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Abstract001

We introduce SPIRE, a speech-augmented lan-002
guage model (LM) capable of both translating003
and transcribing speech input from English into004
10 other languages as well as translating text005
input in both language directions. SPIRE inte-006
grates the speech modality into an existing mul-007
tilingual LM (MLM) via speech discretization008
and continued pre-training using only 42.5K009
hours of speech. In particular, we adopt the010
pretraining framework of MLMs and treat dis-011
cretized speech input as an additional transla-012
tion language. This approach not only equips013
the MLM with speech capabilities, but also pre-014
serves its strong text-only performance. We015
achieve this using significantly less data than016
existing speech LMs, demonstrating that dis-017
cretized speech input integration as an addi-018
tional language is feasible during LM adap-019
tation. We will make our code and models020
available to the community.021

1 Introduction022

Large language models (LLMs) have demonstrated023

remarkable success on various text-based natural024

language processing tasks (Achiam et al., 2023;025

Touvron et al., 2023; Yang et al., 2024; Alves et al.,026

2024; Martins et al., 2024), motivating research027

into extending them to other modalities. This has028

led to the development of multimodal LMs (MLMs)029

capable of processing speech, audio, images, and030

video (Team et al., 2023; Driess et al., 2023; Ruben-031

stein et al., 2023; Liu et al., 2023; Tang et al., 2024;032

Défossez et al., 2024; Hu et al., 2024; Huang et al.,033

2024; Nguyen et al., 2025). However, the integra-034

tion of new modalities often come at the cost of035

existing capabilities (Zhai et al., 2024).036

For speech-LLM integration, a simple approach037

is to link the output of an automatic speech recog-038

nition (ASR) system to a text-only LLM (Huang039

et al., 2024). This solution, however, is prone to040

error propagation and depends largely on individ-041

ual model quality. More popular are solutions that042

investigate equipping LLMs natively with speech 043

processing capabilities through modality projec- 044

tion (Shu et al., 2023; Radhakrishnan et al., 2023; 045

Wu et al., 2023a; Tang et al., 2024; Xue et al., 2024; 046

Hu et al., 2024). Typically, a speech foundation 047

model generates speech representations that are 048

mapped to the embedding space of the LLM, fol- 049

lowing which the model is then fine-tuned along 050

with a projector on speech-to-text tasks to equip 051

the LLM with speech processing capabilities. In 052

this setting, key challenges include prompt overfit- 053

ting and high training costs, as tuning these MLMs 054

requires the adaptation of the speech projector mod- 055

ule on vast amounts of raw speech data (Tang et al., 056

2024; Hu et al., 2024). 057

An alternative approach for MLMs is to use 058

speech discretization, where continuous speech 059

features are transformed prior to training into se- 060

quences of “discrete speech units” (DSUs), which 061

can be processed similarly to text (Chou et al., 062

2023a; Zhang et al., 2023; Rubenstein et al., 2023; 063

Chang et al., 2024; Défossez et al., 2024; Trinh 064

et al., 2024; Maiti et al., 2024; Nguyen et al., 2025). 065

This approach simplifies training by eliminating 066

the need for additional parameters beyond extended 067

embedding matrices. Finally, while both projector- 068

based and discretization-based MLMs have shown 069

promising results on text-to-speech and speech-to- 070

text tasks, their development has prioritized speech- 071

centric tasks at the expense of textual performance. 072

Furthermore, limited research has focused on inte- 073

grating speech while preserving the LLM’s origi- 074

nal capabilities in textual tasks (Chou et al., 2023b; 075

Huang et al., 2024). 076

In this work we present SPIRE, a speech- 077

augmented LLM built from the open-weight multi- 078

lingual model TOWER (Alves et al., 2024). SPIRE 079

can perform English ASR and from-English speech 080

translation (ST) while maintaining TOWER’s strong 081

performance on machine translation (MT) across 082
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Figure 1: Illustration of the model training method for SPIREBASE and SPIREFULL.

all 10 languages1 supported by TOWER. SPIRE en-083

codes speech via HuBERT-based (Hsu et al., 2021)084

k-means clustering, as in previous work (Zhang085

et al., 2023; Rubenstein et al., 2023; Chang et al.,086

2024). We perform training in two stages: Con-087

tinued Pre-Training (CPT) and Instruction Tun-088

ing (IT). For the CPT stage, we use a mixture of089

ASR data and a small fraction of TOWER’s text090

CPT data. For IT, we leverage TOWER’s task-091

specific MT data, as well as additional English092

ASR and ST data. SPIRE is trained using only093

42.5K hours of speech, differing from the large094

scale of data used by existing models (Radford095

et al., 2023; Nguyen et al., 2025; Chu et al., 2024).096

Figure 1 illustrates our training process. We make097

the following contributions:098

• We present a pipeline for integrating speech as099

an additional modality into an existing LLM,100

enabling it to transcribe and translate English101

speech while preserving its original text-only102

capabilities across 10 languages;103

• We analyze speech integration at two stages,104

namely CPT and IT, demonstrating the neces-105

sity of both stages to achieve optimal perfor-106

mance across both modalities;107

• We make our models, datasets, and scripts108

available to the community.2109

2 Related Work110

Speech-to-Text Models An increasing number111

of studies have explored integrating speech into112

LLMs (Zhang et al., 2023; Rubenstein et al., 2023;113

Hassid et al., 2024). For discrete speech in-114

put, Hassid et al. (2024) demonstrate the benefits115

of initializing a speech LLM from a text-based116

LLM. SpeechGPT (Zhang et al., 2023) applies117

1en, de, fr, nl, it, es, pt, ko, ru, zh
2[REDACTED]

