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A Appendix and Supplementary Material

A.1 Experiment Details

Datasets The datasets used for our experiments are
detailed below:

1. ARC-Challenge (arc, a): A subset of the AI2
Reasoning Challenge with 2,590 challenging
multiple-choice science questions designed to
test advanced reasoning and knowledge.

2. ARC-Easy (arc, b): A subset of the AI2 Rea-
soning Challenge with 5,117 relatively easier
multiple-choice science questions focusing on
basic reasoning and recall.

3. BoolQ (boo, b): A dataset of 16,000+ boolean
(yes/no) questions paired with passages, re-
quiring models to infer answers from support-
ing evidence.

4. HellaSwag (hel): A dataset with 70,000+
multiple-choice questions focused on com-
monsense reasoning and contextual under-
standing, particularly in describing scenarios.

5. OpenBookQA (Ope): A multiple-choice
question-answering dataset with 5,957 ques-
tions requiring knowledge retrieval from a sci-
ence "open book" and commonsense reason-
ing.

6. PIQA (Piq): A physical commonsense reason-
ing dataset with 20,000+ binary-choice ques-
tions about everyday situations and physical
interactions.

7. Winogrande (win): A dataset with 44,000+
sentence pairs designed to test commonsense
reasoning through pronoun disambiguation
challenges.

8.

10.

11.

12.

WikiText (wik): the WikiText language mod-
eling dataset consists of 100M tokens ex-
tracted from Wikipedia articles with high rat-
ing. It features two different variants, namely,
WikiText-2 and WikiText-103 which differ
in the number of tokens and vocabulary size.
WikiText-2 consists of 2M tokens and a vo-
cabulary size of 33k whereas WikiText-103
is larger with 103M tokens and a vocabulary
size of 267k.

LAMBADA (Paperno et al., 2016): the LAM-
BADA dataset is extracted from the BookCor-
pus dataset (boo, a) and contains 10k passages.
This dataset is useful for testing the ability of
an LLM to capture long-range dependencies
in text. The objective of this model is to pre-
dict the final word in a set of sentences, where
humans need at least 50 tokens of context to
accurately anticipate the word.

One Billion Word Benchmark (Chelba et al.,
2014) (1BW): this dataset contains one billion
words extracted from the WMT 2011 News
Crawl data and is used to measure progress in
statistical language modeling.

WMT-14 French-English Translation (Artetxe
et al., 2018): This dataset contains 36 million
training sentence pairs for english to french
translation. The test set, which is used for eval-
uation purposes, consists of 3,003 sentence
pairs.

Natural Questions (Kwiatkowski et al., 2019):
This dataset contains question-answer pairs
from Google Search and Wikipedia-based an-
notations. The training, validation, and test
sets consist of 307,372, 7,830, and 7,842 ex-
amples.

Models: Tables 1 and 2 describes the different



model configurations and pretraining hyperparame-
ters used in LFR for the Llama models.

300M | 500M | 1.1B
Layers 12 11 22
#Heads 16 32 32
n_embd | 1024 | 2048 | 2048

Table 1: Number of layers, attention heads, and the
embedding dimensions in the Llama models used for
pretraining.

Parameter Value

Context Length 1024

Embedding Dimen- | (768, 1024, 2048)

sion

Total Iterations 100,000

Effective Batch Size 768

Block Size 4096

Weight Decay 1.00E-1

Adam (7 0.90

Adam [ 0.95

Warmup Iterations 8000

Minimum Learning | 4.00E-5

Rate

Maximum Learning | 4.00E-04

Rate

Learning Rate Sched- | Cosine Decay

ule

Learning Rate Decay | 100,000

Iterations

GPUs (4x AMD MI210,
4x AMD MI210, 8x
AMD MI250)

Table 2: Pretraining hyperparameters for the Llama
300M-1.1B parameter models. Parameters with mul-
tiple values (e.g. Embedding dimensions, batch size,
gradient accumulation steps, and GPUs) specified in
brackets are for the 300M, 500M, and 1.1B parameter
models respectively.

Tables 3 and 4 describes the different model con-
figurations and pretraining hyperparameters used
in LFR for the GPT-2 models.

Pretraining: Table 4 shows the hyperparameters
for pretraining the GPT-2 124M-1.5B parameter
models.

