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1 PERSPECTIVE TRANSFORM

In Section 3 of the main paper we propose a natural perturbation framework and give detailed de-
scriptions of the components. Perspective transform is one of the successful perturbation types in
decreasing the performance of the deep neural policy while having the lowest perceptual similarity
distance to the unperturbed states (i.e. perceptually more similar to the unperturbed state). In this
section we provide more detail on this geometric transformation and how it should be utilized.

1.1 FORMULAS FOR PERSPECTIVE TRANSFORMATION

The perspective transform is a geometric transformation of an image, uniquely determined by the
coordinates of four source and four destination pixels. Let sdstk

i and sdstk
j represent the coordinates

of the k-th destination pixel, and let ssrck
i and ssrck

j represent the coordinates of the k-th source
pixel. The perspective transform maps the given source pixel values to the destination pixel values
as follows. First, solve for a matrix M and real numbers tk such that for all k:
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Next assign each pixel value of the transformed image sadv(i, j) using M as follows:

sadv(i, j) = s

(
M11si +M12sj +M13

M31si +M32sj +M33
,
M21si +M22sj +M23

M31si +M32sj +M33

)
. (2)

2 FOURIER DOMAIN COMPLEMENTARY RESULTS

In this section we provide complementary results to Section 5 of the main body of the paper. Figure
1 demonstrates the total energy spectrum E(f) of rotation modification for TimePilot, BankHeist
and JamesBond. Note that the rotation modification causes decrease in the high frequencies. In
Section 4 we provide an analysis on the resilience of the state-of-the-art adversarial training deep
neural policies and vanilla trained deep neural policies. Figure 3 from the main body of the paper
demonstrates the parameter analysis of the perturbations for adversarially trained deep neural poli-
cies and vanilla trained deep neural policies. In particular, in Figure 3 of the main body of the paper
we show that the state-of-the-art adversarially trained deep neural policies are more vulnerable to
rotation modification.

In Figure 2 we show the Fourier spectrum of compression artifacts, shifting, brightness and contrast
from our proposed natural perturbation framework in TimePilot. In Section 3 of the main body of the
paper in Table 1 we show the perceptual similarity distances for the compression artifacts, shifting,
brightness and contrast. In particular, Table 2 demonstrates that the shifting, brightness and contrast
modifications are perceptually more similar to the unperturbed states compared to adversarially
perturbed states.
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Figure 1: Total energy spectrum E(f) of rotation modification from natural perturbation framework
for TimePilot, BankHeist and JamesBond.

Figure 2: Fourier spectrum F(s) of the natural perturbation modifications for TimePilot. Left:
Unperturbed. Mid-left: Compression artifacts. Mid-right: Shifting. Right: Brightness and contrast.

Figure 3 and Figure 4 show the total energy spectrum of compression artifacts, shifting, brightness
and contrast from our proposed natural perturbation framework in TimePilot and JamesBond respec-
tively. Figure 3 demonstrates that the brightness and contrast perturbations cause a tight shift in mid
and high frequencies, while compression artifacts cause dramatic decrease in high frequencies.

Figure 3: Total energy spectrum E(f) of natural perturbation modifications compression artifacts,
shifting, brightness and contrast for TimePilot.

Figure 4: Total energy spectrum E(f) of natural perturbation modifications compression artifacts,
shifting, brightness and contrast for JamesBond.

In Figure 4 the difference between the unperturbed states and the naturally modified states is quite
small for JamesBond compared to TimePilot. This can also be seen in Table 1 from the perceptual
similarity distance results. In particular, Table 1 from the main body of the paper demonstrates that
the naturally modified states are perceptually more similar to the unperturbed states compared to
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adversarially perturbed states. In other words, we show in the main body of the paper that the per-
ceptual similarity distance between naturally perturbed states and the unperturbed states is smaller
than the perceptual similarity distance between adversarially perturbed states and the unperturbed
states.

Figure 5: Total energy spectrum E(f) of natural perturbation modifications compression artifacts,
shifting, brightness and contrast for BankHeist.

Figure 6: Fourier spectrum F(s) of the natural perturbation modifications for JamesBond. Left:
Unperturbed. Mid-left: Compression artifacts. Mid-right: Shifting. Right: Brightness and contrast.

3 POLICY GRADIENT METHODS UNDER NATURAL PERTURBATION
FRAMEWORK

In this section we investigate policy gradient methods under semantically meaningful minimal nat-
ural perturbations. In particular, Table 1 shows the perceptual similarities Psimilarity, the raw scores
and the impact values I of the agent trained with Asynchronous Advantage Actor-Critic (A3C)
Mnih et al. (2016) under our proposed natural perturbation framework with the following obser-
vation modifications: brightness & contrast, blurring, rotation, shifting, compression artifacts and
perspective transform.

Table 1: Perceptual similarities, raw scores and impacts of the deep neural policy trained with
A3C Mnih et al. (2016) algorithm in Pong environment and evaluated with our proposed natural
perturbation framework: brightness & contrast, blurring, rotation, shifting, compression artifacts
(CA) and perspective transform (PT).