IT on speech-to-text cross-modal ASR, text-to- 118

speech (TTS), and text-based question answering. 119

AudioPALM (Rubenstein et al., 2023) is trained in 120

a multi-task fashion, similarly to SpeechGPT, but 121

on multilingual input. Recently, VoxtLM (Maiti 122

et al., 2024) was trained jointly on DSUs and text 123

data for ASR, TTS, and open-ended speech/text 124

generation. Our work is most similar to Spirit-LM 125

(Nguyen et al., 2025), which adapts an LLM with 126

an interleaved mixture of DSU and text data, which 127

requires an expensive DSU-to-transcript step to 128

create. In contrast, we adopt a more cost-effective 129

input representation that can be extended to any 130

language, regardless of the availability of a speech 131

aligner. Our focus is on successfully incorporating 132

speech input while preserving the original compe- 133

tence of the model, so that the resulting model can 134

successfully perform both speech-to-text and text- 135

only tasks. None of the aforementioned models 136

are trained to preserve the original model’s perfor- 137

mance in text tasks. 138

Adapting LLMs Previous approaches involve 139

training from scratch with task- and domain- 140

specific data (Singhal et al., 2023; Lewkowycz 141

et al., 2022), performing CPT with a diverse 142

training data mix designed to broadly extend the 143

model’s knowledge (Wu et al., 2023b), or instruc- 144

tion tuning on use-case-specific data (Chen et al., 145

2023). Recent work has explored combining the 146

latter two approaches (Xu et al., 2024a; Alves et al., 147

2024; Wei et al., 2021; Roziere et al., 2023). In 148

our approach to integrating DSUs into TOWER, we 149

take inspiration from Alves et al. (2024) in adopt- 150

ing a two-step CPT+IT process. Our work differs 151

in that we focus on adding the speech modality, 152

whereas Alves et al. (2024) focused on increasing 153

the multilingual capabilities of an LLM. 154

Continuous and Discrete Speech Represen- 155

tations Self-supervised speech representation 156

models produce contextualized high-dimensional 157
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speech vectors directly from raw audio (Hsu et al.,158

