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This appendix provides a detailed elaboration on several aspects of our study. In Section A, we
outline our implementation procedure and the hyper-parameter settings used. Section B provides
pseudocodes illustrating the processes of planning with Hierarchical Diffuser. We examine the
robustness of HD with various K values in Section C. The Out-of-distribution (OOD) visualizations
and the corresponding experiment details are outlined in Section E. Section D explains details of the
wall clock measurement. Finally, starting from Section H, we present our theoretical proofs.

A IMPLEMENTATION DETAILS

In this section, we describe the details of implementation and hyperparameters we used during our
experiments. For the Out-of-distribution experiment details, please check Section E.

• We build our Hierarchical Diffuser upon the officially released Diffuser code obtained from
https://github.com/jannerm/diffuser. We list out the changes we made below.

• In our approach, the high-level and low-level planners are trained separately using segments
randomly selected from the D4RL offline dataset.

• For the high-level planner’s training, we choose segments equivalent in length to the planning
horizon, H . Within these segments, states at every K steps are selected. In the dense action
variants, the intermediary action sequences between these states are then flattened concatenated
with the corresponding jumpy states along the feature dimension. This approach of trajectory
representation is also employed in the training of the high-level reward predictor.

• The sequence modeling at the low-level is the same as Diffuser except that we are using a sequence
length of K + 1.

• We set K = 15 for the long-horizon planning tasks, while for the Gym-MuJoCo, we use K = 4.
• Aligning closely with the settings used by Diffuser, we employ a planning horizon of H = 32

for the MuJoCo locomotion tasks. For the Maze2D tasks, we utilize varying planning horizons;
H = 120 for the Maze2D UMaze task, H = 255 for the Medium Maze task, and H = 390 for
the Large Maze task. For the AntMaze tasks, we set H = 225 for the UMaze, H = 255 for the
Medium Maze, and H = 450 for the Large Maze.

• For the MuJoCo locomotion tasks, we select the guidance scales ! from a set of choices,
{0.1, 0.01, 0.001, 0.0001}, during the planning phase.

B PLANNING WITH HIGH-LEVEL DIFFUSER

We highlight the high-level planning and low-level planning in Algorithm 1 and Algorithm 2,
respectively. The complete process of planning with HD is detailed in Algorithm 3

B.1 PLANNING WITH HIGH-LEVEL DIFFUSER

The high-level module, Sparse Diffuser (SD), models the subsampled states and actions, enabling it
to operate independently. We present the pseudocode of guided planning with the Sparse Diffuser in
Algorithm 1.

B.2 PLANNING WITH LOW-LEVEL DIFFUSER

Given subgoals sampled from the high-level diffuser, segments of low-level plans can be generated
concurrently. We illatrate generating one such segment as example in Algorithm 2.

B.3 HIERARCHICAL PLANNING

The comprehensive hierarchical planning involving both high-level and low-level planners is outlined
in Algorithm 3. For the Maze2D tasks, we employed an open-loop approach, while for more
challenging environments like AntMaze, Gym-MuJoCo, and Franka Kitchen, a closed-loop strategy
was adopted.
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Algorithm 1 High-Level Planning
1: function SAMPLEHIGHLEVELPLAN(Current State s, Sparse Diffuser µ✓SD , guidance function

J�SD , guidance scale !, variance �2
m

)
2: initialize plan xSD

M
⇠ N (0, I)

3: for m = M � 1, . . . , 1 do
4: µ̃ µ✓SD(x

SD
m+1) + !�2

m
rxSD

m
J�SD(x

SD
m
)

5: xSD
m�1 ⇠ N (µ̃,�2

m
I)

6: Fix g0 in xSD
m�1 to current state s

7: end for
8: return High-level plan xSD

0
9: end function

Algorithm 2 Low-Level Planning
1: function SAMPLELOWLEVELPLAN(Subgoals (gi, gi+1), low-level diffuser µ✓, low-level guid-

ance function J�, guidance scale !, variance �2
m

)
2: Initialize all low-level plan xi

M
⇠ N (0, I)

