during Llama training, GitHub 301

code emerged as the most challenging 302

cluster. Within this cluster, the Focus 303

stage further emphasizes sampling from 304

C++ code, which proved more difficult 305

for the model, over Python code. In 306

this phase of training, we restrict the 307

weighted sampling of data points to this 308

reduced subset for p2 steps. s1 and p2 309

are user-controlled hyperparameters. 310

(b) Multi-epoch training: We discard s1% 311

of the data blocks (line 10 in Alg. 1) 312

with the lowest PPL values. In doing 313

so, we provide a mechanism for shift- 314

ing the model’s focus towards learning 315

data blocks that were determined to be 316

difficult. 317

3. Review: Next, we reintroduce all of the re- 318

moved data blocks and train the model by 319

randomly sampling from the entire corpus for 320
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p3 steps (line 13 in Alg. 1). This ensures that321

we allow the model to review and revisit data322

blocks which it may have forgotten.323

Algorithm 1 LFR Training Methodology

Require: Training dataset D, model M with ini-
tial parameters θ0, hyperparameters p1, s1, p2,
p3, reps, and epochs.

Ensure: Minimization of Equation 3.
1: PPLs, θp1 ← Learn(θ0, D, p1)
2: for r = 1, 2, . . . , reps do
3: if epochs == 1 then
4: Dk ← Cluster(D)
5: Sort(PPLs,Dk)
6: Ssub ← (1− s1)×Dk

7: S1 ← sample(Ssub, PPLs)
8: else
9: Sort(PPLs,D)

10: S1 ← (1− s1)×D
11: end if
12: θp2 ← Focus(θp1 , S1, p2)
13: PPLs, θp3 ← Review(θp2 , D, p3)
14: end for