2021; Baevski et al., 2020; Chen et al., 2022),159

largely outperforming statistical speech features on160

downstream tasks (Yang et al., 2021). These con-161

tinuous representations can be used to derive DSUs162

that capture both linguistic content and prosody163

through clustering (Borsos et al., 2023; Kharitonov164

et al., 2022). DSUs provide better alignment with165

textual data, facilitating the transfer of successful166

training settings from the text domain (Cui et al.,167

2024). Building on Lakhotia et al. (2021), which168

demonstrated that HuBERT (Hsu et al., 2021) is169

a powerful feature extractor, several studies have170

adopted this approach, incorporating a k-means171

clustering step for discretization (Zhang et al.,172

2023; Rubenstein et al., 2023; Lam et al., 2024;173

Chang et al., 2024; Nguyen et al., 2025). Xu et al.174

(2024b) study the optimal settings to obtain DSUs175

in terms of cluster size and feature extraction layer.176

We use their findings to inform our initial choices.177

3 SPIRE: A Speech-to-Text LLM178

We introduce SPIRE, whose goal is to equip an179

LLM with speech capabilities while preserving its180

preexisting text capabilities. As our base LLM we181

choose TOWER (Alves et al., 2024), which was de-182

veloped from Llama-2 (Touvron et al., 2023) with183

a two-step approach: CPT on a mixture of monolin-184

gual and parallel data (TOWERBASE), followed by185

IT on translation-related tasks (TOWERINSTRUCT).186

We use an approach similar to TOWER to extend187

the model to the speech modality. First, we perform188

CPT with a combination of text-only and aligned189

speech-to-text datasets, followed by IT using both190

text-only general-purpose and task-specific data cu-191

rated in TOWERBLOCKS,3 alongside task-specific192

speech-to-text datasets.193

We choose TOWER in particular due to its com-194

petitive performance compared to other open al-195

ternatives. TOWER-based models were among the196

best participating systems in the WMT24 general197

translation task (Kocmi et al., 2024). TOWER’s us-198

age of open source data during the CPT phase along199

with the release of the TOWERBLOCKS dataset,200

used in the IT phase, further motivates our choice.201

3.1 Speech Discretization202

To easily transfer the training set-up of TOWER,203

we use DSUs as opposed to an auxiliary speech204

encoder. For all speech datasets that were used, we205

3
https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2

follow recent discretization methodology (Zhang 206

et al., 2023; Rubenstein et al., 2023; Chang et al., 207

2024) to produce DSUs by first extracting continu- 208

ous speech representations for our speech data from 209

the 22nd layer of an HuBERT-large model, trained 210

on 60K hours of English speech (Hsu et al., 2021), 211

and then using k-means clustering (K = 5000) 212

to produce centroids that are used to convert our 213

continuous speech representation into a discrete 214

sequence of cluster IDs.4 We train our k-means 215

model on a collection of 235K audio files (approx- 216

imately 720 hours), drawn from three speech cor- 217

pora: CoVoST-2 (Wang et al., 2021b), VoxPop- 218

uli (Wang et al., 2021a), and Multilingual Lib- 219

rispeech (MLS; Pratap et al., 2020). The CoV- 220

oST subset consists of 62K audio files from 10,049 221

speakers, with a maximum of 8 audio files per 222

speaker. The VoxPopuli subset includes 65K audio 223

files from 639 speakers, capped at 250 audio files 224

per speaker. Finally, the MLS subset contains 107K 225

audio files from 5,490 speakers. 226

3.2 SPIREBASE 227

The first CPT stage, yielding SPIREBASE, is 228

trained from TOWERBASE-7B5 using both text- 229

only and aligned speech-to-text datasets. Following 230

previous work, we include a fraction of TOWER’s 231

original training data to preserve its existing perfor- 232

mance (Scialom et al., 2022; de Masson D’Autume 233

et al., 2019). 234

3.2.1 Data 235

We use a mixture of monolingual and parallel 236

text in Chinese (zh), Dutch (nl), English (en), 237

French (fr), German (de), Italian (it), Korean (ko), 238

Portuguese (pt), Russian (ru), and Spanish (es), that 239

was sourced from the TOWER training data, as well 240

as English ASR data sourced from popular open- 241

source ASR datasets, as reported in Table 1. Both 242

speech and text data are downsampled to create a 243

6B token data mixture (5B speech; 1B text), mea- 244

sured by the model tokenizer.6 Note that the 5B 245

speech tokens include both DSUs (4.4B tokens) 246

and their text transcriptions (0.6B tokens). 247

4Optimizing the layer selection for feature extraction is a
complex research problem (Pasad et al., 2023; Mousavi et al.,
2024). In this work we follow the insights from Gow-Smith
et al. (2023) and Xu et al. (2024b).

5We used TOWER-7B models instead of the 13B or 70B
versions due to its lower compute requirements

6Preliminary experiments on the data mixture led to this
particular choice.
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Text Data The monolingual text data split corre-248

sponds to data from mC4 (Raffel et al., 2019), a249

multilingual web-crawled corpus which we uni-250

formly sample from across all languages. The251

parallel data split includes uniformly sampled in-252

stances to and from English (en↔xx) for the 10253

languages, sourced from various public sources.254

Further details can be found in Alves et al. (2024).255

Speech Data We collect 35K hours of speech256

data from SPGI Speech (O’Neill et al., 2021), Gi-257

gaSpeech (Chen et al., 2021), MLS, and VoxPopuli.258

We normalize as described in Appendix A.1.259

3.2.2 CPT Setup260

We train SPIREBASE using MegatronLLM (Cano261

et al., 2023) on 8 A100-80GB GPUs for 6 days. We262

use the same hyperparameters as TOWER, except263

for the effective batch size, which in our case is264

2,304. To incorporate the DSUs in the CPT stage,265

we extend the model’s original vocabulary by 5000266

types, e.g., <extra_id_x>. This allows us to have267

a vocabulary that can encode both text in subword268

units and speech in DSUs. For the extended vocab-269

ulary, we initialize new embeddings from a mul-270

tivariate Gaussian distribution. The mean of this271

distribution is set to the average of the original em-272

beddings, while the covariance is derived from the273

empirical covariance of the original embeddings,274

scaled by a factor of 1× 10−5 (Hewitt, 2021).275

3.3 SPIREFULL276

SPIREFULL is obtained by instruction tuning277

SPIREBASE on task-specific text and speech data.278

3.3.1 Data279

We use a mixture of text and speech instructions280

for ASR, MT, and ST. The prompt formats used281

during training are shown in Appendix A.2.282

Text Data We use TOWERBLOCKS (Alves et al.,283

2024), which includes high quality translation bi-284

texts between English and the other languages sup-285

ported by TOWER. It also includes instructions286

for the translation-related tasks of named entity287

recognition and automatic post-editing.288

ASR Data We use 0.8K hours of ASR data from289

CommonVoice 18 (CV; Ardila et al., 2020), down-290

sampling strategy as described in Appendix A.1.291

ST Data In our IT set, we use 842 hours of292

speech across three ST training sets: FLEURS293

(all nine language pairs; we filter out examples294

Dataset Task Phase # DSUs # Hours

SPGI Speech ASR CPT 645M 5.1K
Gigaspeech ASR CPT 1.2B 9.9K

MLS ASR CPT 2.4B 19.2K
VoxPopuli ASR CPT 69M 0.5K

CV ASR IT 105M 0.8K
Europarl-ST ST IT 122M 1.0K

FLEURS ST IT 11M 0.09K
CoVoST-2 ST IT 12M 0.09K

SPGI Speech Pseudo-ST IT 350M 2.8K
GigaSpeech Pseudo-ST IT 161M 1.3K

CV Pseudo-ST IT 212M 1.7K

Table 1: Statistics for speech training data. Hours are
approximated from the number of deduplicated DSUs.

