
Appendix

A Broader Impact

Overconfidence in deep neural networks could easily lead to deployments where predictions are
made that should have been withheld. For example, in medical diagnosis applications the Bayes
optimal decision depends heavily on the model accurately modeling the distribution over its output
classes. We hope that our work is a small step towards avoiding high loss errors in decision making
applications. The metrics used in this paper assume that improving average calibration is the goal;
but other metrics should be considered if we want to, for example, ensure good average calibration
across different strata (e.g. if instances correspond to users of different social strata).

B Calibration Behaviour of Focal Loss in Different Bins

In the main paper, we have showed the calibration behavior of different focal losses for ResNet50
trained on CIFAR-10 for only a few bins. For completeness, the rest of the bins and their calibration
error Ei = Cval,i −Aval,i are shown in Figure 7 for focal losses with γ = 0, 3, 4, 5. We observe that
there’s no single γ that performs the best across all the bins. Rather, every bin has a particular γ that
achieves the best calibration.

Figure 7: ResNet-50 trained on CIFAR-10 using focal loss γ = 0, 3, 4, 5. Top: Eval,i = Cval,i −
Aval,i, Bottom: bin boundaries. The statistics are computed on the validations set using 15 equal-
mass bins. The black horizontal dashed line in every top subfigure represents zero calibration error
Eval,i = 0.
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C Correspondence between Confidence of Training and Validation Samples

C.1 Closeness of Ctrain,true and Ctrain,top as Training Progresses

For a training sample, the confidence of the true class ytrue is denoted by p̂train,true and the average
equivalent in a bin by Ctrain,true. Similarly, the confidence of the top predicted class ŷ (for the
training sample) is denoted by p̂train,top and the average equivalent in a bin by Ctrain,top. For the
training set, we care only about the confidence of the "true class" p̂train,true as that is the quantity
which gets manipulated by some loss function. For validation set, on the other hand, we care
about the confidence of the "top predicted class". Therefore, it would be more natural to look for
correspondence between similar quantities, particularly Ctrain,top,i, across the two datasets. However,
as we shown in Fig. 8, Ctrain,true,i and Ctrain,top,i are almost the same during major part of the
training. This is because as the model approaches towards 100% accuracy on the training set, the top
predicted class and the true class for a training sample become the same. Therefore we can directly
compare the two different quantities Ctrain,true,i and Ctrain,top,i across the training and validation
set.

Figure 8: ResNet50 trained on CIFAR-10 with focal loss γ = 3. The figure shows the closeness
of Ctrain,true,i (orange) and Ctrain,top,i (blue) for training samples as training progresses towards
100% accuracy on the training set.
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C.2 CIFAR-10, ResNet-50: Correspondence between Ctrain and Cval

Fig. 9 and 10 show the correspondence between the confidence of training samples Ctrain ≡
Ctrain,true and the confidence of the validation samples Cval ≡ Cval,top for the dataset-model pair
CIFAR-10, ResNet-50, under following two cases:

• Independent binning: when training samples and validation samples are grouped indepen-
dently into their respective training-bins and validation-bins (Fig. 9).

• Common binning: when training samples are grouped using the common bin boundaries
of the validation-bins that were formed by binning the validation bins (Fig. 10).

C.2.1 Independent binning

Figure 9: Independent binning: training samples and validation samples are grouped independently
into training-bin and validation-bin respectively. The top subfigure for each bin shows the corre-
spondence between average confidence of a group of training samples Ctrain,true,i and a group of
validation samples Cval,top,i when ResNet-50 is trained on CIFAR-10 with focal loss γ = 0, 3, 5.
The binning is adaptive with 15 equal-mass bins. Solid line: Ctrain,true,i in training-bin i, Dashed
line: Cval,top,i and Star-dashed line: Aval,i in validation-bin i. The bottom subfigure shows the bin
boundaries for focal loss γ = 3 as an example.
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C.2.2 Common binning

Figure 10: Common binning: training samples are grouped using the bin boundaries of the validation-
bins. The top subfigure for each bin shows the correspondence between average confidence of a
group of training samples Ctrain,true,i and a group of validation samples Cval,top,i when ResNet-50
is trained on CIFAR-10 with focal loss γ = 0, 3, 5. The binning is adaptive with 15 equal-mass bins.
Solid line: Ctrain,true,i in validation-bin i, Dashed line: Cval,top,i and Star-dashed line: Aval,i

in validation-bin i. The bottom subfigure shows the bin bin boundaries for focal loss γ = 3 as an
example.
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C.3 CIFAR-100, ResNet-50: Correspondence between Ctrain and Cval

Figure 11: Common binning: Ctrain (solid) and Cval (star) both binned using validation-bin
boundaries. Show here for focal loss γ = 0 (CE) and γ = 3 (FL-3).