Return θ

Our training strategy is simple, intuitive and324

human-like. It gives the model an opportunity to325

learn from all of the data, prioritize and relearn326

forgotten data points, and review data samples327

from harder regions of the dataset more frequently328

than they would have been using random sampling.329

While the static clustering-based techniques (Tiru-330

mala et al., 2023; Abbas et al., 2023; Kaddour,331

2023) presented in Section 2 allow for accelerated332

training, they are not designed to suit the multi-333

descent training dynamics observed in Section 4334

and require pretrained model embeddings to calcu-335

late distance metrics. Furthermore, prior methods336

including perplexity-based pruning methods (Mar-337

ion et al., 2023) are static. Sections 5.4 and the338

Appendix characterize the data blocks found easy339

and hard by the LLM, and demonstrate why static,340

clustering-based data selection methods achieve341

poor downstream task performance. Lastly, our342

approach does not require any pretrained models to343

obtain embeddings. Our focused training strategy344

allows the model to absorb harder information (data345

blocks with higher perplexity) faster, by presenting346

them more number of times.347

5 Evaluation 348

In this section, we present a comprehensive eval- 349

uation of LFR. We pretrain the Llama models of 350

sizes 300M, 500M, and 1.1B and the GPT mod- 351

els (Radford et al., 2019) of various sizes between 352

124M and 1.5B parameters. We use the SlimPa- 353

jama (Soboleva et al., 2023) (627B) and OpenWeb- 354

Text dataset (ope) (9B) and train from scratch using 355

4 AMD MI100, 4 AMD MI210 GPUs, and 8 AMD 356

MI250 GPUs. Our pretraining experiments utilize 357

a fully sharded data parallel (FSDP) approach. All 358

model configurations and training hyperparameters 359

of our experiments are detailed in the Appendix. 360

Our models and all baselines are evaluated 361

across a diverse set of downstream tasks span- 362

ning multiple domains: (1) Commonsense rea- 363

soning (HellaSwag, Winogrande, PIQA), (2) 364

General knowledge (ARC_C, ARC_E, MMLU, 365

Natural Questions), (3) Reading comprehension 366

(OpenbookQA, BoolQ), (4) Language modeling 367

(WikiText-2, WikiText-103, LAMBADA, 1BW), 368

and (5) Translation (WMT-14). Performance re- 369

sults and comparisons to prior state-of-the-art meth- 370

ods are detailed in Sections 5.3. 371

Section 5.4 analyzes the impact of the Focus 372

and Review stages and the data LFR prioritizes 373

in SlimPajama. The Appendix provides examples, 374

details on retained/dropped data across models, ev- 375

idence that LLMs learn instructions and code after 376

facts and anecdotes, and a sensitivity study on LFR 377

hyperparameters. 378

5.1 LFR Configuration 379

We pretrain the Llama models for 100k steps, us- 380

ing 9.8B tokens for the 300M and 500M models 381

and 19.6B tokens for the 1.1B model, following 382

the Chinchilla scaling law (Hoffmann et al., 2022) 383

to ensure optimal data utilization. First, we Learn 384

for 20k steps (p1 = 20k). Next, we cluster the data 385

and discard 57.2% of the clusters, retaining only 386

the 3 most challenging clusters out of 7 based on 387

their PPL values (s1 = 50). We then apply the 388

Focus stage for 60k steps (p2 = 60k), prioritizing 389

the retained high-PPL clusters. It takes <10min to 390

cluster which can be hidden by the high training 391

latency. We provide a detailed analysis on the hier- 392

archical clustering and the data points found easy 393

and difficult in Section 5. Lastly, we Review the 394

entire dataset for the last 20k steps (p3 = 20k). In 395

the case of the GPT models, we Learn for 1 epoch 396

(p1 = 1), Focus on 50% of the data for 1 epoch 397
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Model Tokens Arc_C Arc_E Boolq HS OBQA Piqa WG Avg
300M-RS 50B 17.29 39.06 33.17 32.3 28.83 58.36 48.54 36.79

Pythia-410M 300B 20.1 44 40 35.82 29.59 61.8 49.7 40.14
300M-LFR 9.8B 23.61 39.52 54.86 35.44 30.56 63.21 53.88 43.01
500M-RS 50B 25.1 43.7 53.7 36.5 32.6 65.1 52.2 44.47

Pythia-1.0B 300B 27.05 48.99 60.83 47.16 31.4 69.21 53.43 48.29
500M-LFR 9.8B 28.11 52.89 58.72 50.65 31.1 68.66 55.72 49.4

1.1B-RS 50B 27.31 50.27 60.58 38.11 31.11 66.67 54.99 47
Pythia-1.4B 300B 30.1 61.7 62.11 55.18 30.2 72 63.1 53.48

DSIR 30B 20.14 49.28 61.41 30.89 16.2 61.17 47.99 41.01
PPL 30B 20.82 45.41 58.35 35.92 18.8 66.89 54.62 42.97

1.3B-Quad 30B 20.99 52.27 62.14 34.41 20.00 70.04 52.09 44.56
1.1B-LFR 19.6B 29.18 63.47 62.23 54.27 34.89 73.29 61.12 54.06

Table 1: Zero-shot performance (acc_norm for all except Winogrande and Boolq which use acc) on downstream
tasks evaluated using LLM Evaluation Harness (Gao et al., 2024). RS refers to the random sampling baseline,
HS refers to HellaSwag, and WG refers to Winogrande. The model with the highest performance (measured by
acc_norm) is highlighted in bold. Notably, LFR models are trained using only 3.2-6% of the tokens required to train
Pythia models of comparable size, yet they achieve higher accuracy in 70% of cases. Additionally, LFR models
consistently outperform the random sampling baseline by a large margin, despite being trained on 19.6% of the
pretraining tokens.

(s1 = 50, p2 = 1), Review the entire dataset for398

another epoch (p3 = 1), and Focus on 30% of the399

data for 5 epochs (reps = 2, s2 = 70, p4 = 1).400

These configurations are tunable based on the401

available pretraining budget and the optimal to-402

kens estimated through the Chinchilla scaling laws.403

Furthermore, we test LFR’s sensitivity to hyperpa-404

rameters p1, s1, p2, p3, and reps in the Appendix.405

5.2 Baselines406

We evaluate the models pretrained using LFR with407

a comprehensive set of prior works and industry-408

standard checkpoints. They include:409

1. Industry-standard models: We compare the410

Llama models trained through LFR with411

Pythia models (Biderman et al., 2023) of up to412

2× the size obtained from EleutherAI’s Hug-413

gingface1. These models have been trained414

on 300B tokens while the LFR models were415

trained on 9.8B-19.6B tokens (3.2-6% of the416

tokens). We compare the GPT models pre-417

trained through LFR for 40k iterations with418

the same GPT architectures pretrained by Ope-419

nAI 2 for 800k iterations. We use the same420

batch size as these models (Refer to the Ap-421

pendix for details) by adjusting the gradient422

accumulation steps and the per-device batch423

size.424
1https://huggingface.co/models?other=pythia
2https://huggingface.co/openai-community

