23
24
25
26
27
28
29
30

32
33

35
36
37
38
39
40
41
42
43
44

Mesh Denoising Using Filtering Coefficients Jointly Aware of
Noise and Geometry

ABSTRACT

Mesh denoising is a fundamental task in geometry processing, and
recent studies have demonstrated the remarkable superiority of
deep learning-based methods in this field. However, existing works
commonly rely on neural networks without explicit designs for
noise and geometry which are actually fundamental factors in mesh
denoising. In this paper, by jointly considering noise intensity and
geometric characteristics, a novel Filtering Coefficient Learner (FCL
for short) for mesh denoising is developed, which delicately gener-
ates coeflicients to filter face normals. Specifically, FCL produces
filtering coeflicients consisting of a noise-aware component and
a geometry-aware component. The first component is inversely
proportional to the noise intensity of each face, resulting in smaller
coefficients for faces with stronger noise. For the effective assess-
ment of the noise intensity, a noise intensity estimation module
is designed, which predicts the angle between paired noisy-clean
normals based on a mean filtering angle. The second component
is derived based on two types of geometric features, namely the
category feature and face-wise features. The category feature pro-
vides a global description of the input patch, while the face-wise
features complement the perception of local textures. Extensive
experiments have validated the superior performance of FCL over
state-of-the-art works in both noise removal and feature preserva-
tion.

CCS CONCEPTS

+ Computing methodologies — Mesh models; Shape represen-
tations; Shape analysis.

KEYWORDS

Mesh denoising, filtering, noise intensity, geometric characteristics.

1 INTRODUCTION

In recent years, the acquisition of meshes from real-world objects
has become increasingly accessible thanks to advancements of 3D
scanning equipment and reconstruction algorithms [7, 13, 16, 32].
However, even with advanced techniques, meshes obtained from
real-world objects are inevitably contaminated by noise, which
can cause inefficiencies or even failures in downstream geometric
tasks. Consequently, mesh denoising has emerged as a fundamental
research topic in geometry processing [4, 18, 21, 33, 38].

Unpublished working draft. Not for distribution.

Filter
A
AV N\
Denoised
‘ma normals
w; yy .
.
.
g
Wi %

Vertex update

Figure 1: The workflow of the proposed method. P stands for
a local patch. W denotes the learned filtering coefficients.

Mesh denoising aims to smooth a noisy surface while simulta-
neously preserving the underlying geometric features, which is an
ill-posed inverse problem [23, 36]. Overcoming this, conventional
methods [6, 12, 30, 34, 37] usually rely on some assumptions about
underlying features and noise patterns. But these assumptions are
difficult to generalize across various meshes and noise [26], limiting
the performance of conventional methods. Recently, deep-learning-
based methods [11, 14, 23, 27, 29, 36] have been proposed to predict
noise-free face normals for mesh denoising. These methods typ-
ically take a local mesh patch as input to predict the noise-free
normal. Since meshes are irregular, general convolutional networks
are not directly applicable to meshes. Previous works have ele-
gantly addressed this issue through ingenious representation of
meshes. For example, Zhao et al. [36] employ 3D convolutions to
regress noise-free normals from the voxel-based representation of
local mesh patches. Li et al. [11] apply a network similar to Point-
Net++ [20] to regress the denoised normal from a patch of face
normals. Shen et al. [23] infer denoised normals through graph con-
volutions which accept a graph representation on the dual space of
mesh faces as input. However, although deep learning-based meth-
ods have achieved remarkable performance without relying on
specific assumptions, none of these networks incorporate explicit
designs for noise and geometry which are actually fundamental
factors in mesh denoising

In this paper, we propose a novel Filtering Coefficient Learner
(FCL for short), which delicately produces filtering coefficients
aware of noise and geometry for mesh denoising. Inspired by the
success of combining deep learning with filtering in denoising
tasks [17, 28], FCL is designed to output filtering coefficients in-
stead of denoised normals. The complete mesh denoising procedure
contains three steps: coefficient learning, filtering, and vertex updat-
ing, as depicted in Fig. 1. The coefficients consist of a noise-aware
component and a geometry-aware component. The noise-aware

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ACM MM, 2024, Melbourne, Australia

component is inversely proportional to the noise intensity of each
face. The stronger the noise on a face, the smaller the corresponding
coefficient for its normal. For the effective assessment of the noise
intensity, a noise intensity estimation module (M) is designed,
which predicts the angle between paired noisy-clean normals based
on a mean filtering angle. The geometry-aware component is de-
rived by a geometry describing module (My) based on two types
of geometric features, namely the category feature and face-wise
features. The category feature is extracted through a classifier that
categorizes faces into four groups, providing a global description
of the input patch. On the other hand, the face-wise features are
automatically captured by graph convolutions, complementing the
perception of local textures.

