
A APPENDIX

A.1 DCP PSEUDOCODE

Algorithm 1 Dynamic Convolutional Partition (DCP)
Input: Convolutional block F : Rn0×n0×c0 → Rnℓ×nℓ×cℓ . Empirically estimated Nmax.
Output: Flattened subnetworks F =

{
f̃k
ij

∣∣∣ i, j ∈ [dk], k ∈ [s]
}

.
1: STOP← false, s← 0, Cs ← ∅, D = ∅, R = ∅,F ← ∅;
2: while !STOP do
3: d← 2;
4: Compute the set of d-part RIPs of nℓ, as Pd ← Rnℓ

d
5: for r ∈ Pd do
6: Compute constraint dimensions for subnetwork indexed by (ℓ− 2, ℓ);
7: if Eq. (19) is violated then
8: d← d+ 1, restart from Line 4;
9: else

10: s← s+ 1, ds ← d, rs ← r;
11: while ℓ ≥ 1 do
12: L← ℓ
13: Compute constraint dimensions for subnetwork indexed by (L− 1, ℓ);
14: if Eq. (19) is not violated then
15: L← L− 1;
16: else
17: Cs ← Cs ∪ {L, ℓ}, D ← D ∪ {ds}, R← R ∪ {rs}
18: s← s+ 1, ℓ← L;
19: Restart from Line 3;
20: end if
21: end while
22: STOP← true;
23: end if
24: end for
25: end while
26: Return flattened subnetwork F using Cs, D andR.

A.2 PROOF OF THEOREM 4.1.

Focusing on the flattened, partitioned CNN Fu as defined in Equation (11) and according to the
definition of Lipschitz constant based on l2-norm, for any two arbitrary inputs of Fu denoted by x0

and y0, we have∥∥Fu

(
x0
)
− Fu

(
y0
)∥∥2

2
=

d∑
i,j=1

∣∣∣f̃ij (x0
ij

)
− f̃ij

(
y0
ij

)∣∣∣2 ≤ d∑
i,j=1

L
(
f̃ij

)∥∥x0
ij − y0

ij

∥∥2
2
. (22)

Defining the two vectors:

γ :=

[
L
(
f̃11

)2
, L
(
f̃12

)2
, . . . , L

(
f̃dd

)2]⊤
,

∆ :=
[
∥x0

11 − y0
11∥22, ∥x0

12 − y0
12∥22, . . . , ∥x0

dd − y0
dd∥22

]⊤
,

and applying the Cauchy-Schwartz inequality, we obtain∥∥Fu

(
x0
)
− Fu

(
y0
)∥∥2

2
≤ ⟨γ,∆⟩ ≤ ∥γ∥2∥∆∥2. (23)

Given

∥∆∥22 =

d∑
i,j=1

∥∥x0
ij − y0

ij

∥∥4
2
, (24)

13

we observe the following

∥∥x0 − y0
∥∥4
2
=

(d∑
i,j=1

∥∥x0
ij − y0

ij

∥∥2
2

)2

=

d∑
i,j=1

∥∥x0
ij − y0

ij

∥∥4
2
+ ζ = ∥∆∥22 + ζ, (25)

where ζ denotes all the additional non-negative terms from the expansion. This results in

∥∆∥2 ≤
∥∥x0 − y0

∥∥2
2
. (26)

Combining (23) and (26), we have

∥∥Fu

(
x0
)
− Fu

(
y0
)∥∥

2
≤
√
∥γ∥2

∥∥x0 − y0
∥∥
2
=

 d∑
i,j=1

L
(
f̃ij

)4 1
4 ∥∥x0 − y0

∥∥
2
. (27)

We have shown that L(Fu) is bounded above by
(∑d

i,j=1 L
(
f̃ij

)4) 1
4

, which concludes the proof.