2. Random Sampling: while the previous base- 425

lines ensures that we compare with industry- 426

standard models, we also develop and com- 427

pare LFR against the same models pretrained 428

using random sampling with 5.10× and 20× 429

more tokens than LFR for the Llama and GPT 430

models respectively. This baseline enables 431

LFR to produce higher quality models than 432

those obtained through traditional autoregres- 433

sive modeling when using much fewer tokens 434

and training iterations. 435

3. Prior works: We compare our training method- 436

ology with the models trained through the 437

current state-of-the-art data selection meth- 438

ods such as Quad (Zhang et al., 2024), static- 439

PPL based filtering (Marion et al., 2023), 440

DSIR (Xie et al., 2023), and MiniPile (Kad- 441

dour, 2023) in Section 5.3. 442

5.3 Performance on Downstream Tasks 443

We evaluate Llama models trained with LFR on 444

commonsense reasoning, general knowledge QA, 445

and reading comprehension, comparing accuracy 446

norms with baselines in Table 1. LFR outper- 447

forms random sampling (RS) by 6% while using 448

2.4×–5× fewer training tokens and improves ac- 449

curacy over Pythia by 1.5% despite using only 450

3.2–6% of the tokens. Compared to prior SOTA 451

data selection, LFR achieves greater dataset prun- 452

ing while improving downstream performance. No- 453
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tably, their models are over-trained per Chinchilla454

laws, highlighting suboptimal data selection.455

We test the GPT models on language model-456

ing tasks and compare with the OpenAI baseline457

in Table 2 by measuring the PPL. Note that our458

models are trained on 5% of the training tokens459

as compared with the OpenAI models, further val-460

idating that data quality is more important than461

quantity. We find that the PPL reduction obtained462

by LFR increase as the dataset size increases (from463

WikiText-2 to 1BW). Also, smaller models show464

a larger PPL reduction by using LFR than larger465

models. On average, using our approach, perplex-466

ity was reduced by 4.92, 3.26, 2.17, and 1.40 for467

the GPT 124M, 345M, 774M, and 1.5B models,468

respectively.469

We also test the LFR-trained models on stan-470

dard benchmarks from the translation, question-471

answering, world knowledge, and problem solv-472

ing domains in Table 3. LFR models trained with473

20× fewer training iterations achieves better perfor-474

mance than models trained using random sampling.475

Details of each of the datasets is provided in the476

Appendix.477

5.4 Ablation Study478

In this section, our goal is to understand the im-479

pacts of the Focus and Review stages of LFR and480

exploring more aggressive data selection strategies481

by varying the hyperparameters p1, s1, p2, p3, and482

reps.483

5.4.1 Impact of Focus484

Consider training the Llama 300M parameter485

model on the SlimPajama dataset, which comprises486

of seven sub-datasets sourced from CommonCrawl,487

Github, C4, Books, Wikipedia, StackExchange,488

and ArXiv. During the Focus stage, LFR employs489

weighted sampling from the three most challenging490

clusters while discarding clusters with the lowest491

perplexity (PPL). Additionally, within the retained492

clusters, LFR performs hierarchical sampling by493

prioritizing regions with higher PPL, further re-494

fining the data selection process. LFR classifies495

the Github, StackExchange, and ArXiv clusters as496

more challenging at 20k iterations, than the other497

four data sources.498

Figure 4 illustrates the training dynamics of chal-499

lenging data points. LFR (solid line) accelerates500

learning of these harder examples compared to ran-501

dom sampling (dotted line), ensuring complex in-502

formation is learned earlier, which drives the per-503

Learn Focus Review

Figure 4: PPL values are tracked at different training
iterations for the clusters identified as challenging and
prioritized during the Focus stage of LFR. The dotted
line represents the PPL values for the same clusters
when trained with random sampling (RS). Notably, LFR
facilitates accelerated learning of these challenging data
points between 20k and 60k iterations (the Focus stage),
whereas random sampling consistently results in higher
PPL values throughout.

formance gains in Table 1. In the Review stage, 504

discarded clusters (CommonCrawl, C4, Books, 505

Wikipedia) are reintroduced, bringing LFR and ran- 506

dom sampling closer together. However, LFR re- 507

tains the benefits of the Focus stage by performing 508

marginally better on the challenging sections. 509

5.4.2 Impact of Review 510

Learn Focus Review

Figure 5: PPL values are tracked at different training
iterations for the clusters identified as easy, discarded
during the Focus stage, and reintroduced during the Re-
view phase. The dotted line represents the PPL values
for the same clusters when trained with random sam-
pling (RS). Notably, we demonstrate that models forget
the data points discarded during training, unless reintro-
duced to the training corpus as in the case of LFR.