The main contributions of this paper can be summarized as
follows:

e By jointly considering noise intensity and geometric charac-
teristics, a novel Filtering Coefficient Learner (FCL for short)
is proposed, which delicately generates coefficients to filter
face normals.

e A noise intensity estimation module is designed to derive
the noise-aware component of filtering coefficients through
predicting the angle between paired noisy-clean normals.
The generated coefficients are inversely proportional to the
noise intensity of each face.

o A geometry describing module is developed to capture com-
prehensive geometric features for producing the geometry-
aware component of filtering coefficients. The geometric
features contain the category feature which offers a global
description of the input patch, and face-wise features that
complement the perception of local textures.

2 RELATED WORKS

Mesh denoising has been a fundamental research topic in geometry
processing for many years, leading to the development of various
denoising methods. In this section, we provide a comprehensive
analysis and review of filter-based and deep-learning-based mesh
denoising methods that are most relevant to the proposed approach.

2.1 Filter-based Methods

Filter-based methods are widely used in feature-preserving mesh
denoising due to their effectiveness and simplicity. The pioneer-
ing works [1, 2, 5, 6, 8, 22, 31] in this area are heavily inspired by
2D image denoising techniques [3, 25] and applied directly to ver-
tices. For example, Fleishman et al. [6] and Jones et al. [8] employ
bilateral filters to adjust vertex positions directly. However, the
vertex-filtering mode is found to be limited by the fact that face
normals are better at revealing local geometry than vertices [9, 37].
In light of this, a series of works [10, 34, 35, 37] that first denoise
face normals and then update vertex positions achieve better de-
noising performance. Zhang et al. [34] propose a joint bilateral filter
that takes the averaged normal of a most consistent local patch
as the guidance information. Li et al. [10] apply the corner-aware
neighborhood to derive the guidance normals, which do better in
adapting to complex features than [34]. Zhao et al. [35] propose to
compute a guidance normal field with the graph-cut algorithm, and
then use the guidance field to filter normals.

In summary, filter-based methods have been the dominant ap-
proach in feature-preserving mesh denoising methods. However,
the common limitation is that the coefficients are derived based on
assumptions which are difficult to generalize across various meshes
and noise. In contrast, the proposed FCL learns coefficients dynam-
ically according to noise intensity and geometric characteristics.
It does not rely on any specific assumptions, realizing improved
performance and more robust denoising results.

2.2 Deep-learning-based Methods

3D meshes are irregular, which makes general convolutional neural
networks not directly applicable [11, 14, 23]. Therefore, designing
appropriate networks to elegantly learn mesh features has always
been the focus of deep-learning-based mesh denoising techniques.
Pioneering works adopt hand-crafted features or voxel represen-
tations for feature learning. Wang et al. [27] introduce a filtered
face normal descriptor (FND) based on the bilateral filter with mul-
tiple kernels. FND is then fed into simple multi-layer perceptrons
for noise-free normal regression. Li et al. [14] propose to repre-
sent mesh patches using non-local patch-group normal matrices
(NPNMs). They first learn low-rank NPNMs, and then feed the fine-
tuned NPNMs into a 2D convolutional network to predict noise-free
normals. Zhao et al. [36] develop a voxel-based representation for
local mesh patch, enabling the use of 3D convolutions to regress
noise-free normals. These methods with hand-crafted features or
voxel representations inevitably suffer from insufficient or redun-
dant information. To address this drawback, subsequent works
prefer end-to-end networks. Li et al. [11] apply a network similar
to PointNet++ [20] to estimate the denoised normal with a patch
of face normals as input. This is the first end-to-end network for
mesh denoising. Shen et al. [23] represent mesh patches in a graph
form, which naturally captures the geometry features. The patch
graphs are fed into a graph convolution network to infer denoised
normals. This scheme is not only end-to-end, but also preserves
complete geometric information.

Previous works have elegantly addressed the issue caused by
the irregularity of meshes, achieving superior performance over
conventional methods. However, all these methods apply networks
without explicit designs for noise and geometry which are actually
fundamental factors in mesh denoising. In contrast, FCL is designed
by jointly considering noise intensity and geometric characteristics.

3 METHODOLOGY

The proposed FCL is utilized for mesh denoising following a three-
step paradigm. For each face in a noisy mesh, FCL takes its local
patch as input to learn filtering coefficients first. The learned co-
efficients are then used to derive the denoised normal for each
face. Once all the denoised normals have been obtained, the ver-
tex positions are accordingly updated using a well-studied scheme
[23, 24, 37].

As shown in Fig. 2, FCL is composed of a noise intensity es-
timation module (Mp) and a geometry describing module (My).
M, generates the noise-aware component of filtering coefficients,
while My produces the geometry-aware component. This section
begins with a problem statement regarding normal denoising and

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

260
261
262
263
264
265
266
267

269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285

287
288
289
290

Mesh Denoising Using Filtering Coefficients Jointly Aware of Noise and Geometry

ACM MM, 2024, Melbourne, Australia

Noise-aware ‘l’
Component |

GCN

[J | N
L | — t
o | — [512,512,128,1] W]
[U I

[128,128,256]
=
—> u’%
~ _J
. I W;
T Cato 6ry Denoised
>‘_l_| e Probability momal
. Face-wise Central
- Features Feature
|] [
[(] FC U
M, — ~ o
) Multiply | [128,128,128] |
C_ — U -]
ategor -t eometry-aware
Py Similarity Comp();nent

Figure 2: The structure of FCL. The arrows serve as visual indicators for different processes. The green arrow () depicts the
filtering process. The blue arrow (]) represents the generation process of the noise-aware component. The brown arrow (T)
indicates the process of capturing the category feature. The red arrow () signifies the production process of the geometry-aware

component.

then provides detailed explanations of M, and My, respectively.
Finally, the vertex updating scheme is briefly introduced.