whose transcriptions overlap with the FLORES 295

devtest set), Europarl-ST (Iranzo-Sánchez et al., 296

2020) (en � {de, es, fr, it, nl, pt}), and CoVoST- 297

2 (en→zh). Since this amounts to far less data 298

for ST than ASR, and since en→{ko, ru} have 299

only examples from the tiny FLEURS set, we aug- 300

ment our speech collection with pseudo-labeled 301

data, which has been effective for other ST sys- 302

tems (Barrault et al., 2023). We select 300k ASR 303

examples each from CV, SPGI, and GigaSpeech 304

and translate them to all nine target languages 305

using TowerInstruct-13B.7 We then filter exam- 306

ples whose transcript-translation combination has 307

a COMET-QE8 (Rei et al., 2022b) score under 85. 308

Finally, for each language pair, we sample 60K 309

examples to be used in direct ST prompts and an- 310

other 60K to be used in multi-turn prompts. This 311

results in 180K direct ST prompts and 180K multi- 312

turn prompts for each language pair.9 The prompt 313

formats are shown in Appendix A.2. 314

3.3.2 IT Training Setup 315

We use the chatml template (OpenAI, 2023) to 316

format our instructions in dialogue form. We 317

train models using Axolotl10 on 4 H100-80GB 318

GPUs for 2.7 days. We use a learning rate of 319

7 × 10−6 and a cosine scheduler with 100 warm- 320

up steps. We train for 4 epochs with an effective 321

batch size of 576 and a weight decay of 0.01. We 322

impose a maximum sequence length of 4096 and 323

use the AdamW optimizer (Loshchilov and Hutter, 324

2019). Other hyperparameters are derived from 325

TOWERINSTRUCT (Alves et al., 2024). 326

7
https://huggingface.co/Unbabel/TowerInstruct-13B-v0.1

8
https://huggingface.co/Unbabel/wmt22-cometkiwi-da

9Due to our aggressive filtering, we were left with slightly
fewer examples for en � zh.

10
https://github.com/axolotl-ai-cloud/axolotl
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4 Experiments327

We evaluate our models across three tasks: ASR,328

MT, and ST. First, we present our results for329

ASR (§4.1), confirming the new capabilities SPIRE330

has in the speech domain. We then present MT331

results (§4.2), demonstrating that the speech per-332

formance does not come at the expense of the orig-333

inal model’s MT performance. Finally, we present334

results for ST (§4.3) to investigate model perfor-335

mance on a task that requires both ASR and MT336

capabilities.337

Evaluation Setup Across models and tasks, we338

perform inference with greedy decoding with a339

maximum of 256 generated tokens. For the TOWER340

and SPIRE models, we decode with vllm. However,341

since vllm does not support all of our baselines,342

we use alternative libraries (transformers) where343

necessary. Unless specified otherwise, we use zero-344

shot prompts for all models and tasks.345

4.1 ASR346

Datasets and Metrics We evaluate ASR perfor-347

mance across multiple test sets, in order to cover348

a variety of recording styles: Librispeech (LS)349

test-clean and test-other (Panayotov et al., 2015),350

FLEURS (Conneau et al., 2023), and VoxPopuli.11351

We report the Word Error Rate (WER) between352

the hypotheses and gold transcripts, after Whisper353

normalization (Radford et al., 2023).354

Baselines We include the following models:355

• Whisper (Radford et al., 2023) is an encoder-356

decoder transformer trained on over 5 million357

hours of labeled data that performs multilin-358

gual ASR and to-English ST. We report re-359

sults for Whisper-base (74M parameters) and360

Whisper-large-v3 (1.5B parameters).361

• SeamlessM4T (Barrault et al., 2023) is an362

encoder-decoder transformer trained on 406K363

hours of speech that performs ASR, ST and364

MT across 100 languages. We report results365

for SeamlessM4T-large-v2 (2.3B parameters).366

• SALMONN (Tang et al., 2024) integrates a367

pre-trained text LLM with separate speech368

and audio encoders into a single multimodal369

11For CPT models, LS is an in-domain evaluation because
its training set is part of MLS.

LibriSpeech FLEURS VoxPopuliClean Other

Whisper-base 5.0 11.9 12.1 9.8
Whisper-large-v3 1.8 3.7 5.8 9.2
SeamlessM4T 2.6 4.9 8.1 7.5
SALMONN 2.4 5.3 9.3 8.9
Qwen2-Audio 1.6 3.9 6.6 6.5
Spirit-LM 6.0* 11.0* - -
HuBERT-large+CTC 4.3 7.6 11.4 14.7

Our models
SPIREBASE 28.9 56.3 11.0 13.7
SPIREFULL 4.2 7.1 10.7 15.8

*We were unable to reproduce Spirit-LM’s ASR performance; therefore, we
report their self-reported LS results using ten-shot prompts.

Table 2: WER on various ASR test sets.

model.12 SALMONN uses a LoRA adapter 370

(Hu et al., 2022) to align the spaces. 371

• Qwen2-Audio (Chu et al., 2024) integrates 372

audio into Qwen-7B (Bai et al., 2023) us- 373

ing a specialized encoder that is initialized 374

from Whisper large-v3. The resulting model 375

is pretrained on ∼520K hours of data span- 376

ning speech, sound, and music. 377

• Spirit-LM (Nguyen et al., 2025) is a decoder- 378

only model, trained from Llama-2 on 307B to- 379

kens of text, 458K hours of unlabeled speech, 380

and 111K hours of labeled speech. As in 381

SPIRE, it uses HuBERT DSUs. 382

• HuBERT-large+CTC is a CTC-based ASR 383

model trained using the same speech rep- 384

resentation model we use for DSU genera- 385

tion, and using the same ASR data from the 386

IT stage (Section 3.3.1).13 Unlike SPIRE, 387

this model has access to a very powerful 388

speech representation backbone, however, 389

lacks strong language modeling capabilities. 390

Results Our results are presented in Table 2. 391

SPIREFULL’s performance demonstrates that per- 392

forming both the CPT and IT stages is an effective 393

strategy to give speech capabilities to a text LLM. 394

On the other hand, SPIREBASE does not consis- 395

tently show reasonable speech performance, how- 396

ever, on FLEURS and VoxPopuli we obtain some- 397

what strong results in the zero-shot settings, which 398

is surprising given that non-instruction-tuned mod- 399

els often struggle to work out-of-domain without 400

12SALMONN uses 4400 hours of speech/audio data in the
IT phase but does not specify the large amount of pre-training
ASR and audio captioning data used.