Note that OpenAl pretrained the GPT-2 models
using a batch size of 512. Due to insufficient GPU
memory, we adjust the number of gradient accumu-
lation steps to achieve the same effective batch size
of 512.

124M | 355M | 774M | 1.5B
Layers 12 24 36 48
#Heads 12 16 20 25
n_embd | 768 1024 | 1280 | 1600

Table 3: Number of layers, attention heads, and the
embedding dimensions in the GPT-2 models used for
pretraining.

Finetuning: We use all the same hyperparame-
ters as pretraining, except for the following:

1. Learning rate: 3.00E-5
2. Learning rate schedule: Constant

3. Total iterations: 50

A.2 Limitations and Ethical Considerations

LFR presents the following directions for future
work:

1. LFR is evaluated on models up to 1.5B pa-
rameters using web-scale datasets such as
SlimPajama, constrained by our compute re-
sources. With the clear success on models of
such scale, we hope to inspire researchers to
validate such focused learning approaches for
different model families, and domains.

2. The sensitivity study in this Appendix reveals
that the hyperparameters selected in the evalu-
ation section have a large impact on the perfor-
mance of the trained model. Due to our lim-
ited compute budget, we are unable to present
more comprehensive hyperparameter tuning
experiments than those presented later in this
Appendix.

A.3 Llama Pretraining - Data Importance

In this section, we study the data points identified
as easy and challenging by LFR when pretraining
with the SlimPajama dataset. Listing A.3 provides
an example of a code snippet from Github classified
as easy by LFR, and discarded in the Focus stage
of the Llama model training. Listing A.3 provides
an example of a data sample retained from the
Github cluster. Note that this code is more complex,
presents an opportunity to the model to improve
its coding capabilities as opposed to the variable
declarations in Listing A.3.

Listing 1: Code snippet classified as easy by LFR, pri-
marily consisting of variable declarations. As seen
from the code, it contributes minimally to enhancing the
model’s coding capabilities.



Parameter Value
Context Length 1024
Embedding Dimen- | (768, 1024, 1280,
sion 1600)

Total Iterations 40000
Effective Batch Size 512

Batch Size (16, 16, 8, 4)
Gradient Accumula- | (32, 32, 64, 128)
tion Steps

Block Size 1024
Weight Decay 1.00E-01
Adam S 0.9

Adam (o 0.95
Warmup Iterations 2000
Minimum Learning | 6.00E-05
Rate

Maximum Learning | 6.00E-04
Rate

Learning Rate Sched- | Linear

ule

Learning Rate Decay | 40000

Iterations
GPUs

(4xM1100, 4xMI210,
4xMI210, 4xMI210)

Table 4: Pretraining hyperparameters for the GPT-2
124M-1.5B parameter models. Parameters with multiple
values (e.g. Embedding dimensions, batch size, gradient
accumulation steps, and GPUs) specified in brackets are
for the 124M, 345M, 774M, and 1.5B parameter models

respectively.

package frclibj;

import edu.wpi. first.wpilibj.

Timer ;

public class TrcDbgTrace

{

public static
ESC_PREFIX

[";

public static
ESC_SUFFIX

public static
ESC_SEP

public static
SGR_RESET

public static
SGR_BRIGHT

final String

= "\u00l1b
final String

= llmﬂ;
final String
final String

= HOH;
final String

= Hlll;

Clustering Visualization (t-SNE) of SlimPajama

Figure 1: Clustering the data embeddings from the
SlimPajama dataset using the Llama-300M model at
the 50k training step.

public static final String
SGR_DIM = "2";
public static final String
SGR_ITALIC = "3";
public static final String
SGR_UNDERLINE = "4";
public static final String
SGR_BLINKSLOW = "5";
public static final String
SGR_BLINKFAST ="6";
public static final String
SGR_REVERSE = "7";
public static final String
SGR_HIDDEN = "8";
public static final String
SGR_CROSSEDOUT = "9";
public static final String
ESC_NORMAL =
ESC_PREFIX;

Listing 2: Code snippet classified as challenging by
LFR. This code consists of a function which executes
an Oracle query and returns a scalar value. As seen
from the code, it contributes significantly to enhanc-
ing the model’s coding capabilities as compared with
Listing A.3.