3.1 Normal Denoising Problem Statement
A mesh containing N, vertices and Ny faces is expressed as M =

{V,F}, where V = {vi}ll\]” is the set of vertices while F = {fl}i\]f is
the set of faces. For each face f; € F, its normal is denoted as n;
and its centroid is ¢;. FCL takes the r-ring patch of f; as input to
learn the filtering coefficients:

W; = FCL(P;). 1)

Here, P; is the r-ring patch of f;, and W; = [wq, wy, ...,Wlpil]T is
the filtering coefficient vector. The denoised normal is generated
by filtering the normals of faces in P;:

1
n;:ﬁ Z wj *nj. @)
fi€P;

For a face f;, its patch P; is initialized to {f;}, and is generated
by iteratively adding all the faces that share at least one vertex with
the faces in P; for r times [36]. For clarity, r is set to 3 in this paper.
To remove unnecessary degrees of freedom from the input patch,
we translate P; to the origin, scale it into a unit bounding box, and
rotate it to the direction where the mean normal of P; is [0, 0, 1].

3.2 Noise Intensity Estimation Module

The noise intensity estimation module (M) produces the noise-
aware component (denoted as W"), which is related to the noise
intensity of each face. This subsection explains the ground truth,
input, and structure of My, successively

Ground Truth. The noise intensity of a face can be effectively
assessed by the angle between its normal and the corresponding

aM

3.04

Noise level is 0.1 Noise level is 0.2 Noise level is 0.3

2.5
2.0
15
1.0
0.5
0.0

A
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30 (A

Figure 3: The relationship between ¢™ and a.

ground truth normal:
a; = acos(n; - ih;), (3)
where d; is the angle and 1i; is the ground truth normal. Larger

angle suggests stronger noise. The ground truth counterpart of W"
is calculated as:

“n n . R T
w =[w;’,wg,...,w|']lp‘]
S N 4 4
=[1_a_11_2 1_@]7 ()
o e - .

In this way, every w” is between 0 and 1. The stronger the noise of
fi, the smaller the Vv?. M, is trained to estimate W".

Input. The input of M,, includes a novel mean filtering angle
(aM) proposed in this paper. Fig. 3 shows the relation between d
and M. With the x-axis representing d and the y-axis being a™, we
can clearly see that ¢™ and 4 are approximately linear with each
other. In light of this, we take advantage of @™ to estimate W™ that
is calculated based on d. As a result, the normals (N;) and centroids
(C;) of faces in a patch are concatenated with the mean filtering
angles (A?/I) as the input of M.

For each face f;, its a?’f is the angle between n; and a filtered
normal. The filtered normals are face normals of the mesh (denoted

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

360

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ACM MM, 2024, Melbourne, Australia

M category 2 category 3 [category 4

M category 1

Figure 4: Example meshes with categorized faces.

as MM) obtained by performing a simple mean filter on M. MM
is generated through iterative normal filtering and vertex updating.
For each face f;, the normal filtering is conducted as:

k1 L k

;= n;. 5
#1 2)

Here,]P‘lf contains all faces that share an edge with f;. k denotes the
k-th iteration. Subsequently, vertex positions are updated according
to the obtained normals. In our method, MM is obtained through 20
iterations. Finally, the mean filtering angle is calculated as follows:

aﬁw = acos(n; - nliv{). 6)

Structure of M,,. As show in Fig. 2, M, follows a simple struc-
ture. First, three static graph convolutional layers ([128, 128, 256])
are employed to capture face-wise features from the input. Then, a
max-pooling and an average-pooling are used to capture global fea-
tures. Finally, a multi-layer perceptron ([512, 512, 128, 1]) regresses
W' from the multi-scale features composed of face-wise features
and global features. Like in [11, 19, 20], the multi-layer perceptron
acts separately on each face with shared parameters to solve the
problem of face disorder.

3.3 Geometry Describing Module

The geometry describing module (M) produces the geometry-
aware component of filtering coefficients based on a category fea-
ture and face-wise features. In this subsection, we first elaborate on
the extraction of the category feature, and then explain the structure
of My, which involves the capturing of face-wise features.