Next, we analyze the impact of the Review phase 511

on data points deemed simple and discarded during 512

Focus. Unlike prior data selection methods, LFR 513

reintroduces these samples, preventing catastrophic 514

forgetting. Figure 5 highlights the importance of 515
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Model WikiText-2 WikiText-103 LAMBADA 1BW
124M-OpenAI (800k iters) 22.1 31.58 18 39.18

124M-RS (40k iters) 23.32 23.42 17.71 39.49
124M-LFR (40k iters) 19.81 22.49 16.61 32.27

345M-OpenAI (800k iters) 19.82 22.05 14.26 29.95
345M-RS (40k iters) 21.11 21.8 14.84 30.66

345M-LFR (40k iters) 16.31 17.48 13.7 25.52
774M-OpenAI (800k iters) 15.93 18.53 13.74 26.52

774M-RS (40k iters) 16.71 18.89 14.10 28.56
774M-LFR (40k iters) 15.11 14.58 12.51 23.83

1.5B-OpenAI (800k iters) 13.80 16.59 12.15 23.87
1.5B-LFR (40k iters) 13.10 14.37 11.23 22.09

Table 2: PPL results for language modeling datasets across model sizes. Here, N -OpenAI refers to the OpenAI
baseline (trained for 800k iterations), N -RS refers to the random sampling baseline (trained for 40k iterations),
and N -LFR refers to our proposed training pedagogy (trained for 40k iterations), where N is the number of model
parameters.

Model Iters
WMT NQ MMLU
(BLEU) (Acc) STEM

(Acc)
HM
(Acc)

SS
(Acc)

Other
(Acc)

Avg.
(Acc)

1.5B OpenAI 800k 11.5 4.1 24.5 24.8 24.0 27.8 25.3
1.5B LFR 40k 11.8 4.61 26.1 27.2 23.8 25.1 25.5

Table 3: LFR-trained GPT models evaluated on translation (WMT-14 (wmt)), question-answering (Natural Ques-
tions (Kwiatkowski et al., 2019)), and world knowledge and problem solving (MMLU (Hendrycks et al., 2021)
domains using the BLEU scores and accuracy metrics. Note that NQ refers to Natural Questions, HM refers to
Humanities, SS refers to Social Sciences, Other refers to business, health, and other miscellaneous topics, and Avg.
refers to the average accuracy across all 57 subjects in MMLU. We compare our 1.5B parameter model with those
trained by OpenAI for 20× more training iterations. The model with the superior performance is highlighted in
bold.

Review by plotting PPL values for easy data points516

under LFR (solid line) and random sampling (dot-517

ted line). During Focus, when the model prioritizes518

challenging clusters like GitHub, StackExchange,519

and ArXiv (Figure 4), it forgets discarded data520

(solid line rises above dotted). The Review phase521

restores these points, ensuring better model perfor-522

mance and giving LFR a distinct edge over other523

methods (Section 5.3). See the Appendix for raw524

examples of easy and difficult samples identified525

by LFR.526

5.5 Overall Learning Schedule527

LFR reveals that models follow a structured learn-528

ing trajectory: first mastering conversational and529

anecdotal data (CommonCrawl, C4, books), then530

retaining factual knowledge (Wikipedia), and fi-531

nally learning code, QA, and scientific content532

(ArXiv). By recognizing this progression auto-533

matically as shown in Sections 5.4.1 and 5.4.2,534

LFR optimizes training by dynamically guiding the535

model at its own learning pace, ensuring efficient 536

and targeted learning. 537

6 Conclusion 538

We introduced LFR (Learn-Focus-Review), a novel 539

data selection paradigm that accelerates LLM pre- 540

training while significantly reducing training costs. 541

Through 2200 GPU hours of experiments, LFR 542

achieved lower perplexity and higher accuracy 543

while using up to 20× fewer training iterations than 544

traditional methods. Our findings show that LLMs 545

follow a natural learning progression—first acquir- 546

ing conversational data, then factual knowledge, 547

and finally mastering code and scientific concepts. 548

By dynamically guiding learning, LFR provides a 549

scalable, cost-effective alternative to existing pre- 550

training strategies. We hope this work inspires 551

further research into more adaptive and efficient 552

training paradigms. 553
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