C.4 CIFAR-100, WideResNet: Correspondence between Ctrain and Cval

Figure 12: Common binning: Ctrain (solid) and Cval (star) both binned using validation-bin
boundaries. Show here for focal loss γ = 0 (CE) and γ = 3 (FL-3).
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C.5 TinyImageNet, ResNet-50: Correspondence between Ctrain and Cval

Figure 13: Common binning: Ctrain (solid) and Cval (star) both binned using validation-bin
boundaries. Show here for focal loss γ = 0 (CE) and γ = 3 (FL-3).

C.6 20 Newsgroups, CNN: Correspondence between Ctrain and Cval

Figure 14: Common binning: Ctrain (solid) and Cval (star) both binned using validation-bin
boundaries. Show here for focal loss γ = 0 (CE) and γ = 3 (FL-3).
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D Datasets and Experiments

D.1 Dataset Description

CIFAR-10 [9]: This dataset contains 60, 000 coloured images of size 32 × 32, which are equally
divided into 10 classes. A split of 45, 000/5, 000/10, 000 images is used as train/validation/test sets
respectively.

CIFAR-100 [9]: This dataset contains 60, 000 coloured images of size 32× 32, which are equally
divided into 100 classes. A split of 45, 000/5, 000/10, 000 images is used as train/validation/test sets
respectively.

ImageNet [27]: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017 is an
image classification and localization dataset. This dataset spans 1000 object classes and contains
1,281,167 training images and 50,000 validation images.

Tiny-ImageNet [2]: It is a subset of the ImageNet dataset with 64× 64 dimensional images and 200
classes. It has 500 images per class in the training set and 50 images per class in the validation set.

20 Newsgroups [14]: This dataset contains 20, 000 news articles, categorised evenly into 20
different newsgroups. Some of the newsgroups are very closely related to each other (e.g.
comp.sys.ibm.pc.hardware / comp.sys.mac.hardware), while others are highly unrelated (e.g
misc.forsale / soc.religion.christian). We use a train/validation/test split of 15, 098/900/3, 999
documents.

D.2 Experiment Configurations

For our experiments, we have used Nvidia Titan X Pascal GPU with 12 GB of memory. Training
configuration for each dataset is given below.

CIFAR-10 and CIFAR-100: We use SGD with a momentum of 0.9 as our optimiser, and train the
networks for 350 epochs, with a learning rate of 0.1 for the first 150 epochs, 0.01 for the next 100
epochs, and 0.001 for the last 100 epochs. We use a training batch size of 128. The training data is
augmented by applying random crops and random horizontal flips.

Tiny-ImageNet: We use SGD with a momentum of 0.9 as our optimiser, and train the models for
100 epochs with a learning rate of 0.1 for the first 40 epochs, 0.01 for the next 20 epochs and 0.001
for the last 40 epochs. We use a training batch size of 64. Note that we use 50 samples per class (i.e.
a total of 10000 samples) from the training set as the validation set. Hence, the training is only on
90000 images. We use the Tiny-ImageNet validation set as our test set.

ImageNet: We use SGD as our optimiser with momentum of 0.9 and weight decay 10−4, and train
the models for 90 epochs with a learning rate of 0.01 for the first 30 epochs, 0.001 for the next 30
epochs and 0.0001 for the last 30 epochs. We use a training batch size of 128. We divide the 50,000
validation images into validation and test set of 25,000 images each.

20 Newsgroups, CNN: We train the Global Pooling CNN Network [15] using the Adam optimiser,
with learning rate 0.001, and default betas 0.9 and 0.999. We used Glove word embeddings [25] to
train the network. We train the model for 50 epochs and use the model at the end to evaluate the
performance.

20 Newsgroups, BERT: We fine-tune a BERT model by adding a single linear classification layer on
top of pre-trained "bert-base-uncased" model (12-layer, 768-hidden, 12-heads, 110M parameters) [3],
using the AdamW optimiser (Adam with weight decay), with batch size of 32, learning rate 2e− 5,
weight decay of 0.01 and warm up steps of 0.2 the number of batches in the training set. We limit the
length of the input sequence to 128 for training and 512 for testing. We train the model for 10 epochs
and select the model that has the lowest error on validation set.