Category feature. During the training of a mesh denoising
network, a common challenge arises due to the imbalanced distri-
bution of data among different categories of patches, such as flat,
edge, and corner patches. To address this issue, previous works
[23, 36] typically divide all faces into four categories and randomly
select an equal number of samples from each category for training.
It is intuitive to consider that the filtering coefficients for patches
of different categories should be different as well. Therefore, we
employ a classifier to extract the category feature and integrate
it into the learning of the geometry-aware component. For each
face f;, its category label is generated based on the maximum angle
difference within its 2-ring patch, following a similar approach as
in [36]. Denoting the maximum angle difference as A, all the faces
in FF are divided into four categories:

category 1: 0° < A < 20°, smooth region

category 2: 20° < A < 50°, curved region

category 3: 50° < A < 80°, small edge region

category 4: 80° < A < 180°, large edge region
Three example meshes with classified faces are shown in Fig. 4. It
is worth mentioning that we conducted experiments with more
than four categories, but unfortunately, we did not observe any
additional benefits from increasing the number of categories. The
corresponding experiments are available in Subsection 5.4.

The classifier is indicated by brown arrows in Fig. 2. It utilizes
three graph convolutional layers ([128, 128, 256]) along with sym-
metric pooling operations to capture global features, following a
similar structure as M. Subsequently, three fully connected layers
([256, 256, 4]) are employed to regress the category probability. The
first two FC layers in the classifier capture the category feature,
while the last layer outputs the category probability only used for
training.

Structure of M. As show in the bottom part of Fig. 2, the
normals (N;) and centroids (C;) of faces in a patch are fed into M.
The face-wise features captured by GCN are concatenated with
the category feature to obtain comprehensive description of the
input patch. Then, the comprehensive features are fused through
a multi-layer perceptron ([512, 512]). The first row of the fused
feature map corresponds to the face in processing, which is called
as the central feature. All features in the patch are multiplied by the
central feature to obtain the similarity between each face and the
central face. Finally, three fully connected layers ([128, 128, 128])
take the similarity vector as input and output ng .

3.4 Vertex Updating

The vertex updating scheme employed in our method follows the
approach outlined in [23, 37]. To compute the updated position
v}, we consider the neighboring faces of vertex v;, denoted by the
set]P’;’. This set includes all faces that contain v; as one vertex.
Mathematically, it is expressed as:

n} is the denoised normal of fj» and c; is the centriod of fj- The
equation computes the updated vertex position v} by summing up
the contribution from each neighboring face. The contribution is
determined by the dot product between the denoised normal n}
and the vector (¢; — v;), which measures the displacement from
the vertex v; to the centroid ¢; of the face f;. The resulting sum is
then averaged by the number of neighboring faces [P7|.

4 TRAINING

The training of FCL is guided by three loss functions in three stages.
In this section, we introduce the loss functions first, and then explain
the training scheme.

4.1 Loss Function

For each face f;, the input patch is denoted as P;. The first loss
function guides the parameter optimization of M. Since the pro-
duction of W™ is a regression problem, we choose the mean square

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

465

466

467

468

469

s
9
S

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

Mesh Denoising Using Filtering Coefficients Jointly Aware of Noise and Geometry

Complex :

: "\ N
LSRR
RAGRY %
Training Data Test Data
Figure 5: The triangle meshes in SynData.
error as the loss function:
Ly, = ﬁ 2wy =y ®)

! fi€P;
Here, P; represents the input patch, w;' denotes the predicted fil-
tering coefficient for face f;, and WJ'.’ is the corresponding ground
truth value. The second loss function is a cross entropy loss func-
tion used for training the classifier. This loss function ensures that
the predicted category labels are consistent with the ground truth
labels. Mathematically, it is expressed as:

4
1
Lejs = “E Z ij,k log(q;x)- 9)

i €P; k=1

Here, p; 1 is the predicted probability that f; belongs to category k,
while g 1. is the corresponding label. The last loss function measures
the cosine distance between the denoised normal n] and the ground
truth normal f;. The purpose of this loss function is to ensure that
the denoised normals accurately represent the true geometry. It is
defined as:

Lnormal =1- COs(n;,ﬁi) (10)

4.2 Training Scheme

During the training process, My, is trained in the first stage using
the loss function L 4y, followed by training the category classifier
in the second stage using L. In the last stage, the entire FCL is
trained using the weighted sum of all three loss functions:

L= (1 - A) * Lnormal +A* (LMn +Lcls)~ (11)

Here, the parameter A controls the relative importance of the nor-
mal loss (L,ormar) compared to the combination of the Mn loss
(L pm»n) and the category classifier loss (Lgs). The setting of A is
experimentally conducted and the experimental results are put in
Subsection 5.4. For clarity, there is no parameter freezing operation
during the entire training process. This allows for the joint opti-
mization of the network and ensures that all components effectively
contribute to the denoising performance.

5 EXPERIMENTS

In this section, we present the experimental setup, comparison
studies, ablation studies, and investigations on hyper-parameters.

ACM MM, 2024, Melbourne, Australia

Table 1: The experimental results on SynData.