13The hyperparameters are described in Appendix B.
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en→xx xx→en
C22 spB C22 spB

SeamlessM4T 87.22 39.0 87.42 39.9
TOWERBASE-7B 87.38 37.8 88.02 41.7
TOWERINSTRUCT-7B 88.45 38.8 88.27 42.0

Our models
SPIREBASE 87.41 37.4 87.97 41.4
SPIREFULL 88.54 39.3 88.21 41.8

Table 3: COMET-22 (C22) and spBLEU (spB) on the
FLORES devtest set between English and the other
languages supported by TOWER And SPIRE.

in-context learning examples.14401

Although SPIREFULL does not match the402

performance of SeamlessM4T, Whisper-large-v3,403

SALMONN, or Qwen2-Audio, these were trained404

on far more speech data than our models (around405

10x for Qwen2-Audio and SeamlessM4T). Given406

this training data gap, it is notable that SPIRE-407

FULL does outperform Whisper-base on LS and408

FLEURS, and Spirit-LM on all benchmarks Spirit-409

LM reports at a fraction of the speech data.410

SPIREFULL also outperforms the HuBERT-411

large+CTC baseline on three out of four datasets—412

an impressive result given that the CTC model has413

access to continuous features, which SPIREFULL414

lacks, showing that our compressed discrete repre-415

sentations can recover more powerful features.416

4.2 MT417

Having demonstrated that our training approach418

works well to initially equip TOWER with speech419

processing capabilities, we now turn to MT to inves-420

tigate whether SPIRE can maintain TOWER’s strong421

performance on MT despite its speech-centric CPT.422

Datasets and Metrics We evaluate on two423

datasets for MT: FLORES-200 (Team et al., 2024),424

which covers SPIRE’s languages, and the WMT23425

test set (Kocmi et al., 2023), which covers en↔{de,426

ru, zh}. We report COMET-22 (COMET; Rei427

et al., 2022a) and spBLEU15 (Papineni et al., 2002)428

scores via the SacreBLEU toolkit (Post, 2018).429

Baselines We compare the SPIRE models to430

the text-to-text translation performance of Seam-431

14We also tried prompting SPIREBASE with few-shot exam-
ples, but the results were much worse, possibly because the
length of the DSU sequences led to in-context examples that
were too long for the model to handle effectively.

15nrefs:1|case:mixed|eff:no|tok:flores200|
smooth:exp|version:2.5.1

APE NER
en→xx xx→en Multilingual

TOWERINSTRUCT-7B 83.08 80.29 71.56
SPIREFULL 83.13 80.08 67.10

Table 4: Results on APE (COMET) and NER (seq. F1).

lessM4T. Additionally, we report the performance 432

of TOWERBASE-7B and TOWERINSTRUCT-7B. 433

Results Our results show that even after the 434

speech-centric CPT and mixed speech and text IT 435

stage, the SPIRE models retain the original text- 436

only performance of TOWER on both FLORES 437

(Table 3) and WMT23 (Table 5). This indicates 438

that neither CPT nor IT on speech data negatively 439

impacts the model’s ability to perform MT. This 440

is true for both SPIREBASE, which achieves per- 441

formance comparable to TOWERBASE; and for 442

IT models, where SPIREFULL slightly surpasses 443

the performance of TOWERINSTRUCT on en→xx. 444

SPIREFULL also outperforms SeamlessM4T by 445

both metrics on all WMT23 language pairs, and for 446

both en→xx and xx→en on FLORES. 447

Translation-related Tasks We follow the eval- 448

uation set-up from TOWER (Alves et al., 2024) to 449

additionally evaluate SPIRE on translation-related 450

tasks. In Table 4 we report our results on au- 451

tomatic post-edition (APE) for en↔{de, ru, zh} 452

and named entity recognition (NER) for {de, en, 453

es, fr, it, pt, zh}. SPIRE performs similarly to 454

TOWERINSTRUCT across both tasks and all lan- 455

guage directions, maintaining the original text-only 456

capabilities even after training on speech data. 457

4.3 ST 458

As SPIRE has shown success at both ASR and MT, 459

we now investigate its performance on ST. 460

Datasets For ST, we evaluate our models on 461

FLEURS (Conneau et al., 2023), covering ST be- 462

tween all en→xx pairs, and CoVoST-2 (Wang et al., 463

2021b) for en→{de, zh}. For brevity, we report 464

spBLEU and COMET-22 in Appendix C. 465

ST approaches As well as direct ST, we report 466

self-cascades, in which each model transcribes the 467

audio before translating its own output to the target 468

language (i.e., ASR followed by MT). 469

Baselines We compare SPIRE to SeamlessM4T 470

in both direct and cascaded settings. We also re- 471

port the results of SALMONN and Qwen2-Audio, 472
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en→de en→ru en→zh de→en ru→en zh→en
C22 spB C22 spB C22 spB C22 spB C22 spB C22 spB