The experiments are implemented using PyTorch library. The hyperparameters that are not explicitly
mentioned above are set to their default values in PyTorch. For CIFAR-10/100 and Tiny-ImageNet,
AdaFocal is implemented on top of the base code available at [18]. The code for 20 Newsgroups is
implemented in PyTorch by adapting the TensorFlow code available at [12].
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D.3 Model Selection

For all experiments, except Tiny-ImageNet, we select the model at the end of the training mainly to
be consistent with [19] i.e. the work we are trying to improve upon in this paper. As confirmed by the
authors of [19], they use the model at the end of the training to report results in the paper. Therefore,
for the following datasets, the error and ECE results are reported for the model at

• CIFAR-10: 350 epochs
• CIFAR-100: 350 epochs
• ImageNet: 90 epochs
• 20 NewsGroups, CNN: 50 epochs

For Tiny-ImageNet and BERT, we have reported the model that has the lowest error on the validation
set.

E Other Post Hoc Calibration Techniques

E.1 Ensemble Temperature Scaling (ETS)

Dataset Model Cross Entropy FLSD-53 AdaFocal

CIFAR-10

ResNet-50 2.97 1.71 0.55
ResNet-110 3.18 1.79 0.57

Wide-ResNet-26-10 2.55 2.00 0.49
DenseNet-121 3.40 1.64 0.57

CIFAR-100

ResNet-50 3.38 2.46 1.33
ResNet-110 4.60 3.87 1.24

Wide-ResNet-26-10 2.91 2.07 1.79
DenseNet-121 4.48 1.21 1.86

Tiny-ImageNet ResNet-50 3.02 1.46 1.23
ResNet-110 1.26 1.22 0.62

ImageNet
ResNet-50 0.90 2.13 1.13
ResNet-110 1.38 2.25 1.28

DenseNet-121 1.07 2.36 1.40

20 Newsgroups CNN 2.46 2.50 2.29
BERT 5.34 3.91 4.30

Table 3: ECEEW (%) after post hoc calibration with Ensemble Temperature Scaling.

E.2 Spline Fitting

Dataset Model Cross Entropy FLSD-53 AdaFocal

CIFAR-10

ResNet-50 1.69 0.60 0.65
ResNet-110 1.88 0.61 0.58

Wide-ResNet-26-10 1.17 0.65 0.45
DenseNet-121 1.48 0.97 0.53

CIFAR-100

ResNet-50 2.56 1.07 1.01
ResNet-110 3.36 1.33 1.29

Wide-ResNet-26-10 2.20 1.08 1.53
DenseNet-121 2.83 1.03 1.36

Tiny-ImageNet ResNet-50 1.44 1.91 1.39

ImageNet
ResNet-50 0.82 0.87 0.66
ResNet-110 0.60 0.69 0.62

DenseNet-121 0.72 0.66 0.75
20 Newsgroups Global-pool CNN 1.97 1.38 1.12

Table 4: ECEEW (%) after post hoc calibration with spline fitting.

F Debiased Estimates of ECE: ECEDEBIAS and ECESWEEP

As shown in [26], binning-based estimators ECEEW and ECEEM may suffer from statistical bias
(ECEEM has lower bias than ECEEW) and if the bias is strong enough it may lead to mis-estimation
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of calibration error and a wrong model selection. Therefore, to confirm that the results presented
in the paper using ECEEM and ECEEW are consistent and reliable, we additionally present here
ECEDEBIAS [11] and ECESWEEP [26] (equal-mass) as debiased estimates of ECE.

Dataset Model Pre Temperature scaling Post Temperature scaling
CE FLSD-53 AdaFocal CE FLSD-53 AdaFocal

CIFAR-10

ResNet-50 4.05 1.62 0.47 1.70(2.5) 1.62(1.0) 0.82(0.9)
ResNet-110 4.38 1.82 0.32 2.20(2.7) 1.30(1.1) 0.32(1.0)

Wide-ResNet-26-10 3.52 2.01 0.59 1.89(2.2) 1.50(0.9) 0.25(1.1)
DenseNet-121 4.26 1.56 0.42 2.15(2.3) 1.93(0.9) 0.42(1.0)

CIFAR-100

ResNet-50 17.73 5.52 1.46 3.86(2.2) 2.92(1.1) 1.46(1.0)
ResNet-110 19.44 7.31 1.35 6.01(2.3) 3.55(1.2) 1.35(1.0)

Wide-ResNet-26-10 14.91 2.53 2.12 3.32(2.1) 2.53(1.0) 2.12(1.0)
DenseNet-121 19.82 2.29 1.27 3.44(2.3) 2.12(1.1) 1.27(1.0)