Simple meshes Complex meshes

Methods o "% b 61073 B, Ey(x10-%)
Noisy 2451 362 2474 12.77
BMF[6] 7.15 2.91 7.23 9.95
BNF [37] 4.94 2.32 6.96 8.69
GNF [34] 4.76 234 6.85 9.14
TGV [15] 3.84 3.01 543 1095
GCN [23] 4.86 2.41 5.25 8.21
Ours 457 229 484 811

5.1 Experimental Setup

Dataset. FCL is evaluated on both synthetic and real-scanned
datasets. The synthetic dataset (denoted as SynData) is composed of
3D triangle meshes collected from [23], [15], and an online 3D model
repository (3dmag.org). SynData consists of 14 training meshes and
10 test meshes (5 simple geometric meshes and 5 complex object
meshes), as shown in Fig. 5. Noisy meshes for training are gener-
ated by adding Gaussian noise (the standard deviations are 0.1, 0.2,
and 0.3 of the mesh average edge length) and impulsive noise (the
numbers of impulsive vertices are 10%, 20%, and 30% of the mesh
vertex numbers). The test set only covers Gaussian noise.

The real-scanned datasets encompass the Kinect series datasets
[27], as well as meshes obtained from the internet. The Kinect
series datasets (Kv1Data, Kv2Data, and K-FData) are obtained by
scanning six objects (big girl, cone, girl, boy, David, and pyramid)
using Microsoft Kinect v1 and v2. The meshes from the internet
include angel, eagle, gargoyle 1, gargoyle 2, Lucy, and rabbit.

Implementation details. In the training of FCL, the truncated
normal distribution is used to initialize the weights. The optimizer
is Adam with the default parameter settings (f; = 0.9, f2 = 0.9, € =
10~8) in PyTorch. We set the batch size to 512. The first two training
stage are conducted for 500 epochs, while the last stage is for 1000
epochs The learning rate starts at 0.01 and decays by half after the
300th, 700th, 800th, 900th epochs. The training process is executed
on a computer equipped with an AMD Ryzen 9 5900HX CPU and
an NVIDIA GeForce RTX 3080 Laptop GPU. On the SynData, 10000
faces are randomly selected from each noisy mesh to participate in
training in every epoch. On the three Kinect datasets, 1000 faces
are randomly selected from each noisy point cloud in every epoch.

Error metric. Two commonly adopted metrics are used in our
experiments. E,; measures the average normal angular difference
between a denoised mesh and the ground truth noise-free mesh:

1
E,=— Z acos(n; -). 12
Ny = (12)

Here, F is the set of faces, while N i is the number of faces in F.
n} and fi; are the denoised normal and ground truth normal of f;,
respectively. E; is the normalized average Hausdorff distance from
the denoised mesh to the corresponding ground-truth mesh [27]:

Ey=— 3 min |V, - il
0= — min ||v] = ¥;]|.
No viev: Vi€V l (a3

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

ACM MM, 2024, Melbourne, Australia

Noisy BMF BNF GNF

Figure 6: Representative denoised meshes on SynData. The distance from each denoised vertex to the ground truth mesh is

color-coded as shown in the bar.

Kvl1Data Kv2Data K-FData

12 11
14 11
10
10
12 9
53 ’
10 8 8
7

Noisy BMF BNF GNF TGV GCN Ours

7
Noisy BMF BNF GNF TGV GCN Ours Noisy BMF BNF GNF TGV GCN Ours

26 1.9
24
1.8
—~ 22
o~ 25
5 17
i
X
< 18 24 16
3
1.6 15
14 23

Noisy BMF BNF GNF TGV GCN Ours Noisy BMF BNE GNF TGV GCN Ours 14

Noisy BMF BNF GNF TGV GCN Ours

Figure 7: The results of compared methods on Kinect series
datasets.

Here, V/ and ¥ are the sets of denoised vertices and ground truth
vertices. The smaller the E,; and E,, the better the performance.

5.2 Comparison Study

To evaluate the performance of FCL, we conduct qualitative and
quantitative comparisons with state-of-the-art mesh denoising
methods, including bilateral mesh filtering (BMF) [6], bilateral
normal filtering (BNF) [37], guided normal filtering (GNF) [34],

Table 2: The results of ablation experiments.

Simple meshes Complex meshes

Variants Eqs Eo(x1073) E, E,(x107%)
w/o filtering 5.15 2.52 6.21 9.13
w/o WN 5.44 2.43 5.79 8.48
w/o classifier 4.74 2.31 4.91 8.32
w/o multiply ~ 4.66 2.34 4.89 8.14
Ours 4.57 2.29 4.84 8.11

mesh total generalized variation (TGV) [15], and GCN-Denoiser
(GCN) [23]. To ensure fair comparisons, we carefully select the best
results obtained with fine-tuned parameters for BMF, BNF, GNF,
and TGV as our competitors. For GCN, we train it using the same
training data as FCL.

Synthetic dataset. In order to make the Hausdorff distances of
different 3D meshes comparable, all meshes in SynData are scale-
normalized through being divided by the diagonals of shape bound-
ing boxes.

The experimental results are presented in Table 1. In this bench-
mark, our method achieves the smallest E; and E, values on com-
plex meshes, indicating superior performance. For simple meshes,
TGV achieves the best E, value, while our method performs better
in terms of E,. Overall, both TGV and our method demonstrate the
best performance. Our method excels in handling complex meshes
and remains competitive with TGV for simple meshes.

