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A Supplementary Proofs

A.1 Proof of Lemmal[2l

To start, we define
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where x > 0 is a constant to be specified later. The probability of the good event £ not happening
can be decomposed as,
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The first term corresponds to the probability of eliminating the optimal arm within the first 7 pulls:
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Consequently, we can upper bound (2)) as follows:

@)<Z]P’< 7(2) > To, fita — fie.1 > k- \/2log T — 2loglog T - 1/&§’1+6?’2)

( 7(2) > To, fir,2 — M2—ﬂt,1+M1>A+f<«'\/ZlogT—QloglogT'\/63,1‘*‘@2,2)
kv2log T — 2loglogT

( 2)>T0,,LL,52*,UQ>5+ v2los D) 808 "/ O t1+0t2)

ry/logT — 2loglogT "
+]P’(T(1):t,7(2)>To, m1+u1>5+ viog e 2o+ 02y

<Z

To t N t
A kG2 - \/2logT — 2loglog T
S;P (r(l) =1,7(2) > To, Mis(2) > 5 ; oz + 5 : ;,ﬁm
AL k61 - /2log T — 2loglog T <
+ IP(T(l) =1,7(2) > To, —M; (1) > 5 Z Sl + 2 v g2 g8 1 . Z ,/ﬂs,1)
s=1 s=1
3)

14



Forany a € {1,2} and t € [Ty] := {1,2,...,Tp}, on the event {r(1) = ¢,7(2) > Tp}, Si0 =
M, 4, and the estimated variance can be bounded as,
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As a result,
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where step (a) is due to the choice k = /(48M?(2 +2/,/7 + 1/7) + 12M?) /~. We now proceed
to bound P(7(1) > Ty, 7(2) > Tp). Similarly, here we have
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Consequently,
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With the choice of Ty,
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Combining everything, we conclude that P(E) > 1 — 272 -T2 . (logT)3.
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A.2  Proof of Theorem 2|
Without loss of generality, we let arm 1 be the optimal arm, and define the suboptimality gap for each
ac{2,...,K}as:
Ay = H1 — Ha-

Similar to the two-arm case, we define for each a € {2, ..., K} the stopping time

7(a) = min{t : pry1.4 < 1/T},
where pii1,0 = mingea, P(Fri1a > Fri1a | He). Define vy = 19805,y = 716‘/\/?”
To = 8- (1++/K/v)?-1logT. In the beginning phase when ¢ < T;, we shall use the parameter 1

as k, and in the later phase when ¢ > T}, we use k9. Similar to the two-arm case, we define for each
a€{2,...,K}:
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Since we consider the regime A, < M V'K, we have that T, > T}, for all a # 1.

Moving on, let E, := {7(a) < Ty, 7(1) > T,} for each a # 1 denote the good event. We now
proceed to bound the probability of the good event not happening. To start, note that

P(ES) =P(r(1) < T,) + P(r(a) > Ty, 7(1) > To,).

The first term can be decomposed as:

and

P(r(1) < T,) :iP(T(l) =t) = i]}»(m) =t,prr11 < 1/T). 5)

Above, pyy1.1 < 1/T means that there exists a’ # 1 such that 7(a’) > t and P(F¢y11 > trar |
H:) < 1/T. That is,

T,
G <> Y P(r(1) = t,7(d)) 2 t,P(Frrrn > Frpr | He) < 1/T)

t=1 a’'#1

To
SZ Z P(T(l) =t,7(a') > t, firar — i1 > K1 -\/2log T — 2loglog T - \/Oi1 + &tQ,a'>
t=1 a’#1

Ta
+ Z Z]}D(T(D:LT(Q’)>t,ﬂt7a,fﬂt71>n2o\/210gT—2loglogT-\/m>

t=To+1 a’#1
Aa/ K1 ~9 ~9
<ZZ]P’( ) >t fiear — pa > 5 —1—7-\/2logT—2log10gT-,/Jt’l—i—ot}a,)
t=1 a’#1
, N Aa’ K1 ~9 ~92
‘HP(T(G) >ty — g, 9 + o V21og T — 2loglog T - %1 +Ut7a)

Ay
+ Z Z ( ) >t it — o > 5 22 /2logT — 2loglog T - 021+ 07
t=To+1 a’#1

A
—l—]P’(T(a’) >t — e > 71 + % -v/2log T — 2loglog T - \/ 021 —l—ata)

<ZZ (Sta/Z ;/-\/E-t+lzl\\/ﬁz~\/2logT—210glogT)

t=1 a’#a
Aq Y K1/t
S L V/2log T — 21og] T) 6
( SRR b AW, < V/2log oglog (6)
Ay v Ko/t
= -t+ — -\/210gT—2loglogT)
t=To+1 a’#a 2 K 2VK

16



-HP’(—St,l >

\/7 HQ\F \/2 log T — 2loglog T) @)

Recall that we define the martingale difference as
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We then have the following bounds:
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Before proceeding, we state in Lemma|[3|the Freedman’s inequality that we shall use in the subsequent
analysis.