/1] <summary>

/11 Executes an Oracle query that
returns a single scalar value
as the result.

/// </summary>

/// <param name="commandText">The

Oracle query to execute </
param>



//] <param name="parameters">
Optional parameters to pass to
the query </param>

/1] <returns >The result of the
query as an object </returns >

public object QueryValue(string

commandText, IEnumerable
parameters )
{
object result;
if (String.IsNullOrEmpty (
commandText))
{
throw new
ArgumentException ("
Command text cannot be
null or empty.");
}
try
{
ensureConnectionOpen () ;
var command =
createCommand (
commandText ,
parameters) ;
result = command.
ExecuteScalar () ;
1
finally
{
ensureConnectionClosed () ;
}
return result;
}

Similarly, we also provide examples of question-
answer pairs from StackExchange which were dis-
carded and retained in the Focus stage of the Llama
pretraining in Listings A.3 and A.3 respectively.

Listing 3: Question-answer pair from StackExchange
classified as easy by LFR. The question revolves around
a process in PayPal which does not contribute as much
to the answering capability or world knowledge of the
model.
Q: PayPal IPN $_POST[’ txn_id ]
not set. I’m using the PayPal
sandbox to do a subscribe
button , and then when I get
the IPN response for a

subscription or a subscription
cancellation $_POST[’txn_id ]
1s never set.

So I don’t know how to identify
transactions to only accept
unique ones.

Thanks !

EDIT: for example, all the info
that I have in POST for a
subscr_cancel are:

amountl , amount3, address_status ,
subscr_date , payer_id,
address_street , mc_amountl ,
mc_amount3, charset ,
address_zip , first_name ,
reattempt ,
address_country_code ,
address_name , notify_version,
subscr_id , custom,
payer_status , business,
address_country , address_city ,
verify_sign , payer_email ,
btn_id , last_name,
address_state , receiver_email ,
recurring , txn_type,
item_name, mc_currency,
residence_country , test_ipn,
periodl , period3,
correlation_id.

A: According to Table 2. Summary
of subscription variables:
For subscription variables , the
transaction ID (txn_id) 1is
only available for USD Payment
and Multi—Currency Payment
transaction types (txn_type).

As expected , PayPal will not send
the txn_id to your IPN for
the transaction type,
subscr_cancel , and will only
send txn_id if the transaction
type is subscr_payment.

For further explanation on which
variables are sent to your IPN
URL based on your transaction
, please check out IPN and PDT
Variables .

Have you checked $_REQUEST[’



txn_id ’] as this may be sent
to your server via GET.

Listing 4: Question-answer pair from StackExchange

classified as challenging by LFR. The question revolves

around solving an ODE which contributes more to the

learning of the model than Listing A.3.

Q: Passing additional iteration —
dependent inputs to ode45

I’'m trying to solve a
differential equation using
the ode45 function. Consider
the following code,

[tl ,X2] = oded45(@(t,x)fun(t,x,Cl,
C2,C3,C4),t0,X01);

where parameters Cl, C2, C3, and
C4 are column vectors , which
should be available to the
function that ode45 is
referring to (fun.m).

I want the values to change after
every iteration , so for
example , at the beginning the
entry of Cl I want is CI(1l),

in the next iteration it’s Cl
(2), etc.

How can I implement that?

A: You may have noticed that the

official docs are not too
helpful in this scenario (as
they pretty much force you to
use global variables — which
is doable, but discouraged).

Instead , 1’11 show you how this
can be done with classes and
function handles. Consider the
following:

classdef SimpleQueue < handle
%SIMPLEQUEUE A simple FIFO data
structure .
properties (Access = private)
data
position
end

methods (Access = public)
function obj = SimpleQueue (
inputData)

9SIMPLEQUEUE Construct an
instance of this class
obj.data = inputData;
rewind (obj);
end % constructor

function out = pop(obj,
howMany )
9POP return the next
howMany elements .
if nargin < 2
howMany = 1; % default
amount of values to
return
end
finalPosition = obj.
position + howMany;
if finalPosition > numel(
obj.data)
error ('’ Too many elements
requested!’);

end

out = obj.data(obj.position
+ 1 : obj.position +
howMany) ;

obj.position =
finalPosition ;
end % pop

function [] = rewind(obj)
9REWIND restarts the
element tracking
% Subsequent calls to pop()
shall return elements
from the beginning.
obj.position = 0;
end % rewind
end % methods
end % classdef