Tiny-ImageNet ResNet-50 7.95 2.90 2.69 3.86(1.44) 2.61(1.06) 2.31(0.96)
ResNet-110 8.09 1.65 1.50 1.23(1.20) 1.65(1.00) 1.50(1.0)

ImageNet
ResNet-50 2.89 16.76 1.74 1.42(0.90) 2.58(0.70) 1.74(1.00)
ResNet-110 1.14 18.65 1.04 1.14(1.00) 2.41(0.70) 1.04(1.00)

DenseNet-121 1.74 19.18 1.30 1.74(1.00) 2.17(0.70) 1.30(1.00)
20 Newsgroups Global-pool CNN 18.36 8.94 1.84 5.23(4.1) 0.94(1.6) 1.84(1.0)

Table 5: Test set ECEDEBIAS(%) 15 bins. Optimal temperature, shown in brackets, are selected
based on the lowest ECEEW on the validation set.

Dataset Model Pre Temperature scaling Post Temperature scaling
CE FLSD-53 AdaFocal CE FLSD-53 AdaFocal

CIFAR-10

ResNet-50 4.05 1.54 0.04 1.43(2.5) 1.54(1.0) 0.70(0.9)
ResNet-110 4.38 1.83 0.40 1.34(2.7) 1.32(1.1) 0.40(1.0)

Wide-ResNet-26-10 3.53 1.64 0.38 1.41(2.2) 1.55(0.9) 0.32(1.1)
DenseNet-121 4.27 1.58 0.34 2.17(2.3) 1.98(0.9) 0.34(1.0)

CIFAR-100

ResNet-50 17.72 5.51 1.89 0.51(2.2) 2.36(1.1) 1.89(1.0)
ResNet-110 19.44 7.34 1.58 3.71(2.3) 3.65(1.2) 1.58(1.0)

Wide-ResNet-26-10 14.92 2.62 2.25 2.62(2.1) 2.62(1.0) 2.25(1.0)
DenseNet-121 19.82 2.25 1.47 3.12(2.3) 2.31(1.1) 1.47(1.0)

Tiny-ImageNet ResNet-50 7.98 2.99 2.78 3.96(1.44) 2.83(1.06) 2.56(0.96)
ResNet-110 8.11 2.01 1.97 1.81(1.20) 2.01(1.00) 1.97(1.00)

ImageNet
ResNet-50 2.93 16.77 1.98 1.63(0.90) 2.58(0.70) 1.98(1.00)
ResNet-110 1.15 18.66 1.08 1.15(1.00) 2.51(0.70) 1.08(1.00)

DenseNet-121 1.80 19.19 1.40 1.80(1.00) 2.29(0.70) 1.40(1.00)
20 Newsgroups Global-pool CNN 18.38 8.95 2.22 5.53(4.1) 2.13(1.6) 2.22(1.0)

Table 6: Test set ECESWEEP(%) equal-mass. Optimal temperature, shown in brackets, are selected
based on the lowest ECEEW on the validation set.

G ECEEW error bars

Figure 15: Test set ECEEW (%) error bars with mean and standard deviation computed over 5 runs
with different initialization seed. Dark and light shades of a color show pre and post temperature
scaling results respectively. Optimal temperatures are cross-validated based on ECEEW.

H Number of bins used for AdaFocal training

Experiment details:

1. ResNet-50 trained on CIFAR-10 for 350 epochs.
2. The reported results below are without temperature scaling.
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3. We compare AdaFocal with 5, 10, 15, 20, 30, and 50 equal mass bins vs FLSD-53.

Note that there are two types of binning involved:

• For training: the binning that is performed on the validation set from where AdaFocal
draws calibration related information to adjust γ. These correspond to the columns in the
table 7.

• For evaluation: once we have a trained model, the binning that is used to compute the ECE
metric. These correspond to the rows in the table below.

Number of bins used for AdaFocal training
Evaluation Metric FLSD-53 5 bins 10 bins 15 bins 20 bins 30 bins 50 bins
ECEEW (15bins) 1.35 0.76 0.53 0.51 0.60 0.82 1.16
ECEEM (15bins) 1.67 0.63 0.53 0.56 0.40 0.84 1.10
ECEDEBIAS (15bins) 1.62 0.50 0.44 0.47 0.25 0.79 1.07
ECEDEBIAS (30bins) 1.57 0.73 0.43 0.46 0.27 0.72 1.06
ECESWEEP−EW 1.31 0.66 0.43 0.48 0.48 0.80 1.08
ECESWEEP−EM 1.54 0.53 0.21 0.04 0.38 0.07 1.08

Table 7: ECE (%) performance for ResNet-50 trained on CIFAR-10 when AdaFocal training uses
different number of equal-mass bins. We observe that the best results are for number of bins in the
range of 10 to 20. Performance degrades when the number of bins are too less (< 10) or too many
(≥ 30).