Lemma 3 (Freedman’s inequality) Ler {1, },>1 be a locally square integrable real martingale
w.rt. {Fp }n>1 such that, foreach 1 < k <n, My._1| < ca.s. for some constant c. Then, for
all x,y > 0,
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Applying Lemmal(T]to (6) for the terms with ¢ < T}, we have that
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Alternatively, applying Lemma 3|to (6) for the terms with ¢ > Tj, yields
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Combining the above two inequalities, we have
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Switching to the second term, for a € {2,..., K}, we have that
P(T(a) > Ty, 7(1) > Ta)

<P(r(a) > To,7(1) > To,P(ig, 410 > 1,111 | Hr,) > 1/T)

P<T( ) > Ta,7(1) > To, fir, 41,0 — fiT, 41,1 >*I€2\/O'T 1+0T a\/QlogT loglogT)

<P(7(a) > To,7(1) > Ty, fir, 41,0 — Ha > 7“ — o7, 1 +0T a\/Q logT — loglogT)

+]P’(T(a) > T, 7(1) > Ty pi1 — fies1 5 Ba _ —,/&T L+ 62 \/2logT — loglogT)

AT,
<P (STa’a > K — 2Cmaxk2 \ﬁ\/Q log T — loglog T)

§2'Ta'(

17



AT,
—|—IP< — Sp,0 > =5 /% — Yemaxkiny/Tay/2log T — loglogT) )

Applying Lemma and with the choice of T, we arrive at (8) < 7~2. Finally, denoting the number
of pulls of arm a by N(a), we decompose the regret as
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where the last inequality is due to 25 %, \/N(a) < /45 K, N(a) < /T/(K —1).

B Additional Empirical Investigation

B.1 Drawbacks of sample average, IPW and DR in a toy adaptive setting

In this subsection, we visualize the bias of the sample average estimator and the lack of asymptotic
normality of the IPW and DR estimators when used in adaptively collected data. To do so, we
reproduce the toy adaptive domain presented in [Hadad et al.,|2019]. This toy adaptive domain is
a two-stage, two-arm trial where 7;(a) ~ N(0, 1) for both arms a = 0, 1. For the first 7'/2 time
periods, arm selection is randomized with probability 50%. After T'/2 time periods, the arm with the
largest sample average is identified, and for the next 7'/2 time periods it is allocated with probability
90% whereas the other arm is allocated with probability 10%. We set T" = 20, 000 and repeat this toy
adaptive domain for 100, 000 simulations.

-0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02

(a) Sample average. (b) Inverse propensity weighting. (c) Doubly robust.

Figure 3: Distribution of the estimators Q%*, Q™ and QPR as described in section [3.1| applied
to a toy adaptive domain. The histogram depicts the distribution of the estimators over 100, 000
simulations. The red dashed line corresponds to the estimate averaged across simulations, whereas
the black dashed line corresponds to the ground truth. The red solid line corresponds to the normal
distribution matching the first two moments of the estimator histogram.

In figure [3] we see the histogram of the estimates of arm’s @ = 1 true mean from these 100, 000
simulations at the end of the adaptive data collection based on the sample average, IPW and DR
estimators. As described in section [3.1) and seen in figure [3] sample average has negative bias in
adaptively collected data, because arms for which we observe random downward fluctuations will
be sampled less and the negative bias will not be corrected, whereas arms for which we observe
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random upward fluctuations will be sampled more and the positive bias will be corrected, contributing
to the overall negative bias of the estimator. Also, the distribution of the sample average is not
asymptotically normal. IPW and DR correct the bias due to the adaptive data collection but in doing
so they exacerbate the lack of asymptotic normality of the estimator, as seen in figure 3]

B.2 Sensitivity of algorithms to the propensity-controlling parameters

We use the low SNR setting of the semisynthetic experiment described in Section[d.2] of the main
paper to explore the sensitivity of the “causal” TS algorithms which use unbiased estimators Q"’W (TS-

IPW), Q (TS-DR) and QADR (DATS) to the choice of parameter -y, which controls the amount of
uniform exploratlon over non-eliminated arms .4, at time ¢ and consequently how small the propensity
scores get. In the case of the heuristic, DATS-clipping, the propensity controlling parameter is § and
is merely a clipping threshold of the propensity score in the QADR estimator (rendering it no-longer
unbiased). We try uniform-explore values v = 0.01,0.05,0.1 for TS-IPW, TS-DR and DATS and
clipping values § = 0.001,0.01, 0.02 for the heurlstrc DATS-clipping. In Figure[d we see that both
DATS and its heuristic DATS-clipping are robust to the choice of propensity-controlling parameters,
whereas TS-IPW and TS-DR which use the non-adaptively-weighted and high-variance estimators

JPW and QPR instead of Q)R are very sensitive to it. We observe that by tuning ~, TS-IPW and
TS DR can 1mprove their performance and even become competitive to TS and UCB, whereas with
the default parameter TS-IPW and TS-DR were under-performed by TS and best-tuned UCB due to
their poorly-controlled variance. On the other hand, thanks to the variance stabilization properties of
the adaptive weights, DATS and DATS-clipping remain the best performing variants even among the
best-tuned TS-IPW and TS-DR.
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Figure 4: Sensitivity of TS-IPW, TS-DR, DATS and DATS-clipping to propensity-controlling pa-
rameters in terms of cumulative regret and stopping power in the low SNR setting of Section’s[4.2]
semi-synthetic experiment
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