SeamlessM4T 77.76 27.8 83.22 34.2 80.14 29.7 78.69 26.6 80.58 32.5 76.96 23.8
TOWERBASE-7B 79.96 36.1 83.08 34.2 83.49 33.3 83.56 41.1 80.06 32.7 78.48 23.5
TOWERINSTRUCT-7B 82.34 38.8 84.66 34.9 85.09 35.3 84.95 45.1 82.94 36.7 80.14 26.1

Our models
SPIREBASE 79.88 34.7 83.04 33.7 83.85 32.4 83.19 40.5 80.20 32.4 78.65 23.1
SPIREFULL 82.50 39.5 84.60 34.9 85.37 37.3 85.24 45.2 82.58 36.4 79.92 26.3

Table 5: COMET-22 (C22) and spBLEU (spB) on the WMT23 test set.

which are both 7B parameter models, like SPIRE.473

However, SALMONN and Qwen2-Audio do not474

support text-to-text translation, so we use them475

only for direct ST.16 There are also coverage dif-476

ferences between the models: while SeamlessM4T477

can handle all of SPIRE’s language pairs, neither478

SALMONN nor Qwen2-Audio supports en→ko;479

SALMONN also does not support en→ru.480

Results Our FLEURS ST results are reported in481

Table 7. SeamlessM4T performs best at direct ST482

for all language pairs except en→zh. Among the483

7B parameter models, SPIREFULL is the best direct484

model on average, notably beating SALMONN on485

all language pairs except en→zh. It also outper-486

forms Qwen2-Audio on 6 out of 8 language pairs487

that Qwen2-Audio supports, and ties or beats it for488

all except en→zh and en→de.489

Performance on CoVoST-2 (Table 6) tells a490

different story. Although SPIREFULL maintains491

its advantage over SeamlessM4T in self-cascaded492

translation, it attains the worst performance on493

en→zh, while performing similarly to SALMONN494

for en→de. This shows that the direct ST perfor-495

mance of SPIREFULL is dataset-dependent, which496

could be a consequence of its relatively small train-497

ing data.498

SPIREFULL achieves the best self-cascaded per-499

formance by a significant margin for both datasets,500

outperforming SeamlessM4T by a large margin501

in this setting. This demonstrates that SPIREFULL502

maintains greater robustness to its own outputs than503

SeamlessM4T, supporting the insight that LLM-504

based translation models can be very robust to per-505

turbations (Peters and Martins, 2025).506

16Although Whisper is frequently used for ST, we exclude
it because it only supports to-English translation, whereas
SPIRE is a from-English ST model. Therefore ST comparisons
between the two models are impossible.

en→de en→zh
C22 spB C22 spB

Self-cascade
SeamlessM4T 72.40 21.7 72.32 17.0
SPIREFULL 78.05 31.8 79.50 28.1

Direct
SALMONN 74.98 22.7 80.92 27.8
Qwen2-Audio 82.29 34.5 85.27 38.7
SeamlessM4T 85.95 42.3 83.62 31.3
SPIREFULL 73.96 25.4 74.53 21.0

Table 6: ST results on CoVoST-2.

5 Analysis 507

The key innovation of our approach is the applica- 508

tion of the CPT followed by IT paradigm to dis- 509

cretized speech allowing us to build upon existing 510

text-only capabilities of our base model. Here, we 511

analyze how the composition of these two training 512

phases contributes overall to model performance 513

across all tasks previously evaluated. To that end, 514

we consider several variants of SPIREBASE and 515

SPIREFULL which are described in Table 8 and 516

whose results are reported in Table 9. 517

• i) no CPT was performed and IT was 518

performed with the entire IT data mix 519

(TOWERFULL); 520

• ii) CPT was performed and no data 521

from TOWERBLOCKS was seen during IT 522

(SPIRENOBLOCKS), and 523

• iii) CPT was performed and pseudo-labeled 524

ST data and FLEURS were omitted from the 525

IT data mix (SPIRENOPSEUDO). 526

We report additional datasets in Appendix D. 527

Effectiveness of CPT and IT Our previous re- 528

sults demonstrated that using both CPT and IT 529

was the most effective strategy. The performance 530
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de es fr it ko nl pt ru zh avg7 avgall

Self-Cascade
SeamlessM4T 24.2 21.5 37.7 18.9 12.5 16.9 28.2 27.1 14.6 23.1 22.4
SPIREFULL 38.1 29.4 45.3 31.2 23.1 31.2 42.9 33.5 29.0 35.3 33.7

Direct
SeamlessM4T 39.2 28.0 48.1 30.6 21.5 30.8 47.5 34.3 23.2 35.3 33.7
SALMONN 25.5 20.8 34.3 16.7 0.1 20.5 32.6 3.1 21.9 24.6 19.5
Qwen2-Audio 31.8 23.5 31.3 23.5 5.4 22.3 36.1 23.7 24.7 27.6 24.7
SPIREFULL 31.1 23.5 37.9 25.5 15.4 25.7 37.3 26.9 21.0 28.9 27.1

Table 7: FLEURS ST ex→xx results with self-cascade and direct models in terms of spBLEU. avg7 covers the 7
language pairs that all models in the table support (excluding en→{ko, ru}).