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

Mesh Denoising Using Filtering Coefficients Jointly Aware of Noise and Geometry

ACM MM, 2024, Melbourne, Australia

Figure 8: The denoising results of boy and pyramid, which are two representative meshes on the Kinect series datasets.

Two representative denoised meshes with color-coded errors are
showcased in Fig. 6. In this test, the performances of BMF, BNF, and
GNF are relatively similar, with GNF slightly outperforming the
other two methods. TGV and GCN outperform these three methods,
with TGV achieving impressive denoising results for the simple
mesh in the top row. However, TGV tends to lose some texture
features when processing complex meshes. GCN excels in handling
complex meshes but struggles to recover sharp features. In contrast,
FCL demonstrates the ability to recover sharp features in the top
row and preserve fine-scale features in the bottom row, highlighting
its efficacy.

Real-scanned dataset. The quantitative comparisons on the
Kinect series datasets are presented in Fig. 7. It is evident that our
method consistently outperforms the compared methods in all the
datasets, including Kv1Data, Kv2Data, and K-FData. Two repre-
sentative denoised meshes are displayed in Fig. 8, which suggests
consistent conclusion with the results on synthetic data.

The results of the collected meshes are displayed in Fig. 9. It
can be observed that all the compared methods effectively remove
noise. However, our method performs better in preserving features,
as demonstrated in the eye region of the angel mesh.

5.3 Ablation studies

To investigate the contribution of each component in FCL, we con-
duct four ablation experiments on the SynData dataset. The first
variant, referred to as "w/o filtering", directly outputs the denoised
normal instead of the filtering coefficients. This variant is imple-
mented by adding two fully connected layers at the end of FCL.
The purpose of this experiment is to verify the superiority of the
filtering mechanism. The second variant, denoted as "w/o W™",
excludes the first coefficient vector from the final coefficients. The
purpose of this experiment is to investigate the importance of the
noise-aware component in filtering coefficients. The third variant,
referred to as "w/o classifier", eliminates the classifier, meaning
that the category feature is not used in M. The purpose of this
experiment is to examine the importance of the category feature.

Table 3: The results of hyper-parameter selection experi-
ments. r; denotes the number of rings for the input patch. r;
is the number of rings for the patch used to label categories
of faces. I is the iteration number for generating MM n. rep-
resents the category number. 1 is applied in L.

) Simple Complex
Settings r1 r2 I n¢
Es Eyz Ea E

Best 3 2 20 4 0.001 457 229 4.84 8.11
Vi 2 2 20 4 0.001 498 262 573 10.38
Vs 4 2 20 4 0.001 461 216 513 9.34
1%} 3 1 20 4 0.001 488 2.54 517 8.61
\Z 3 3 20 4 0.001 4.63 248 496 8.33
Vs 3 2 10 4 0.001 472 235 491 8.27
Ve 3 2 30 4 0.001 4.64 238 494 8.39
\ % 3 2 20 3 0.001 4.68 233 4.89 8.23
Vi 3 2 20 5 0.001 4.61 236 490 8.26
Vo 3 2 20 4 001 477 246 5.18 847
V10 3 2 20 4 0.0001 4.61 236 4.89 8.15

The last variant, represented as "w/o multiply", replaces the ma-
trix multiply operation in My with a multi-layer perceptron. The
results of these experiments are provided in Table 2. We can see
that all of the variants performed worse than FCL, confirming the
positive role played by each component in our method.

5.4 Studies on Hyper-parameters

In our proposed FCL, there are five hyper-parameters that need
to be set: the size of the input patch (Subsection 3.1), the patch
size for category labels (Subsection 3.3), the category number (Sub-
section 3.3), the iteration number for generating MM (Subsection
3.2), and the A (Subsection 4.2) in the final loss function. These
hyper-parameters are selected experimentally, and all experiments
are conducted on the SynData dataset. Table 3 lists all of the ex-
perimented parameter settings. Each row represents a different

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

ACM MM, 2024, Melbourne, Australia

Figure 9: The denoising results of meshes collected from the internet.

parameter setting, with the first row indicating the best configura-
tion. To facilitate the selection of each parameter, each setting only
changes one parameter, and the changed parameter in each setting
is highlighted in bold. From the results, the size of input patches has
a significant impact on the denoising performance. Overall, our ex-
perimental results demonstrate that FCL is an effective method for
mesh denoising, and that careful parameter selection is important
for achieving optimal denoising performance.