A.3 PROOF OF COROLLARY 4.2

An ℓ-layer convolutional block is a composite function of the ssubnetworks, as detailed by (13) and
(14). From Lemma 3.1, it follows that

L(Fu) ≤
s∏

k=1

L(Fu
k). (28)

Then apply Theorem 4.1 to bound the Lipschitz constant of each subnetwork Fu
k by

L(Fu
k) ≤

(
dk∑

i,j=1

L
(
f̃
(k)
ij

)4) 1
4

. (29)

Substituting (29) into (28) gives the required result:

L(Fu) ≤
s∏

k=1

L(Fu
k) ≤

s∏
k=1

(
dk∑

i,j=1

L
(
f̃
(k)
ij

)4) 1
4

. (30)

A.4 PROOF OF PROPOSITION 4.3.

For an ℓ-layer convolutional block with a filter of dimension h and stride s applied at each
convolutional layer, the formula for computing the output size is: nk = ⌊nk−1−h

s ⌋ + 1, i.e.
nk−1 = s(nk − ϵk − 1) + h, for k ∈ {1, 2, . . . , ℓ} and ϵk ∈ {0, 1}. The value of ϵk accounts
for if ⌊·⌋ is a non-integer. From this the dimension of the k-th receptive field can be expressed in
terms of nℓ as follows

nk = sℓ−knℓ +

ℓ−k∑
i=1

(fsi−1 − si − ϵis
i), for k ∈ {0, 1, . . . , ℓ− 1}. (31)

Similarly, the k-th receptive field corresponding to the largest convolutional block is given by

ρk = sℓ−kρ∗ +

ℓ−k∑
i=1

(fsi−1 − si − ϵis
i), for k ∈ {0, 1, . . . , ℓ− 1}, (32)

where we recall that ρ∗ denotes the dimension of of the largest convolutional block in the final layer,
resulting from applying a d-part RIP to nℓ.

To obtain (20) and (21), we state a few facts. First the number of equality constraints in (3.2) is one,
i.e. m = 1. Secondly, for deep networks the per-iteration time complexity is dominated by the cubic

14

term. Using the fact that N =
∑ℓ−1

i=0 cin
2
i and N∗ =

∑ℓ−1
i=0 ciρ

2
i for the largest convolutional block,

substitution of (31) gives

N =cℓ−1

[
snℓ +

1∑
i=1

(fsi−1 − si − ϵis
i)

]2
+ cℓ−2

[
s2nℓ +

2∑
i=1

(fsi−1 − si − ϵis
i)

]2
+

. . .+ c0

[
sℓnℓ +

ℓ∑
i=1

(fsi−1 − si − ϵis
i)

]2

=n2
ℓ

ℓ−1∑
i=0

cis
2(ℓ−i) + 2nℓ

[
ℓ∑

j=1

cℓ−js
j

j∑
i=1

(fsi−1 − si − ϵis
i)

]
+

ℓ∑
j=1

cℓ−j

(
j∑

i=1

(fsi−1 − si − ϵis
i)

)2

.

(33)

In an analogous way, we find N∗ to be

N∗ = ρ2∗

ℓ−1∑
i=0

cis
2(ℓ−i) + 2ρ∗

[
ℓ∑

j=1

cℓ−js
j

j∑
i=1

(fsi−1 − si − ϵis
i)

]
+

ℓ∑
j=1

cℓ−j

(
j∑

i=1

(fsi−1 − si − ϵis
i)

)2

. (34)

To simplify the notation, let a0, a1, a2 denote the first, second and third summation terms in (33)
respectively- and likewise for (34). Then by considering the cubic binomial expansion of N∗/N , we
obtain the following (

N∗

N

)3

=
a30ρ

6
∗ + 8a31ρ

3
∗ + a32 + ζ1

a30n
6
ℓ + 8a31n

3
ℓ + a32 + ζ2

, (35)

where ζ1 and ζ2 denote lower order terms. Using the fact that there exist b0, b1 > a0 such that
a30n