3: for m = M � 1, . . . , 1 do
4: µ̃ µ✓(xi

m+1) + !�2
m
rxi

m
J�(xi

m
)

5: xi

m�1 ⇠ N (µ̃,�2
m
I)

6: Fix s0 in xi

m�1 to gi; Fix sK in xi

m�1 to gi+1

7: end for
8: return low-level plan xi

0
9: end function

C ABLATION STUDY ON JUMPY STEPS K

In this section, we report the detailed findings from an ablation study concerning the impact of the
parameter K in Hierarchical Diffuser. The results, which are detailed in Tables 7 and 8, correspond to
Maze2D tasks and MuJoCo locomotion tasks, respectively. As we increased K, an initial enhancement
in performance was observed. However, a subsequent performance decline was noted with larger K
values. This trend aligns with our initial hypothesis that a larger K introduces more skipped steps
at the high-level planning stage, potentially resulting in the omission of information necessary for
effective trajectory modeling, consequently leading to performance degradation.

Table 7: Ablation on K - Maze2D. The model’s performance increased with the value of K up until K = 21.
We report the mean and standard error over 100 random seeds.

Environment K1 (Diffuser default) HD-K7 HD-K15 (default) HD-K21
Maze2D U-Maze 113.9± 3.1 127.0± 1.5 128.4± 3.6 124.0± 2.1
Maze2D Medium 121.5± 2.7 132.5± 1.3 135.6± 3.0 130.3± 2.4
Maze2D Large 123.0± 6.4 153.2± 3.0 155.8± 2.5 158.9± 2.0

Sing-task Average 119.5 137.6 139.9 137.7

Multi2D U-Maze 128.9± 1.8 135.4± 1.1 144.1± 1.2 133.7± 1.3
Multi2D Medium 127.2± 3.4 135.3± 1.6 140.2± 1.6 134.5± 1.4
Multi2D Large 132.1± 5.8 160.2± 1.9 165.5± 0.6 159.3± 3.0

Multi-task Average 129.4 143.7 149.9 142.5

D WALL CLOCK COMPARISON DETAILS

We evaluated the wall clock time by averaging the time taken per complete plan during testing and,
for the training phase, the time needed for 100 updates. All models were measured using a single
NVIDIA RTX 8000 GPU to ensure consistency. We employ the released code and default settings for
the Diffuser model. We select the Maze2D tasks and Hopper-Medium-Expert, a representative for
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Algorithm 3 Hierarchical Planning
1: function SAMPLEHIERARCHICALPLAN(High-level diffuser µ✓SD , low-level diffuser µ✓, high-

level guidance function J�SD , low-level guidance function J�, high-level guidance scale !SD,
low-level guidance scale !, high-level variance �2

SD,m
, low-level variance �2

m
)

2: Observe state s;
3: if do open-loop then
4: Sample high-level plan xSD = SAMPLEHIGHLEVELPLAN(s, µ✓SD , J�SD , !SD, �2

SD,m
)

5: for i = 0, . . . , H � 1 parallel do
6: Sample low-level plan x(i) = SAMPLELOWLEVELPLAN((gi, gi+1), µ✓, J�, !, �2

m
)

7: end for
8: Form the full plan x with low-level plans x(i) for i = 0, H � 1
9: for action at in x do

10: Execute at
11: end for
12: else
13: while not done do
14: Sample high-level plan xSD = SAMPLEHIGHLEVELPLAN(s, µ✓SD , J�, !SD, �2

SD,m
)

15: // Sample only the first low-level segment
16: Sample x(0) = SAMPLELOWLEVELPLAN((g0, g1), µ✓, J�, !, �2

m
)

17: Execute the first a0 of plan x(0)

18: Observe state s
19: end while
20: end if
21: end function

Table 8: Ablation on K - MuJoCo Locomotion.The model’s performance increased with the value of K up
until K = 8. We report the mean and standard error over 5 random seeds.