How to wuse this? Simple:

Clq = SimpleQueue(Cl);
C2q = SimpleQueue (C2);
C3q = SimpleQueue (C3);
C4q = SimpleQueue (C4);

[t]1 ,X2] = oded45(@(t,x)fun(t,x,
@Clq. pop,@C2q. pop,
@C3q.pop,@C4q.pop) ,t0 ,X01) ;

As you can see, inside fun we use
Clq() instead of CI.



A4 Sensitivity Study

In this section, our goal is to understand the effects
of more aggressive focus, revision, and learning
strategies than the training strategy presented in the
paper. Here, we vary the values of hyperparame-
ters p1, S1, P2, p3, and reps and study the effects
on the downstream task perplexity. Note that the
GPT-2 models used a four phase training process.
Specifically, we aim to answer the following two
questions using the GPT-2 models:

1. What is the impact of not reintroducing the
discarded data samples?

2. What is the impact of the degree of pruning in
Phases 2 and 4?

To answer the first question, we pretrain a 124M
parameter GPT-2 model without the reintroduction
of data blocks in Phase 3, and use the reduced sub-
set from Phase 2 for the rest of the training. Then,
we finetune for downstream language modeling
tasks similarly and compared the perplexities us-
ing LFR in Table 5. This training strategy which
removes Phase 3, is labeled as no-reintro. Next,
to answer the second question, we pretrain a 124M
parameter GPT-2 model using LFR but increase the
degree of pruning in Phase 2 from 50% to 70%, i.e.,
reduce the training subset to 30% of the original
size. This aggressive training strategy is labeled as
aggr-2.

We observe that both aggressive training strate-
gies do not work as well as the original method.
However, we continue to explore more automated
ways of deciding the training schedule for different
model families as part of our future work.

Model WikiText-2 | WikiText-103 | LAMBADA | 1BW
no-reintro 23.24 25.76 17.27 36.02
aggr-2 2391 27.00 21.11 38.62
LFR 19.81 22.49 16.61 32.27

Table 5: Downstream task perplexities with more ag-
gressive training strategies.

A.5 Analysis on Dropped and Retained Data
Blocks - GPT-2

In this section, our goal is to characterize the data
points retained and dropped during pretraining by
LFR in Phases 2 and 4 across the training time
and model size. Specifically, we aim to answer the
following questions:

1. What types of data blocks are learned ear-
lier in the training process compared to those
learned later?

2. Are similar data blocks considered learned
and dropped in Phases 2 and 4?

3. Are the dropped data blocks similar across
model sizes?

4. Are the data blocks dropped similar to those
retained at any given training phase?

To answer the first question, we printed out the
texts dropped and retained at different training
phases. Tables 9 and 11 show text blocks dropped
in Phases 2 and 4 by the 345M and 124M parameter
models, while Tables 10 and 12 show data blocks
retained. By reading through the texts, we notice
that the model first learned conversations and per-
sonal anecdotes, before being able to retain factual
information. We provide a more detailed analysis
of the learning process in Section A.6.

In order to answer questions 2-4, we recorded
only the IDs of dropped data blocks during Phases
2 and 4 for both the GPT-2 124M and GPT-2 345M
models, totaling 4 lists of dropped IDs. We then
load the recorded data blocks and embed them into
a higher dimensional space using the GPT-2 tok-
enizer. Considering that there is a total of 8.7M
data blocks (9B tokens divided into blocks of 1024
tokens), we cluster the embeddings using k-means
clustering with £k = 270 to reduce the analysis
space and complexity. Finally, for each model, we
compute the cosine similarity for all combinations
of the embeddings of dropped data blocks across
training phases and visualize them using a heatmap.
These heatmaps plot the cosine similarity values
(ranging between 0 and 1) such that lighter values
(closer to 1) indicate higher similarity.