6
ℓ ≤ N3 ≤ b30n

6
ℓ and a30ρ

6
∗ ≤ N3

∗ ≤ b31ρ
6
∗, then (35) is bounded above as follows(

N∗

N

)3

≤
(
b1
a0

)3(
ρ∗
nℓ

)6

. (36)

To derive the results in (20) and (21) we use the fact that ⌈nℓ

d ⌉ ≤ ρ∗ ≤ nℓ − (d − 1) and consider
the two following cases:

Case I. When d = nℓ, ρ∗ can be at most 1. Substituting this value into (36) gives:(
N∗

N

)3

≤
(
b1
a0

)3
1

n6
ℓ

= O

(
1

n6
ℓ

)
, asnℓ →∞. (37)

Case II. When d = 2, ρ∗ can be at most ⌈nℓ

2 ⌉. Substituting this value into (36) gives:(
N∗

N

)3

≤
(
b1
a0

)3
1

26
= O(1). (38)

A.5 ADDITIONAL INFORMATION AND EXPERIMENTS

A.5.1 Nmax ESTIMATION

The estimation of Nmax involves generating multiple SDPs of increasing size and recording the
constraint size for which computational bottlenecks. Averaging over these instances will give an
estimation for Nmax. While this approximation will be tight, it is computationally expensive as the
problem size for which bottlenecks are reached, is not known a priori.

15

Figure 3: Memory usage for increasing problem dimensions.

As an alternative, we implement a prediction-based method, which may give a more conservative
estimate of Nmax but is computationally cheaper. It runs LipSDP on several small to medium
sized problems, recording the memory usage. Using the collected data, Nmax is estimated via
extrapolation. While this still involves multiple calls of LipSDP, it avoids having to increment
the problem size until computational bottlenecks, which isn’t known a priori, and is thus is more
efficient. In Figure 3, we show the recorded memory usage of the solver for increasing problem
sizes (y true) and compared against a quadratic fit of the data (y poly). Using the approximating
polynomial, we extrapolated the value of Nmax based on a maximum memory capacity of 120GB
of RAM, which gave a value of 1800. We chose a more conservative value than this in practice,
i.e., Nmax = 1400, to account for memory associated with additional computations and running the
operating system.

A.5.2 PROVABLY 1-LIPSCHITZ NETWORK

To further assess the effectiveness of the DCP method, we apply it to provably 1-Lipschitz networks.
As mentioned in (Anil et al., 2019), a provably 1-Lipschitz network is one which is composed of
1-Lipschitz affine transformations and activations. To this end, we consider a 2-layer convolutional
block with an input dimension of 28 × 28, followed by two convolutional layers of sizes 12 ×
12 × c and 4 × 4 × 1, where the number of channels, c, varies from 1 to 3. We used the ReLU
activation function that is 1-Lipschitz, and orthogonalised the weight matrices. The results are
shown in Table 2. LipSDP gives estimated upper-bounds less than 1, which we conjecture is due to
the approximation error underpinning the SDP formulation. DCP-LipSDP gives an upper-bound on
the LipSDP values.

16

Table 2: Comparison of Lipschitz estimation for provably 1-Lipschitz, 2-layer convolutional blocks
of size 28× 28→ 12× 12× c→ 4× 4.

Channel Number (c) LipSDP DCP-LipSDP
1 0.85 1.03
2 0.63 0.79
3 0.64 0.82

17

	Introduction
	Related Works
	Preliminaries
	Lipschitz Bounds
	LipSDP Framework

	Methodology
	Dynamic Convolutional Partition
	Convolutional Partitioning
	Joint Layer and Width-Wise Partitioning
	Dynamic Partition Search

	Scalability Analysis

	Experiments
	Performance Analysis
	DCP Analysis

	Conclusion and Future Work
	Appendix
	DCP Pseudocode
	Proof of parttheorem.
	Proof of cor
	Proof of prop.
	Additional Information and Experiments
	N Estimation
	Provably 1-Lipschitz Network