Model Base Model
CPT IT

Speech Text Speech Pseudo Text

TOWERFULL TowerBase-7B ✗ ✗ ✓ ✓ ✓

SPIREBASE SpireBase ✓ ✓ ✗ ✗ ✗

SPIREFULL SpireBase ✓ ✓ ✓ ✓ ✓

SPIRE Variants
SPIRENOBLOCKS SpireBase ✓ ✓ ✓ ✓ ✗

SPIRENOPSEUDO SpireBase ✓ ✓ ✓ ✗ ✓

Table 8: Ablations of our models. The CPT and IT
columns indicate which data was seen during training.

gap between SPIREFULL and the TOWERFULL on531

ASR (5.3 points in LS test-clean) further shows532

that IT alone is also not as effective. However,533

for ST we observe that only performing IT leads534

to a strong model that is capable of performing535

speech translation unlike SPIREBASE where we536

also attempted direct ST but the model failed to537

produce output in the target language, even when538

given few-shot prompts. Despite the impressive re-539

sults from TOWERFULL, we still observe the best540

performance by SPIREFULL showing that while541

the effect of CPT is not as drastic as in the case of542

ASR, we still observe gains with a speech-centric543

CPT phase.544

Modality Interplay Our results show that text545

and speech modalities are orthogonal to each546

other. Specifically, the performances of TOWER-547

FULL and SPIREFULL show that speech-centric548

CPT does not degrade the text performance of549

the base model. However, MT quality suffers550

when TOWERBLOCKS is removed from the IT551

data, as is shown by SPIRENOBLOCKS’s much552

weaker performance than SPIREFULL. Simul-553

taneously, SPIREFULL performs on par with554

SPIRENOBLOCKS on both ASR and ST, indicating555

that adding text instructions also does not degrade556

performance on speech tasks. It is worth high-557

lighting that a model strong at both MT and ASR558

(SPIRENOPSEUDO) does not lead to a strong ST559

ASR MT ST

en→xx xx→en en→xx

WER C22 spB C22 spB C22 spB

SPIREFULL 4.2 88.54 39.3 88.21 41.8 81.33 27.1
TOWERFULL 9.5 88.57 39.4 88.17 41.7 79.10 26.1
SPIRENOBLOCKS 4.1 82.98 34.2 85.93 36.1 81.11 27.1
SPIRENOPSEUDO 3.9 88.40 38.9 88.22 42.0 62.80 27.1

Table 9: Ablation models and SPIREFULL on LS Clean
for ASR, FLORES devtest for MT, and Fleurs for ST
reporting WER, COMET-22 (C22), and spBLEU (spB).

model, showing surprisingly that competence at 560

MT is not very helpful for direct ST. 561

6 Conclusion 562

In this work we presented SPIRE, a simple and ef- 563

fective recipe for adapting a text-based, translation- 564

specialist LLM to the speech modality while pre- 565

serving the original performance on text-based 566

tasks. We investigated the impact of speech inte- 567

gration on two stages of LLM adaptation, CPT and 568

IT, finding that both contribute to the final model’s 569

performance on speech tasks. Our results demon- 570

strate that we are able to successfully integrate a 571

new modality without compromising the original 572

model’s capabilities. SPIRE achieves competitive 573

performance on ASR, while its MT abilities remain 574

on par with the original TOWER model. Finally, 575

for the ST task, we find that the leveraging ASR 576

and MT data does not directly transfer to ST perfor- 577

mance. Nonetheless, the model achieves promising 578

performance with both direct and self-cascaded ST. 579

As future work, we intend to extend this recipe 580

to multilingual settings by replacing our English 581

HuBERT speech component by the multilingual 582

mHuBERT-147 (Boito et al., 2024). To benefit the 583

community, we only use publicly available and li- 584

censed data to train our models, making our results 585

reproducible. 586
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Limitations587

The downstream tasks we evaluate on are re-588

stricted to MT and ASR/ST, which provides an589

idea of the model performance but do not give590

us the full picture. We plan to address this by591

utilizing the LM-harness evaluation (Gao et al.,592

2024) to evaluate on a suite of text-based bench-593

marks such as MMLU (Multitask Language Under-594

standing) (Hendrycks et al., 2021b,a), Arc (Com-595

monsense Reasoning) (Clark et al., 2018), Bele-596

bele (Reading Comprehension) (Bandarkar et al.,597

2024), and HellaSwag (Sentence Completion)598

(Zellers et al., 2019). Lastly, our model handles599

speech and text on the input side but is currently600

limited to generating only text.601
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Ondřej Bojar, Anton Dvorkovich, Christian Feder-827
mann, Mark Fishel, Markus Freitag, Thamme Gowda,828
Roman Grundkiewicz, Barry Haddow, Marzena829
Karpinska, Philipp Koehn, Benjamin Marie, Christof830
Monz, Kenton Murray, Masaaki Nagata, Martin831
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A Data1125

A.1 Speech Data Preprocessing1126

Normalization In order to make transcripts con-1127

sistent across the different datasets, the following1128

normalization is applied:1129

• GigaSpeech (CPT): we lower-case1130

the text and replace punctuation tags:1131

<COMMA>, <PERIOD>, QUESTIONMARK>,1132

<EXCLAMATIONPOINT> with their appropriate1133

punctuation.1134

• MLS (CPT): we apply a tail-end normaliza-1135

tion step here which uniformly samples each1136

speaker to have at maximum 13 transcriptions.1137

This allows us to have a better distribution of1138

speakers.1139

• CV (IT): we subsampled from CommonVoice1140

to ensure a minimum duration of 3 seconds1141

per sample. To enhance transcript diversity,1142

we limit each transcript to 4 unique speakers.1143

Deduplication As in previous work (Zhang et al.,1144

2023; Rubenstein et al., 2023; Chang et al., 2024),1145

we merge consecutive repeated DSU tokens into a1146

single token to reduce sequence length.1147

A.2 Prompt Format1148

Table 10 show the prompts used during both train-1149

ing stages.