6 CONCLUSION

In this paper, we propose a novel Filtering Coefficient Learner (FCL
for short) for mesh denoising by jointly considering noise intensity
and geometric characteristics,. FCL produces filtering coefficients

consisting of a noise-aware component and a geometry-aware com-
ponent. The first component is inversely proportional to the noise
intensity of each face, resulting in smaller coefficients for faces with
stronger noise. The second component is derived based on two types
of geometric features, where the category feature provides a global
description of the input patch and the face-wise features comple-
ment the perception of local textures. Extensive experiments have
validated the superior performance of FCL over state-of-the-art
works in both noise removal and feature preservation. However,
deep learning-based methods, including FCL, inherently encounter
disadvantages when it comes to restoring sharp textures, in con-
trast to conventional methods. Additionally, the training of FCL is
a meticulous and challenging process. These limitations warrant
dedicated attention and efforts in the future to address.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Mesh Denoising Using Filtering Coefficients Jointly Aware of Noise and Geometry

REFERENCES

(1]

[2

[

[3

[11]

[12

[13

[14]

[15]

[16]

(17

[18]

[19

[20]

[21

[22

[23]

[24]

[25]

Andrew Adams, Natasha Gelfand, Jennifer Dolson, and Marc Levoy. 2009. Gauss-
ian KD-trees for fast high-dimensional filtering. ACM Transactions on Graphics
(TOG) 28, 3 (2009), 1-12.

Chandrajit L Bajaj and Guoliang Xu. 2003. Anisotropic diffusion of surfaces and
functions on surfaces. ACM Transactions on Graphics (TOG) 22, 1 (2003), 4-32.
Antoni Buades, Bartomeu Coll, and J-M Morel. 2005. A non-local algorithm for
image denoising. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), Vol. 2. Ieee, 60-65.

Tianrun Chen, Chaotao Ding, Lanyun Zhu, Ying Zang, Yiyi Liao, Zejian Li, and
Lingyun Sun. 2023. Reality3DSketch: Rapid 3D Modeling of Objects from Single
Freehand Sketches. IEEE Transactions on Multimedia (2023).

Hangi Fan, Yizhou Yu, and Qunsheng Peng. 2009. Robust feature-preserving
mesh denoising based on consistent subneighborhoods. IEEE Transactions on
Visualization and Computer Graphics 16, 2 (2009), 312-324.

Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. 2003. Bilateral mesh
denoising. In ACM SIGGRAPH 2003 Papers. 950-953.

Pengpeng Hu, Edmond Shu-Lim Ho, and Adrian Munteanu. 2021. 3DBodyNet:
fast reconstruction of 3D animatable human body shape from a single commodity
depth camera. IEEE Transactions on Multimedia 24 (2021), 2139-2149.

Thouis R Jones, Frédo Durand, and Mathieu Desbrun. 2003. Non-iterative, feature-
preserving mesh smoothing. In ACM SIGGRAPH 2003 Papers. 943-949.
Kai-Wah Lee and Wen-Ping Wang. 2005. Feature-preserving mesh denoising via
bilateral normal filtering. In Ninth International Conference on Computer Aided
Design and Computer Graphics (CAD-CG’05). IEEE, 275-280.

Tao Li, Jun Wang, Hao Liu, and Li-gang Liu. 2017. Efficient mesh denoising via
robust normal filtering and alternate vertex updating. Frontiers of Information
Technology & Electronic Engineering 18, 11 (2017), 1828-1842.

Xianzhi Li, Ruihui Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. 2020. DNF-
Net: A deep normal filtering network for mesh denoising. IEEE Transactions on
Visualization and Computer Graphics 27, 10 (2020), 4060-4072.

Xianzhi Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. 2018. Non-Local Low-
Rank Normal Filtering for Mesh Denoising. In Computer Graphics Forum, Vol. 37.
Wiley Online Library, 155-166.

Yong Li, Qiang Hao, Jianguo Hu, Xinmiao Pan, Zechao Li, and Zhen Cui. 2022.
3D3M: 3D Modulated Morphable Model for Monocular Face Reconstruction. IEEE
Transactions on Multimedia (2022).

Zhiqi Li, Yingkui Zhang, Yidan Feng, Xingyu Xie, Qiong Wang, Mingqiang Wei,
and Pheng-Ann Heng. 2020. NormalF-Net: Normal filtering neural network for
feature-preserving mesh denoising. Computer-Aided Design 127 (2020).

Zheng Liu, Yanlei Li, Weina Wang, Ligang Liu, and Renjie Chen. 2021. Mesh
total generalized variation for denoising. IEEE Transactions on Visualization and
Computer Graphics (2021).

Chenlei Lv, Weisi Lin, and Baoquan Zhao. 2021. Voxel structure-based mesh
reconstruction from a 3D point cloud. IEEE Transactions on Multimedia 24 (2021),
1815-1829.

Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and
Robert Carroll. 2018. Burst denoising with kernel prediction networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2502
2510.

Wei-Zhi Nie, Min-Jie Ren, An-An Liu, Zhendong Mao, and Jie Nie. 2020. M-
GCN: Multi-branch graph convolution network for 2D image-based on 3D model
retrieval. IEEE Transactions on Multimedia 23 (2020), 1962—-1976.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. PointNet: Deep
learning on point sets for 3D classification and segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 652—-660.
Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. PointNet++: deep
hierarchical feature learning on point sets in a metric space. In Proceedings of
the 31st International Conference on Neural Information Processing Systems. 5105—
5114.