Figure 2 shows the similarity of dropped data
blocks across the time scale (Phase 2 shown on the
X-axis and Phase 4 shown on the Y-axis) for the
124M (left) and 345M (right) parameter models.
We find that there is a higher similarity in the data
points dropped by the 124M parameter model in
Phases 2 and 4 than in the case of the 345M param-
eter model (mean, variance, and standard deviation
are provided in Table 6). This behavior signals that
the lower capacity of the 124M parameter model
inhibits its learning process in Phase 3, such that it
finds similar points confusing in Phases 2 and 4. In
contrast, the 345M parameter model learns the data
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Figure 2: Cosine similarity heatmaps for dropped data blocks during phases 2 and 4 of pretraining for the GPT-2
124M (right) and 345M (left) models. The smaller model displays greater similarity in dropped data blocks over
time (lighter color), indicating that it remained uncertain about similar data points than the larger model.

blocks it found confusing in Phase 2 by focusing
on them, and moves on to learning new complex
blocks by Phase 4.

We conduct a similar study in order to character-
ize the similarity in data blocks across model sizes.
Figure 3 plots the cosine similarity heatmap for the
data blocks dropped by the 124M parameter model
(X-axis) and those dropped by the 345M parameter
model (Y-axis) in Phase 2. The mean, variance,
and standard deviations of the cosine similarity are
0.38, 0.15, and 0.023, respectively. This indicates
that the data blocks found easy and dropped in
Phase 2 by both models display a moderate level
of similarity, but also differ significantly.

Finally, we observe the cosine similarity of data
blocks dropped and retained during phase 4 for the
124M (left) and 345M (right) parameter models in
Figure 4. The mean, standard deviation, and vari-
ance are detailed in Table 7. The smaller model
displays greater similarity (lighter values in the
heatmap) between the dropped and retained blocks
than the larger model. We hypothesize that the
larger model can perform reasonably well across
similar data points, but struggles with very differ-
ent complex blocks by the fourth training phase.
In contrast, the smaller model does not display the
same high-level of understanding (similar perplex-
ity values) on related data blocks.

To summarize, data block importance varies
across training time, and across model sizes.
Therefore, static data selection techniques (Tiru-
mala et al., 2023; Abbas et al., 2023; Kaddour,
2023; Xie et al., 2023) which select a fixed subset

Model Mean | Std | Variance
GPT-2124M | 045 | 0.20 0.04
GPT-2345M | 0.30 | 0.12 0.01

Table 6: Mean, standard deviation (std), and variance
of cosine similarity matrices for dropped data blocks
across time scale (Phase 2 and Phase 4) for the GPT-2
124M and 345M models.

Model Mean | Std | Variance
GPT-2 124M | 0.44 | 0.21 0.046
GPT-2 345M | 0.32 | 0.13 0.018

Table 7: Mean, standard deviation (std), and variance of
cosine similarity matrices for dropped and retained data
blocks in Phase 4 of pretraining for the GPT-2 124M
and 345M models.

to train for the entire training duration for all model
architectures do not adapt to the changing train-
ing dynamics of LLMs. Based on our analysis in
Figure 3 and 2, different data blocks are found dif-
ficult by models of different capacities at different
training instants, driving the need for dynamic data
selection methods like LFR. We detail further anal-
ysis on the selected and discarded data blocks and
demonstrate how models initially focus on learning
conversational and anecdotal data, before proceed-
ing to learn factual data in Appendix A.6.

A.6 Extended Analysis on Dropped and
Retained Data Blocks for GPT-2

In this section, we expand on the ablation study in
Section A.5 in order to better characterize the data



Model Mean | Std | Variance
GPT-2 124M | 042 | 0.19 0.04
GPT-2345M | 040 | 0.18 0.03

Table 8: Mean, standard deviation (std), and variance of
cosine similarity matrices for dropped and retained data
blocks in phase 2 of pretraining for the GPT-2 124M

and 345M models.

Become a fan of Slate on Facebook. Follow us
on Twitter. The first time I crocheted a soccer
ball was on the occasion of the 2010 World Cup.
It was being held on the continent of Africa,
and I thought the African Flower hexagon motif
was the perfect vehicle for a crochet soccer ball
celebrating the continent’s first time hosting the
World Cup: This time around, instead of using
all 9000 of my favorite colors, I limited myself
to the colors of the flags of the thirty-two coun-
tries that had made it to the final rounds of the
World Cup competition, and I did my best to
incorporate the designs of their flags into the
thirty-two hexagons and pentagons of a soccer
ball.

