
6 Supplementary Material357

6.1 Implementation of FCD358

The implementation details of FCD are presented in Figure 4. Utilizing the output features from359

both the student and teacher models, denoted as Fs and Ft respectively, our method ensures ease of360

implementation.

Figure 4: The PyTorch implementation of FCD.

361

6.2 Proofs362

Invariance of Pearson’s Correlation under Positive Linear Transformation. Let’s consider363

two random variables X and Y . A positive linear transformation on X and Y can be formulated364

as X ′ = aX + b and Y ′ = cY + d, where a × c > 0 and b, d are arbitrary constants. Applying365

these transformations to the means of X and Y , we derive µX′ = aµX + b and µY ′ = cµY + d. By366
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(a) (b) (c) (d)

Figure 5: Visualization of the token-level relational features under different normalization functions.
(a) Pre-Norm. (b) ℓ2-Norm. (c) Layer-Norm. (d) Softmax-Norm.

substituting the transformed variables and their corresponding means into Equation 6:367

ρ′(X,Y ) =

∑
((aXi + b)− (aµX + b))((cYi + d)− (cµY + d))√∑

((aXi + b)− (aµX + b))2
√∑

((cYi + d)− (cµY + d))2

=

∑
(a(Xi − µX))(c(Yi − µY ))

(a
√∑

(Xi − µX)2)(a
√∑

(Yi − µY )2)
= ρ(X,Y )

(14)

Relationship among PLC, KL divergence and MSE In Equation 11, ϕ(·) represents the softmax368

function, while τ denotes a temperature parameter controlling the softness of the distributions.369

∂ LKL

∂F̂ i
S

= τ (ϕs(τ)− ϕt(τ)) = τ

(
exp(F̂ i

S/τ)∑m
j=1 exp(F̂ j

S/τ)
− exp(F̂ i

T /τ)∑m
j=1 exp(F̂ j

T /τ)

)
, (15)

Assuming τ is significantly large compared to the magnitude of the normalized features and both370

F̂ i
S and F̂ i

T are drawn from a standard normal distribution. In this case, the term F̂ i/τ becomes371

quite small, allowing us to approximate exp(F̂ i/τ) as 1 + F̂ i/τ . This simplification leads to an372

approximation of the gradient in Equation 15:373

∂LKL

∂F̂ i
S

≈ τ

(
1 + F̂ i

S/τ

M +
∑

j=1 F̂
j
S/τ

− 1 + F̂ i
T /τ

M +
∑

j F̂
j
T /τ

)
(16)

Given that the sums
∑

j F̂
j
S and

∑
j F̂

j
T are both zero, Equation 16 simplifies further to:374

∂LKL

∂F̂ i
S

=
1

M
(F̂S − F̂T ) =

∂LMSE

∂F̂ i
S

(17)

Moreover, considering 1
m−1

∑
i F̂2

S = 1 and 1
m−1

∑
i F̂2

T = 1, we can reformulate the MSE as375

follows:376

LMSE(F̂S , F̂T ) =
1

2M

∑
(F̂S − F̂T )

2

=
1

2M

(
(2M − 2)− 2

m∑
i=1

F̂SF̂T

)

=
2M − 2

2M
(1− ρ(FS ,FT )) ≈ LPLC(FS ,FT )

(18)

Thus, we demonstrate that minimizing KL divergence between normalized features under a high-377

temperature limit is equivalent to minimizing the MSE between normalized ones, which is in turn378

equivalent to maximizing the PLC between the original features.379

6.3 More Experiments Results380

Effect of different Normalization and Loss Functions Section 3.4 in the main text clarifies381

the intrinsic relationship between KL divergence, MSE, and PLC. However, the assumption that382

normalized features follow a Gaussian distribution may not invariably be valid. To investigate the383
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performance of varying normalization and loss functions, we conducted a series of experiments,384

setting the temperature τ to 10 when utilizing KL divergence as the loss function. Table 4 demonstrates385

that the ℓ2 norm consistently outperforms other normalization functions. Minimizing KL divergence386

between layer-normalized features in the high-temperature limit can yield results comparable to MSE387

and PLC. To further underscore the benefits of ℓ2 normalization, we provide a visualization of the388

pre-normalized and post-normalized token-level relational features in Figure 5. In contrast to ℓ2389

normalization, other functions often produce a wider range with larger values, suggesting that directly390

imitating these normalized features could introduce significant noise, potentially leading to subpar391

results.

Table 4: Results of the loss function combined with different normalization mechanism.

Scheme MNLI-m QQP CoLA Average

LayerNorm + KL 83.4 71.5 51.4 68.8
LayerNorm + MSE 83.6 71.8 51.5 69.0
PreNorm + PLC 83.3 71.2 51.7 68.7
Softmax + PLC 83.4 71.7 51.5 68.9
ℓ2 + PLC 83.8 72.0 52.0 69.3

392

Results on SQuAD v1.1 and v2.0. To further demonstrate FCD’s effectiveness, we applied it to the393

question-answering tasks of SQuAD v1.1 Rajpurkar et al. [2016] and SQuAD v2.0 Rajpurkar et al.394

[2018]. We framed these tasks as sequence labeling problems, predicting the likelihood of each token395

being the start or end of an answer span. We employed the F1 metric for both versions of SQuAD.396

BERTBASE was used as the teacher model, and a 6 × 768 model served as the student model. The397

results, presented in Table 5, indicate that FCD can enhance the student model’s performance on both398

tasks.

Table 5: Results of baselines and FCD on question answering tasks.

Method SQuAD 1.1 SQuAD 2.0

BERTBASE 88.7 78.8
DistilBERT6 86.2 69.5
TinyBERT6 87.5 77.7
Ours 88.2 78.4

399

6.4 Discussion400

Limitations. While FCD demonstrates consistent performance improvements across diverse401

Transformer-based models, its effectiveness may be less pronounced on other architectures such as402

Recurrent Neural Networks (RNNs). The feature relationships in RNNs are not as explicit as in403

Transformers, potentially limiting the applicability and impact of FCD.404

Societal impacts. The extensive computational resources required to evaluate our proposed method405

could significantly contribute to carbon emissions, thereby raising sustainability concerns. However,406

the objective of our approach is to enhance the efficiency of lightweight models through knowledge407

distillation. This enhancement could ultimately replace heavier models in production settings,408

resulting in substantial energy savings. Thus, the thorough validation of FCD’s efficacy is a necessary409

trade-off to ensure its potential benefits.410
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