I Frequency of γ-update

In this section, we study how the frequency of the γ-update affect the performance of AdaFocal on
the 20Newsgroup dataset (with CNN and BERT models) i.e if the validation-bin boundaries and γ
are updated every mini-batch or a few times per training epoch.

Intuitively, one would expect that if the validation-bin boundaries are updated more frequently
then AdaFocal would be able to more closely track the changes in the calibration behaviour of the
validation set and accordingly adjust it’s γs to better respond to the changes. This is supported by the
experiments on 20 Newsgroup dataset using CNN and BERT model as shown in Fig. 16 and 17. In
these figures, AdaFocal on its own means that γ is updated at the end of every epoch. AdaFocal-n,
where n = 100, 50, 10, 1, means that γ is updated every n mini-batches. Since the number of training
batches for 20Newsgroup with CNN is 118, AdaFocal-50(respectively 10, 1) means γ is updated 2
(respectively 11, 118) times per epoch. Similarly, for 20Newsgroup and BERT, as the the number
of training batches is 472, AdaFocal-100(respectively 10, 1) means γ is updated 4 (respectively 47,
472) times per epoch.

From these experiments, we observe that

1. Frequent updates keep the model better calibrated at all time steps and prevent it
from getting mis-calibrated. For example in Fig. 16(b), AdaFocal and AdaFocal-50 are
miscalibrated at the start of the training and at around 15-20 epoch, whereas AdaFocal-10
and AdaFocal-1 remains very well calibrated at all epochs. We observe the same in Fig.
17(b), where AdaFocal and AdaFocal-100 are miscalibrated at the start of the training and
around epoch 6− 9, whereas AdaFocal-10 and AdaFocal-1 remains well calibrated at all
times.

2. For cases where updating γ once per epoch leads to only a few γ updates in total,
frequent updates may lead to improved ECE performance. We observe this in Fig. 17(b)
where AdaFocal (with only 10 updates as BERT is trained for only 10 epochs) is unable to
reach the calibration level of AdaFocal-10 and AdaFocal-1. For 20Newsgroup and CNN, as
the model is trained for 50 epochs, AdaFocal, first unable to keep up with AdaFocal-10 and
AdaFocal-1, is able to ultimately reach their level of calibration with enough updates.

Drawback: Increased training time. Updating γ more frequently comes at the cost of increased
training time. For example, as discussed in J, standard training of ResNet-50 on CIFAR-10 takes
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79.1s per epoch and γ-update step takes 2.8s. When trained for 350 epochs, updating γ every epoch
adds 16 minutes to the the total training time of 7.7h. Therefore, increasing the update frequency will
linearly increase the additional overhead as well.

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 16: CNN trained on 20Newsgroups with cross entropy (CE), FLSD-53, and AdaFocal.
AdaFocal on its own means that γ is updated at the end of every epoch. AdaFocal-n, where
n = 50, 10, 1, means that γ is updated after every n mini-batches. Since the number of training
batches for 20Newsgroup with CNN is 118, AdaFocal-50 (respectively 10, 1) means γ is updated 2
(respectively 11, 118) times per epoch
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(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 17: Pre-trained BERT fine-tuned on 20 Newsgroups with cross entropy (CE), FLSD-53, and
AdaFocal. AdaFocal on its own means that γ is updated at the end of every epoch. AdaFocal-n,
where n = 100, 10, 1, means that γ is updated after every n mini-batches. Since the number of
training batches for 20Newsgroup with BERT is 472, AdaFocal-100 (respectively 10, 1) means γ is
updated 4 (respectively 47, 472) times per epoch.

J Computation overhead for AdaFocal

To update γ of AdaFocal, the extra operations that are required are

1. Forward pass on the validation set to compute the logits/softmaxes.
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2. Compute bin statistics and update γ.

In general, if we update γ at the end of every epoch, then compared to the time it takes to train the
model for one whole epoch, these two overheads are quite negligible. For example, for ResNet-50
trained on CIFAR-10 (train set contains 45000 examples, val set contains 5000 examples) using
Nvidia Titan X Pascal GPU with 12GB memory,

• Training for one epoch = 79, 123 ms = 79.1 s

• Forward pass on validation set = 2, 886 ms = 2.8 s

• Compute bin statistics and update γ = 8 ms

So if the standard training with cross entropy, without any involvement of a validation set, for 350
epochs requires in total 79.1× 350

3600 = 7.7 hours, then AdaFocal will add 2.808× 350
60 = 16 minutes

on top of the entire training. Naturally, if we update γ more often during the epoch then this overhead
will increase and may become significant. However, for all our experiments we update γ at the end
of an epoch and that works quite well. Nonetheless, for a comparison of performance of AdaFocal
when the update frequency of γ is varied, please refer to Appendix I.