Jonas Schult, Francis Engelmann, Theodora Kontogianni, and Bastian Leibe. 2020.
DualConvMesh-Net: Joint geodesic and euclidean convolutions on 3D meshes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
8612-8622.

Yuzhong Shen and Kenneth E Barner. 2004. Fuzzy vector median-based surface
smoothing. IEEE Transactions on Visualization and Computer Graphics 10, 3 (2004),
252-265.

Yuefan Shen, Hongbo Fu, Zhongshuo Du, Xiang Chen, Evgeny Burnaev, Denis
Zorin, Kun Zhou, and Youyi Zheng. 2022. GCN-Denoiser: Mesh Denoising with
Graph Convolutional Networks. ACM Transactions on Graphics (TOG) 41, 1 (2022),
1-14.

Xianfang Sun, Paul L Rosin, Ralph Martin, and Frank Langbein. 2007. Fast and
effective feature-preserving mesh denoising. IEEE Transactions on Visualization
and Computer Graphics 13, 5 (2007), 925-938.

Carlo Tomasi and Roberto Manduchi. 1998. Bilateral filtering for gray and
color images. In Sixth International Conference on Computer Vision (IEEE Cat. No.
98CH36271). IEEE, 839-846.

[26]

[27]

(28]

[29]

[30

(31

(32]

[33

[35

[36]

[37

(38]

ACM MM, 2024, Melbourne, Australia

Jun Wang, Xi Zhang, and Zeyun Yu. 2012. A cascaded approach for feature-
preserving surface mesh denoising. Computer-Aided Design 44, 7 (2012), 597-610.
Peng-Shuai Wang, Yang Liu, and Xin Tong. 2016. Mesh denoising via cascaded
normal regression. ACM Transactions on Graphics (TOG) 35, 6 (2016), 232:1—
232:12.

Xingtao Wang, Xiaopeng Fan, and Debin Zhao. 2022. PointFilterNet: A Filtering
Network for Point Cloud Denoising. IEEE Transactions on Circuits and Systems
for Video Technology 33, 3 (2022), 1276-1290.

Mingqiang Wei, Xianglin Guo, Jin Huang, Haoran Xie, Hua Zong, Reggie Kwan,
Fu Lee Wang, and Jing Qin. 2019. Mesh defiltering via cascaded geometry
recovery. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 591-605.
Minggqiang Wei, Jin Huang, Xingyu Xie, Ligang Liu, Jun Wang, and Jing Qin.
2018. Mesh denoising guided by patch normal co-filtering via kernel low-rank
recovery. IEEE Transactions on Visualization and Computer Graphics 25, 10 (2018),
2910-2926.

Hirokazu Yagou, Yutaka Ohtake, and Alexander G Belyaev. 2003. Mesh denoising
via iterative alpha-trimming and nonlinear diffusion of normals with automatic
thresholding. In Proceedings Computer Graphics International 2003. IEEE, 28-33.
Wenwu Yang, Yeqing Zhao, Bailin Yang, and Jianbing Shen. 2023. Learning
3D Face Reconstruction From the Cycle-Consistency of Dynamic Faces. IEEE
Transactions on Multimedia (2023).

Yufei Ye, Abhinav Gupta, and Shubham Tulsiani. 2022. What’s in your hands?
3D Reconstruction of Generic Objects in Hands. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3895-3905.

Wangyu Zhang, Bailin Deng, Juyong Zhang, Sofien Bouaziz, and Ligang Liu.
2015. Guided mesh normal filtering. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 23-34.

Wenbo Zhao, Xianming Liu, Shiqi Wang, Xiaopeng Fan, and Debin Zhao. 2019.
Graph-based feature-preserving mesh normal filtering. IEEE Transactions on
Visualization and Computer Graphics 27, 3 (2019), 1937-1952.

Wenbo Zhao, Xianming Liu, Yongsen Zhao, Xiaopeng Fan, and Debin Zhao.
2021. NormalNet: Learning-Based Mesh Normal Denoising via Local Partition
Normalization. IEEE Transactions on Circuits and Systems for Video Technology
31, 12 (2021), 4697-4710.

Youyi Zheng, Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. 2010. Bilat-
eral normal filtering for mesh denoising. IEEE Transactions on Visualization and
Computer Graphics 17, 10 (2010), 1521-1530.

He-Yu Zhou, An-An Liu, Wei-Zhi Nie, and Jie Nie. 2019. Multi-view saliency
guided deep neural network for 3-D object retrieval and classification. IEEE
Transactions on Multimedia 22, 6 (2019), 1496—1506.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

	Abstract
	1 Introduction
	2 Related Works
	2.1 Filter-based Methods
	2.2 Deep-learning-based Methods

	3 Methodology
	3.1 Normal Denoising Problem Statement
	3.2 Noise Intensity Estimation Module
	3.3 Geometry Describing Module
	3.4 Vertex Updating

	4 Training
	4.1 Loss Function
	4.2 Training Scheme

	5 Experiments
	5.1 Experimental Setup
	5.2 Comparison Study
	5.3 Ablation studies
	5.4 Studies on Hyper-parameters

	6 Conclusion
	References