Dataset Environment K1 (Diffuser default) HD-K4 (default) HD-K8
Medium-Expert HalfCheetah 88.9± 0.3 92.5± 0.3 91.5± 0.3
Medium-Expert Hopper 103.3± 1.3 115.3± 1.1 113.0± 0.5
Medium-Expert Walker2d 106.9± 0.2 107.1± 0.1 107.6± 0.3

Medium HalfCheetah 42.8± 0.3 46.7± 0.2 45.9± 0.7
Medium Hopper 74.3± 1.4 99.3± 0.3 86.7± 7.4
Medium Walker2d 79.6± 0.6 84.0± 0.6 84.2± 0.5

Medium-Replay HalfCheetah 37.7± 0.5 38.1± 0.7 39.5± 0.4
Medium-Replay Hopper 93.6± 0.4 94.7± 0.7 91.3± 1.3
Medium-Replay Walker2d 70.6± 1.6 84.1± 2.2 76.4± 2.7

Average 77.5 84.6 81.8

the Gym-MuJoCo tasks, from the D4RL benchmark for our measurement purpose. On the Maze2D
tasks, we set K = 15, and for the Gym-MuJoCo tasks, we set it to 4 as this is our default setting for
RL tasks. The planning horizons of HD for each task, outlined in Table 9, are influenced by their
need for divisibility by K, leading to slight deviations from the default values used by the Diffuser.

Table 9: Wall-clock time H value

Environment Diffuser Ours

Maze2d-Umaze 128 120
Maze2d-Medium 256 255
Maze2d-Large 384 390
Hopper-Medium-Expert 32 32
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E COMPOSITIONAL OUT-OF-DISTRIBUTION (OOD) EXPERIMENT DETAILS

While an increase in kernel size does indeed provide a performance boost for the Diffuser model,
this enlargement inevitably augments the model’s capacity, which potentially increases the risk of
overfitting. Therefore, Diffuser models may underperform on tasks demanding both a large receptive
field and strong generalization abilities. To illustrate this, inspired by Janner et al. (2022a), we
designed a compositional out-of-distribution (OOD) Maze2D task, as depicted in Figure 4. During
training, the agent is only exposed to offline trajectories navigating diagonally. However, during
testing, the agent is required to traverse between novel start-goal pairs. We visualized the 32 plans
generated by the models in Figure 4. As presented in the figure, only the Hierarchical Diffuser
can generate reasonable plans approximating the optimal solution. In contrast, all Diffuser variants
either create plans that lead the agent crossing a wall (i.e. Diffuser, Diffuser-KS13, and Diffuser-
KS19) or produce plans that exceed the maximum step limit (i.e. Diffuser-13, Diffuser-KS19, and
Diffuser-KS25).

To conduct this experiment, we generated a training dataset of 2 million transitions using the same
Proportional-Derivative (PD) controller as used for generating the Maze2D tasks. Given that an
optimal path typically requires around 230 steps to transition from the starting point to the end goal,
we set the planning horizon H for the Diffuser variants at 248, while for our proposed method, we
set it at 255, to ensure divisibility by K = 15. For the reinforcement learning task in the testing
phase, the maximum steps allowed were set at 300. Throughout the training phase, we partitioned
10% of the training dataset as a validation set to mitigate the risk of overfitting. To quantitatively
measure the discrepancy between the generated plans and the optimal solution, we used Cosine
Similarity and Mean Squared Error (MSE). Specifically, we crafted 10 optimal paths using the same
controller and sampled 100 plans from each model for each testing task. To ensure that the optimal
path length aligned with the planning horizon of each model, we modified the threshold distance
used to terminate the controller once the agent reached the goal state. Subsequently, we computed the
discrepancy between each plan and each optimal path. The mean of these results was reported in
Table 5.