K AUROC for Out-of-Distribution Detection

For ResNet110 trained on in-distribution CIFAR-10 and tested on out-of-distribution SVHN, we were
not able to reproduce the reported results of 96.74, 96.92 for focal loss γ = 3 (FL-3) as given in [19].
Instead we found those values to be 90.27, 90.39 and report the same in Table 8 below.

Dataset Model Cross Entropy Brier Loss MMCE LS-0.05 FL-3 FLSD-53 AdaFocal
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T

CIFAR-10 / SVHN ResNet-110 61.71 59.66 94.80 95.13 85.31 85.39 68.68 68.68 90.27 90.39 90.33 90.49 96.09
Wide-ResNet-26-10 96.82 97.62 94.51 94.51 97.35 97.95 84.63 84.66 90.92 91.30 93.08 93.11 96.63

CIFAR-10 / CIFAR-10-C ResNet-110 77.53 75.16 84.09 83.86 71.96 70.02 72.17 72.18 80.11 79.78 82.06 81.38 84.96
Wide-ResNet-26-10 81.06 80.68 85.03 85.03 82.17 81.72 71.10 71.16 83.33 84.00 80.00 80.76 89.52

Table 8: AUROC (%) of models trained on CIFAR-10 as the in-distribution data and tested on SVHN
and CIFAR-10-C as out-of-distribution data. Temperature scaling is based on ECEEW.

L Reliability Diagrams

(a) CE, %ECEEM = 2.93 (b) FLSD-53, %ECEEM = 16.77 (c) AdaFocal, %ECEEM = 1.87

Figure 18: ImageNet, ResNet-50.
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(a) CE, %ECEEM = 1.28 (b) FLSD-53, %ECEEM = 18.66 (c) AdaFocal, %ECEEM = 1.17

Figure 19: ImageNet, ResNet-110.

(a) CE, %ECEEM = 1.82 (b) FLSD-53, %ECEEM = 19.19 (c) AdaFocal, %ECEEM = 1.50

Figure 20: ImageNet, DenseNet-121.

(a) CE, %ECEEM = 4.05 (b) FLSD-53, %ECEEM = 1.67 (c) AdaFocal, %ECEEM = 0.56

Figure 21: CIFAR-10, ResNet-50.

(a) CE, %ECEEM = 4.39 (b) FLSD-53, %ECEEM = 1.90 (c) AdaFocal, %ECEEM = 0.44

Figure 22: CIFAR-10, ResNet-110.
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(a) CE, %ECEEM = 4.26 (b) FLSD-53, %ECEEM = 1.62 (c) AdaFocal, %ECEEM = 0.54

Figure 23: CIFAR-10, DenseNet-121.

(a) CE, %ECEEM = 3.52 (b) FLSD-53, %ECEEM = 2.01 (c) AdaFocal, %ECEEM = 0.64

Figure 24: CIFAR-10, Wide-ResNet.

(a) CE, %ECEEM = 17.72 (b) FLSD-53, %ECEEM = 5.57 (c) AdaFocal, %ECEEM = 1.72

Figure 25: CIFAR-100, ResNet-50.

(a) CE, %ECEEM = 19.44 (b) FLSD-53, %ECEEM = 7.34 (c) AdaFocal, %ECEEM = 1.57

Figure 26: CIFAR-100, ResNet-110.
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(a) CE, %ECEEM = 19.82 (b) FLSD-53, %ECEEM = 2.4 (c) AdaFocal, %ECEEM = 1.54

Figure 27: CIFAR-100, DenseNet-121.

(a) CE, %ECEEM = 14.93 (b) FLSD-53, %ECEEM = 2.63 (c) AdaFocal, %ECEEM = 2.22

Figure 28: CIFAR-100, Wide-ResNet.

(a) CE, %ECEEM = 16.19 (b) FLSD-53, %ECEEM = 2.70 (c) AdaFocal, %ECEEM = 2.56

Figure 29: Tiny-ImageNet, ResNet-50.