ML-77 Missile Launcher: Based on existing
technology, the ML-77 is a rapid-fire missile
launcher using seeking projectiles. Each projec-
tile features a friend-or-foe recognition system,
ensuring it will find a hostile target even if the
user’s aim is not completely accurate. The lock-
ing mechanism of the ML-77 allows the shooter
to ignore cover and line of sight when shooting
at locked on enemies, though an attack roll is
still required. Locking on to an enemy requires
a move action when the enemy is in line of sight
and lasts for the rest of the encounter, or until a
new target is locked.

Table 9: Examples of text dropped by the 345M model

in phase 2 (top) and phase 4 (bottom).

GPT-2 345M Dropped Blocks in Phase 2

GPT-2 124M Dropped Blocks in Phase 2

Figure 3: Cosine similarity heatmap for data blocks
dropped during Phase 2 of GPT-2 124M and 345M pre-
training shows moderate similarity, indicating different
data points are considered easy by each model.

blocks considered easy / hard.

Tables 9 and 11 provides examples of text blocks
dropped in Phases 2 and 4 by the 345M and
124M parameter models respectively. Similarly,
Tables 10 and 12 provide examples of data blocks
retained by the models in Phases 2 and 4. We
printed out and went over all the text dropped and
retained in both Phases, and notice that text con-
sidered easy in phase 2 was more conversational,
and those considered easy in phase 4 were more
factual. This might indicate that the model first
learned conversations and personal anecdotes, be-
fore being able to retain factual information. These
findings are further corroborated by the examples
of data retained in both phases. We are working on
further analysis across different model families and
sizes to strengthen this understanding.

Next, we continue the analysis of the cosine sim-
ilarity heatmaps evaluated across training time and
model parameter scales presented in Section A.5.
Here, we answer the following questions:

1. Are there similarities in the data blocks con-
sidered easy and dropped in Phase 4 of train-
ing of the 124M parameter model with those
considered easy and dropped by the 345M
parameter model in Phase 2?7

2. Are the data blocks dropped similar to those
retained at any given training phase? Note
that Section A.5 presented this analysis only
for Phase 4 of the 124M and 345M parameter
models in Figure 4.

Figure 5 depicts the cosine similarity heatmap
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Figure 4: Cosine similarity heatmaps for dropped and retained data blocks during Phase 4 of pretraining for the

GPT-2 124M (right) and 345M (left) models.
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Figure 5: Cosine similarity heatmap for dropped data
blocks during Phase 4 of GPT-2 124M and Phase 2 of
the 345M model.

for the data blocks dropped by the 124M parame-
ter model in Phase 4 (X-axis) with those dropped
by the 345M parameter model in Phase 2 (Y-axis).
The mean, standard deviation, and variance of the
similarity are 0.43, 0.18, and 0.03 respectively. In
contrast, the mean cosine similarity of data blocks
dropped in Phase 2 of pretraining of both the mod-
els was 0.38 (Section A.5 and Figure 3). This indi-
cates that the smaller model "catches up" with the
knowledge accumulated by the larger model, and
considers similar block easy in Phase 4 as those
considered easy by the larger model in Phase 2.
Next, we plot the cosine similarity heatmap for
the dropped and retained data blocks in Phase 2 for
the 124M (left) and 345M (right) parameter mod-
els. The mean, variance, and standard deviations

of the similarity are shown in Table 8. Observing
the mean similarity value and heatmap in Table 7
and Figure 4, we find that the cosine similarity
for dropped and retained data blocks is higher in
Phase 2 than Phase 4 in case of the 345M parameter
model. In contrast, the value remains high in both
Phases for the 124M parameter model. This find-
ing indicates that both the smaller and larger model
start the training by being confused about similar
data blocks. However, the larger capacity of the
345M parameter model allows it to learn the dataset
well in Phases 2 and 3, and move on to more com-
plex data blocks in Phase 4 (thus reducing the mean
similarity in Phase 4). The smaller model continues
remaining unsure about similar data blocks. Since
we observed that the smaller model "catches up"
with the training of the larger model (in Figure 5),
we hypothesize that the smaller model will eventu-
ally display similar behaviour as the larger model
once trained for longer iterations.
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Unofficial reports claimed the car was powered
by a 95kW 1.5-litre non-turbo petrol engine but
Tada didn’t confirm. When asked what pow-
ers the S-FR Tada revealed he was considering
three choices. "When you see the S-FR concept
I suppose you imagine it is a 1.5-litre car but
nowadays I can choose many kind of engines,"
he explained. "Downsized turbo, 1.5-litre natu-
rally aspirated and something additional as well.
Now we are thinking which one is the best en-
gine for a small sports car." Tada also admitted
that the company is unlikely to turn to a partner
like it did with Subaru for the 86/BRZ or the
new ’big brother’ sports car with BMW.