Pong Bright&Contrast Blurring Rotation Shifting CA PT

Raw Scores -17 -20.35 -19.96 -20.71 -20.89 -19.11
Impacts I 0.904 0.984 0.974 0.993 0.997 0.954
Perceptual Similarities Psimilarity 0.2190 0.0351 0.1020 0.2455 0.2506 0.0140
Natural perturbation hyperparameters [1.7,40] 3 3 [2,1] - 3

In Table 1 the exact same hyperparameters have been used as stated in Table 1 of the main the
paper for the natural perturbation framework. Note that “natural perturbation hyperparameters”
refers for brightness and contrast to [α, β], for blurring to the kernel size, for rotation to rotation
degree, for shifting to [ti, tj ], and for perspective transformation to perspective norm. Shifting and
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compression artifacts have nearly maximal impact on the performance of the agent trained with
A3C, while the other perturbations all have impact at least 0.9. Note that for a direct comparison
between A3C deep neural policy and Double Deep Q-Network (DDQN) deep neural policy the
hyperparameters for the natural perturbation framework are identical to Table 1 of the main paper.
Therefore, although impact is slightly lower for brightness & contrast for A3C than for DDQN,
it is possible that choosing different values of α and β while minimizing the perceptual similarity
Psimilarity can still result in a higher impact for an agent trained with A3C.

4 PERCEPTUAL SIMILARITIES

In this section we share the perceptual similarities in full detail. In particular, Figure 7 shows the
original observation without any modification and with natural perturbation framework observation
manipulations.

Figure 7: Original frame and environmental modifications. Columns: original frame, shifting, ro-
tation, perspective transformation, blurring, compression artifacts. brightness and contrast. Rows:
Riverraid, Timepilot, JamesBond, BankHeist and Pong.

Interestingly, we found that a majority of the games have high robustness against rotation. On the
other hand, shifting and perspective transformation can reach a higher impact level than the state-
of-the-art targeted attack while not being recognizable by human perception. We observed that in
some games, such as Pong and Riverraid, brightness and contrast requires radical changes to cause
the agent to fail, while for others the change required is imperceptible. Another thing we observed is
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that for games like Pong, which is relatively trivial compared to other games in the Arcade Learning
Environment, the threshold values for the environmental modification are higher. When the com-
plexity in the game increases the environment modification thresholds decrease drastically. We think
that this issue could become more important as deep reinforcement learning agents are deployed in
more complex and realistic scenarios. The rows from Figure 7 are allocated to several games from
the Atari environment and columns represent the modification type. Specifically, column 1 rep-
resents a state without a modification, column 2 represents shifting, column 3 represents rotation,
column 4 represents perspective transformation, column 5 represents blurring, column 6 represents
compression artifacts, column 7 represents brightness and contrast. Amongst these observations the
most perceptually dissimilar are the TimePilot rotation and Pong rotation modifications. In one way
the DDQN neural policy is quite robust to rotation modification in these environments. On the other
hand, state-of-the-art adversarially trained neural policies (Huan et al. (2020)) are more sensitive to
the rotation modification as we also pointed out in Section 5. Please see more details on perceptual
similarities and neural policy performance in our website1.

5 NATURAL PERTURBATIONS IN TIME DOMAIN

In this section we provide an analysis in the time domain to investigate if there are any additive
effects that might effect the performance degradation. In the previous sections the environment
modifications were applied to every state that the agent visited for both Carlini & Wagner (2017)
and our proposed framework. In this section we will examine the effects of both of the adversarial
perturbations and the natural perturbation framework when the perturbations are applied to only a
small fraction of states.

Table 2: Impact comparison with the fraction of adversarial observations per episode eadv.

RiverRaid TimePilot BankHeist Pong JamesBond

Carlini&Wagner Impact 0.359 0.148 0.249 0.077 0.021
Shifting Impact 0.513 0.374 0.326 0.114 0.165
Perspective Transformation Impact 0.391 0.315 0.338 0.108 0.121
Blurring Impact 0.501 0.155 0.304 0.12 0.319
Brightness & Contrast Impact 0.517 0.188 0.313 0.098 0.154
Rotation Impact 0.417 0.192 0.260 0.079 0.044
Compression Artifacts Impact 0.184 0.262 0.267 0.017 0.198

Carlini&Wagner eadv 0.096 0.020 0.021 0.062 0.081
Shifting eadv 0.100 0.019 0.020 0.062 0.084
Perspective Transform eadv 0.098 0.020 0.020 0.060 0.082
Blurring eadv 0.099 0.019 0.020 0.061 0.083
Brightness eadv 0.101 0.020 0.018 0.062 0.082
Rotation eadv 0.099 0.021 0.020 0.061 0.083
Compression Artifacts eadv 0.097 0.020 0.020 0.056 0.080
sadv observation probability p 0.1 0.02 0.02 0.06 0.08

For this purpose we introduce the adversarial states sadv in randomly sampled states where the ob-
servation sadv is observed by the agent with probability p, and the original states s is observed by
the agent with probability 1 − p. We use nsadv to denote the number of states where the agent ob-
served sadv instead of the original state s, and we use ns to denote the total number of states visited
by the agent in the given episode. We use eadv to denote the fraction nsadv/ns of adversarial per-
turbations per episode. In Table 2 we show the attack impacts of Carlini & Wagner (2017) and
our proposed framework with corresponding adversarial observation probability p averaged over 10
random episodes. Even for low p values our proposed framework obtains higher impact. Thus, to
capture a broader view on the robustness of the deep reinforcement learning policies, the prior work
on the timing perspective by Sun et al. (2020); Lin et al. (2017) based on worst-case distributional
shift, can also be revisited with the natural perturbation framework. Observe that the fraction eadv
can differ slightly from p due to random fluctuations, therefore we also report these values in Table
2. Note that eadv varies between games. This was done because each game has a different minimum
threshold for eadv to achieve stable impact across episodes.

1https://naturalperturbationframework.github.io/
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