Figure 4: Large Kernel Size Hurts the OOD Generalization. Increasing kernel size generally improves the
offline RL performance of Diffuser model. However, when a large receptive field and compositional out-of-
distribution (OOD) generalization are both required, Diffuser models offer no simple solution. We demonstrate
this with the sampled plans from both the standard Difuser and a Difuser with varied kernel sizes (KS). None
of them can come up with an optimal plan by stiching training segments together. Conversely, our proposed
Hierarchical Diffuser (HD) posseses both a large receptive field and the flexibility needed of compositional OOD
tasks.
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F ADDITIONAL ABLATION STUDIES

F.1 TRANSFORMER-BASED DIFFUSION

We compare our model (based on U-Net (CNN)) with Transformer-based diffusion and the results
are in the table below. For this experiment, we use the hyperparameter setting in the Decision
Transformer (Chen et al., 2021) as a starting point for our investigation. The results, as shown in
the table, reveal that the HD-Transformer achieves similar performance to the HD-UNet in Maze2D
tasks, though it is slightly less effective in the Gym-MuJoCo tasks. While the HD-Transformer shows
promise, we would like to emphasize that our primary contribution is not the backbone architecture
but the benefits of hierarchical structures. Nonetheless, we are grateful for the reviewer’s insightful
and constructive recommendation. This ablation study will make the paper better.

Table 10: Ablation Study on Backbone Architecture. HD-Transformer achieves comparable with HD-Unet
on a wide rang of tasks.

Task HD-UNet HD-Transformer
Maze2d-Large 128.4± 3.6 127.9± 3.2
Maze2d-Medium 135.6± 3.0 136.1± 2.6
Maze2d-UMaze 155.8± 2.5 154.1± 3.6

Maze2d Average 139.9 139.4

MedExp-HalfCheetah 92.5± 0.3 88.4± 0.6
MedExp-Hopper 115.3± 1.1 103.9± 5.9
MedExp-Walker2d 107.1± 0.1 107.0± 0.3

Medium-HalfCheetah 46.7± 0.2 45.3± 0.5
Medium-Hopper 99.3± 0.3 94.0± 5.4
Medium-Walker2d 84.0± 0.6 82.8± 1.7

MedRep-HalfCheetah 38.1± 0.7 39.5± 0.2
MedRep-Hopper 94.7± 0.7 91.4± 1.5
MedRep-Walker2d 84.1± 2.2 81.2± 1.1

Gym Average 84.6 81.5

F.2 SUB-GOAL SELECTION STRATEGIES

Hierarchical Diffuser (HD) select sub-goals with fixed time interval for simplicity. Here, we consider
other choises:

• Route Sampling (Lai et al., 2020) (RS): In line with HDMI, we also consider choosing
waypoint with fixed length interval as sub-goals. Specifically, denote the distance moved
after action at as �t. Then, the route length can be computed as S =

P
T1
t=0 �t . We pick the

waypoints with fixed interval of S/k, where k is the number of sub-goals.
• Value Sampling (Correia & Alexandre, 2023) (VS): Also inspired by HDMI, we also

test the value sampling method, where the most valuable states are chosen as sub-goals.
Specifically, the distance weighted accumulated reward is used to value each states after
state si: W (sj) =

P
j

k=i+1
rk
j�i

.

• Future Sampling (Andrychowicz et al., 2017) (FS): Beyond RS and VS, we also explored
a hindsight heuristic method, randomly selecting future states as sub-goals.

Notably, in RS and VS, certain states might never be chosen as sub-goals, unlike FS and the fixed
time interval sampling (TS) used in HD, which offers equal probability for each state to be selected
as a sub-goal.

Given the varying lengths of sub-tasks generated by these selection methods, integrating dense action
at the high level was impractical. Hence, we focused our experiments on HD rather than HD-DA.
At the low level, sub-trajectories were padded to a consistent length L. It’s important to note that
excluding dense action data at the high level may slightly hinder the learning of the value function,
potentially leading to a marginal decrease in performance. The results, as presented in the table ??,
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demonstrate that our hierarchical framework is generally resilient across different sub-goal selection
methods. While HD-VS and HD-RS exhibited somewhat lower performance, we hypothesize this may
be due to uneven sampling of valuable states, which could impact the planning guidance function’s
effectiveness.