ASR (CPT)

Speech:<extra_id_i>· · · <extra_id_j>
English: {TRANSCRIPT}

MT (CPT)

Source_lang: Source-sentence
Target_lang: {TRANSLATION}

ASR (IT)

Speech: <extra_id_i>· · · <extra_id_j>
English: {TRANSCRIPT}

Direct ST (IT)

Speech: <extra_id_i>· · · <extra_id_j>
TARGET_LANG: {TRANSLATION}

Multi-turn ST (IT)

Speech: <extra_id_i>· · · <extra_id_j>
English:{TRANSCRIPT}
TARGET_LANG: {TRANSLATION}

Table 10: Prompt formats for CPT and IT.

1150

B CTC-based ASR model 1151

We train a CTC-based ASR model using the Hug- 1152

gingFace Transformers library (Wolf, 2019), lever- 1153

aging the ASR data from the IT stage (Common- 1154

Voice, Table 1) as training data. Our ASR model 1155

is made of the HuBERT-Large17 speech representa- 1156

tion model, followed by three hidden layers and a 1157

vocabulary projection layer. We train for 50 epochs 1158

with a dropout of 0.3 and a learning rate of 1e-4 1159

with a warm-up ratio of 0.15. The best checkpoint 1160

is selected using CER scores. This was obtained at 1161

step 220K (at epoch 12.8). 1162

C ST results 1163

Table 11 report results of ST on FLEURS across 1164

baseline models and SPIREFULL. We report 1165

COMET-22. We observe the same trend in scores 1166

as reported by spBLEU where in SPIREFULL ob- 1167

tains the best self-cascaded performance while beat- 1168

ing Qwen2-Audio and SALMONN on direct ST 1169

across most language pairs. SeamlessM4T obtains 1170

the overall best performance in direct ST. 1171

D Ablation results 1172

Table 12 reports results from all remaining evalua- 1173

tion datasets across ASR, MT, and ST. We report 1174

the same metrics as in Section 4. Here as well, we 1175

note that in MT, the inclusion of speech data did 1176

not degrade text-only performance (SPIREFULL 1177

vs. TOWERFULL). Similarly, the inclusion of task- 1178

specific text data also did not harm performance on 1179

ASR (SPIRENOBLOCKS vs. SPIREFULL). Lastly, 1180

SPIREFULL has the best performing direct ST sys- 1181

tem, further showing that individual task compe- 1182

tencies (in MT and ASR) do not contribute directly 1183

to a compositional task (ST) but rather the inclu- 1184

sion of task-specific data leads to the highest gains 1185

(SPIRENOPSEUDO vs SPIREFULL). 1186

17
https://huggingface.co/facebook/hubert-large-ll60k

14
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de es fr it ko nl pt ru zh avg7 avgall

Self-Cascade
SeamlessM4T 72.69 76.97 78.06 76.03 75.33 72.58 78.25 79.38 69.76 74.91 75.45
SPIREFULL 84.26 83.32 84.70 85.16 86.89 84.91 86.01 86.45 85.21 84.80 85.21

Direct
SeamlessM4T 84.79 83.20 85.32 85.03 85.17 85.17 86.75 86.31 79.90 84.31 84.63
SALMONN 77.41 77.99 79.95 74.47 61.07 77.18 80.94 53.05 81.63 78.51 73.74
Qwen2-Audio 79.82 80.43 79.44 81.28 69.33 78.75 83.41 77.90 80.71 80.55 79.01
SPIREFULL 80.16 79.82 80.68 81.63 82.62 81.93 83.18 82.19 79.76 81.02 81.33

Table 11: FLEURS ST ex→xx results with self-cascade and direct models in terms of COMET-22. avg7 covers the
7 language pairs that all models in the table support (excluding en→{ko, ru}).

ASR MT ST

WER C22 spB C22 spB C22 spB

LS Other Fleurs VoxPopuli en→xx xx→en en→xx
SPIREFULL 7.1 10.7 15.8 84.16 37.2 82.58 41.8 81.33 27.1
TOWERFULL 13.8 14.3 40.7 84.19 36.9 82.25 35.6 71.52 20.1
SPIRENOBLOCKS 7.4 10.4 15.8 73.12 26.9 74.78 25.1 74.02 23.2
SPIRENOPSEUDO 7.3 11.1 14.3 83.93 36.9 82.50 35.9 59.88 6.8

Table 12: Ablation models and SPIREFULL on LS Other, Fleur, VoxPopuli for ASR, WMT23 for MT, and CoVoST-2
for ST reporting WER, COMET-22 (C22), and spBLEU (spB).
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