(a) CE, %ECEEM = 8.11 (b) FLSD-53, %ECEEM = 1.94 (c) AdaFocal, %ECEEM = 1.82

Figure 30: Tiny-ImageNet, ResNet-110.
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(a) CE, %ECEEM = 18.37 (b) FLSD-53, %ECEEM = 8.95 (c) AdaFocal, %ECEEM = 2.38

Figure 31: 20Newsgroup, CNN.

(a) CE, %ECEEM = 7.89 (b) FLSD-53, %ECEEM = 9.75 (c) AdaFocal, %ECEEM = 3.18

Figure 32: 20Newsgroup, BERT.

(a) CE, %ECEEM = 3.17 (b) FLSD-53, %ECEEM = 0.59 (c) AdaFocal, %ECEEM = 0.62

Figure 33: SVHN, ResNet-110.

M "Calibrate-able" Property

In Fig. 34, following [30], for ResNet-50 on CIFAR-10 and ResNet-50 on CIFAR-100, we plot the
distribution of max-logits of training examples at the end of training (i.e. at epoch 350) grouped as
per different "learned epochs".

Observations:

• Unlike for ResNet-32 in [30], we do not find cross entropy + Temperature Scaling to be
better than focal loss + temperature scaling for ResNet-50 (the same is observed in [19]).

• Although the distribution of FLSD-53 is compressed, similar to what observed for focal loss
in [30], the separation of samples is not seen here for cross entropy (CE).

• For AdaFocal, we see better separation of easy and hard examples grouped as per their
"learned epoch". This makes AdaFocal more "calibrate-able" as per [30].
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(a) ResNet-50 trained on CIFAR-10.

(b) ResNet-50 trained on CIFAR-100.

Figure 34: Comparison of the distribution of max-logits of training examples grouped as per different
"learned epochs". In the legend, the groups are marked by intervals to which the "learned epoch"
belongs.

N Multiple runs of AdaFocal with different γmax

Due to the stochastic nature of the experiments, AdaFocal γs may end up following different
trajectories across different runs (initialization), which in turn might lead to variations in the final
results. In this section, we look at the extent of such variations for ResNet-50 trained on CIFAR-10 for
γmax = 20, γmax = 50 and unconstrained γ (γmax = ∞). For all these experiments, the minimum γ
for inverse-focal loss is set to γmin = −2 and the switching threshold is set to Sth = 0.2.

N.1 AdaFocal γmax = 20

In Fig. 35, we observe that AdaFocal with γmax = 20 is consistently better than FLSD-53. Fig. 36
shows the variation in dynamics of γ during training across different runs.

(a) Error (%) (b) ECEEM (%)

Figure 35: Multiple runs of ResNet-50 trained on CIFAR-10 using cross entropy (CE), FLSD-53 and
AdaFocal with γmax = 20 for different initialization seeds.
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Figure 36: Dynamics of γt for different runs of ResNet-50 trained on CIFAR-10 using AdaFocal
γmax = 20.

N.2 AdaFocal γmax = 50

In Fig. 37, we observe that AdaFocal with γmax = 50 has more variability than AdaFocal γmax = 20
but is mostly better than FLSD-53. Fig. 37 shows the variation in dynamics of γ during training
across different runs.

(a) Error (%) (b) ECEEM (%)

Figure 37: Plots for ResNet-50 trained on CIFAR-10 using cross entropy (1 run), FLSD-53 (3 runs)
and AdaFocal with γmax = 50 (5 runs). AdaFocal γmax = 50, although mostly better than FLSD-53,
does exhibit greater variability than AdaFocal γmax = 20.
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Figure 38: Dynamics of γt for different runs of ResNet-50 trained on CIFAR-10 using AdaFocal
γmax = 50.

N.3 AdaFocal, unconstrained γ (γmax = ∞)

In Fig. 39, we observe that AdaFocal with unconstrained γ exhibit grater variability across different
runs: 7 out of 9 times it performs better than FLSD-53 whereas the other two times it is similar or
slightly worse.

(a) Error (%) (b) ECEEM (%)

Figure 39: Plots for ResNet-50 trained on CIFAR-10 using cross entropy (1 run), FLSD-53 (3 runs)
and AdaFocal γmax = ∞ (9 runs). AdaFocal with unconstrained γ exhibits much greater variability
across different runs than γmax = 20 and γmax = 50.