In April, MYIR released a Linux-powered MY S-
6ULX single board computer, which was no-
table for being available in two different ver-
sions using NXP’s low power, Cortex-A7 1.MX6
UltraLite (UL) or the more affordable, and al-
most identical 1.MX6 ULL SoC. Now, MYIR
has released an “MYB-6ULX Expansion Board”
designed to stack onto either model. The
$21.20 accessory adds a second 10100 Ethernet
port to the MYS-6ULX, as well as new CAN,
RS485, audio, micro-USB, RTC, and camera
functions. MYB-6ULX Expansion Board with
MYS-6ULX (left) and detail view (click im-
ages to enlarge). The MYB-6ULX Expansion
Board has the same 70 x 55mm dimensions as
the MYS-6ULX, which is available in two mod-
els: The i.MX6 UL based MYS-6ULX-IND
has -40 to 85°C support instead of 0 to 70°C,
and the i.MX6 ULL based MYS-6ULX-IOT fea-
tures a USB-powered WiFi radio. The 4-layer
expansion board runs on 5V power, and shares
the industrial temperature support of the IND
model.

Table 10: Examples of text retained by the 345M model
in Phase 2 (top) and Phase 4 (bottom).
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In the book, the mythical California is ruled by
Queen Califa and populated only with female
warriors who brandish gold weapons. They even
harness their animals in gold because it is the
only mineral on the island. The legend of Cal-
ifa and her island was well known among New
World explorers. In 1536 when Hernan Cortéz
arrived in Baja California, he believed he had
landed on the legendary island. Over three hun-
dred years later gold was discovered in Califor-
nia, making the legend partially true and earning
the state its nickname: The Golden State.

Segregated Witness, defined by Bitcoin Im-
provement Proposal 141 (BIP141), was de-
ployed using an activation mechanism (BIP9)
that requires 95 percent of all miners (by hash
power) to signal support for the upgrade within
the span of a two-week difficulty period. That’s
at least 1916 blocks within 2016 blocks, to be ex-
act. This threshold has just been reached. While
the current difficulty period will not end until
tomorrow, all blocks in this difficulty period are
signaling support for the upgrade so far. This
now totals over 1916 of them.

to the GUI installer. Most notably there is no
support for configuring partition layout, storage
methods or package selection. Please refer to
the official documentation for details. Here you
can find some useful information on creating
and using kickstart files which can be used to
perform advanced configuring without the need
for the GUI installer. The message "Insufficient
memory to configure kdump!" appears during
install. This is a known issue which appears on
systems with less than 2 GB RAM. This can be
ignored. Content for both the 1386 and x86_64
architectures is split into two DVDs. We have
tried to get all basic server and basic desktop
installs only from DVD-1. Make sure that you
setup correctly the selinux context of the public
key if you transfer it to a CentOS 6 server with
selinux enabled.

Once you signed up, you can either click on the
Todo tab or the sign in link to gain access to
the application. Note that if you are selecting
sign in in the same session in which you signed
up, you will automatically sign in with the same
account you used for signing up. If you are
signing in during a new session, you will be
presented with Azure AD’s credentials prompt:
sign in using an account compatible with the
sign up option you chose earlier (the exact same
account if you used user consent, any user form
the same tenant if you used admin consent). If
you try to sign-in before the tenant administrator

Table 11: Examples of text dropped by the 124M model

in Phase 2 (top) and Phase 4 (bottom). has provisioned the app in the tenant using the
Sign up link above, you will see the following

€ITO0r.

Table 12: Examples of text retained by the 124M model
in phase 2 (top) and phase 4 (bottom).
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