The above behaviour is mostly due to large variations in the trajectory of γs especially for lower bins
as shown in Fig. 40. For higher bins, γs do not explode and settle to similar nearby values, whereas,
for lower bins, as the γs are unconstrained they blow up to udesirably high values.
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Figure 40: Dynamics of γt for different runs of ResNet-50 trained on CIFAR-10 using unconstrained
AdaFocal with γmax = ∞.
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O Error, ECE, dynamics of γ, and bin statistics during training

O.1 ImageNet, ResNet-50

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 41: ResNet-50 trained on ImageNet with cross entropy (CE), FLSD-53, and AdaFocal with
Sth = 0.2 and 0.5.
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O.2 ImageNet, ResNet-110

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 42: ResNet-110 trained on ImageNet with cross entropy (CE), FLSD-53, and AdaFocal with
Sth = 0.2.
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O.3 ImageNet, DenseNet-121

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 43: DenseNet-121 trained on ImageNet with cross entropy (CE), FLSD-53, and AdaFocal
with Sth = 0.2.
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O.4 CIFAR-10, ResNet-110

(a) Error (%) (b) ECEEM (%) (also called AdaECE)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 44: ResNet-110 trained on CIFAR-10 with cross entropy (CE), FLSD-53, and AdaFocal.
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O.5 CIFAR-10, Wide-ResNet

(a) Error (%) (b) ECEEM (%) (also called AdaECE)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 45: Wide-ResNet trained on CIFAR-10 with cross entropy (CE), FLSD-53, and AdaFocal.
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O.6 CIFAR-10, DenseNet-121

(a) Error (%) (b) ECEEM (%) (also called AdaECE)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 46: DenseNet-121 trained on CIFAR-10 with cross entropy (CE), FLSD-53, and AdaFocal.
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O.7 CIFAR-100, ResNet-50

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 47: ResNet-50 trained on CIFAR-100 with cross entropy (CE), FLSD-53, and AdaFocal.
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O.8 CIFAR-100, ResNet-110

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 48: ResNet-110 trained on CIFAR-100 with cross entropy (CE), FLSD-53, and AdaFocal.
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O.9 CIFAR-100, Wide-ResNet

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 49: Wide-ResNet trained on CIFAR-100 with cross entropy (CE), FLSD-53, and AdaFocal.
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O.10 CIFAR-100, DenseNet-121

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 50: DenseNet-121 trained on CIFAR-100 with cross entropy (CE), FLSD-53, and AdaFocal.
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O.11 Tiny-ImageNet, ResNet-50

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 51: ResNet-50 trained on Tiny-ImageNet with cross entropy (CE), FLSD-53, and AdaFocal.

45



O.12 Tiny-ImageNet, ResNet-110

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 52: ResNet-110 trained on Tiny-ImageNet with cross entropy (CE), FLSD-53, and AdaFocal.
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O.13 SVHN, ResNet-110

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 53: ResNet-110 trained on SVHN with cross entropy (CE), FLSD-53, AdaFocal, AdaFocal-
shcedule. In AdaFocal-schedule, for the first 25 epochs γ is updated every epoch, from epoch 25
to 40, γ is updated every 100 mini-batches, and from epoch 40 to 50 (end of training), γ is updated
every mini-batch.
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O.14 20 Newsgroups, CNN

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 54: CNN trained on 20 Newsgroups with cross entropy (CE), FLSD-53, and AdaFocal.
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O.15 20 Newsgroups, BERT

(a) Error (%) (b) ECEEM (%)

(c) Dynamics of γ and calibration behaviour in different bins. Each bin has three subplots: top: Eval,i =
Cval,i −Aval,i, middle: evolution of γt, and bottom: bin boundaries. Black dashed line in top plot represent
zero calibration error.

Figure 55: Pre-trained BERT fine-tuned on 20 Newsgroups with cross entropy (CE), FLSD-53, and
AdaFocal.
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P Comparison of CalFocal Loss Case 1 (Eq. 2) and Case 2 (Eq. 3)

For Fig. 56 below, please note the following legend:

• CE = Cross Entropy.
• LExp,λ = CalFocal loss case 1 (Eq. 2 in the main paper) which assigns γs to each training

sample.
• λ = CalFocal loss case 2 (Eq. 3 in the main paper) which assigns a common γb to all

training samples that fall in validation-bin b.

(a) Error (%)

(b) ECEEM (%) (also called AdaECE in the literature [19]).

(c) For CalFocal loss case 2 (Eq. 3) marked in the legend by "λ =", the figure compares
Ctrain (solid line), Cval (dashed line) and Aval (starred lines) in validation bin-0 to show
that when CalFocal brings Ctrain closer to Aval, Cval also approaches Aval.

Figure 56: ResNet-50 trained on CIFAR-10 using (1) cross entropy (CE), (2) FLSD-53 (3) CalFocal
Case 1 loss function in Eq. 2 denoted by LExp,λ, and (4) CalFocal Case 2 loss function in Eq. 3
denoted by "λ =".
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