Table 11: Ablation Study on Sub-goal Selection. HD is generally resilient across different sub-goal selection
methods.

Dataset HD-DA HD HD-FS HD-VS HD-RS
MedExp-Halfcheetah 92.5± 0.3 92.1± 0.5 87.6± 0.7 87.6± 0.6 88.4± 0.4
MedExp-Hopper 115.3± 1.1 104.1± 8.2 106.5± 5.5 108.9± 4.8 106.4± 5.0
MedExp-Walker2d 107.1± 0.1 107.4± 0.3 107.0± 0.1 107.4± 0.2 107.4± 0.3

Medium-Halfcheetah 46.7± 0.2 45.2± 0.2 43.9± 0.4 43.2± 0.3 43.6± 0.9
Medium-Hopper 99.3± 0.3 99.2± 0.7 100.9± 0.8 92.3± 4.2 95.8± 1.3
Medium-Walker2d 84.0± 0.6 82.6± 0.8 83.1± 1.0 82.4± 0.9 82.9± 1.1

MedRep-Halfcheetah 38.1± 0.7 37.5± 1.7 39.7± 0.3 38.1± 0.7 38.4± 0.8
MedRep-Hopper 94.7± 0.7 93.4± 3.1 90.9± 1.7 91.3± 1.3 92.6± 1.2
MedRep-Walker2d 84.1± 2.2 77.2± 3.3 80.9± 1.7 75.7± 2.10 76.4± 2.7

Average 84.6 82.1 82.3 80.8 81.3

G THEORETICAL ANALYSIS

In this section, we show that the proposed method can improve the generalization capability when
compared to the baseline. Our analysis also sheds light on the tradeoffs in K and the kernel size. Let
K 2 {1, . . . , T}, `(x) = ⌧Em,✏[k✏� ✏✓(

p
↵̄mx+

p
1� ↵̄m✏,m)k2]], where ⌧ > 0 is an arbitrary

normalization coefficient that can depend on K: e.g., 1/d where d is the dimensionality of ✏. Given
the training trajectory data (x(i)

0 )n
i=1, the training loss is defined by L̂(✓) = 1

n

P
n

i=1 `(x
(i)
0 ) where

x(i)
m =

p
↵̄mx(i)

0 +
p
1� ↵̄m✏, and x(1)

0 , . . . ,x(n)
0 are independent samples of trajectories. We have

L(✓) = Ex0 [`(x0)]. Define ✓̂ to be an output of the training process using (x(i)
0 )n

i=1, and ' to be
the (unknown) value function under the optimal policy. Let ⇥ be the set of ✓ such that ✓̂ 2 ⇥

and ⇥ is independent of (x(i)
0 )n

i=1. Denote the projection of the parameter space ⇥ onto the loss
function by H = {x 7! ⌧Em,✏[k✏ � ✏✓(

p
↵̄mx +

p
1� ↵̄m✏,m)k2] : ✓ 2 ⇥}, the conditional

Rademacher complexity by Rt(H) = E
(x(i)

0 )ni=1,⇠
[sup

h2H

1
nt

P
nt

i=1 ⇠ih(x
(i)
0 ) | x(i)

0 2 Ct], where
Ct = {x0 2 X : t = argmax

j2[H] '(gj) where [g1 g2 · · · gH ] is the first row of x0} and nt =
P

n

i=1 {x(i)
0 2 Ct}. Define T = {t 2 [H] : nt � 1} and C0 = d⌧c((1/

p
2) +

p
2) for some c � 0

such that c � Em,✏[((✏ � ✏✓(xm,m))i)2]] for i = 1, . . . , d, where d is the dimension of ✏ 2 Rd.
Here, both the loss values and C0 scale linearly in d. Our theorem works for any ⌧ > 0, including
⌧ = 1/d, which normalizes the loss values and C0 with respect to d. Thus, the conclusion of our
theorem is invariant of the scale of the loss value.
Theorem 1. For any � > 0, with probability at least 1� �,

L(✓̂)  L̂(✓̂) + C0

s⇠
T

K

⇡
ln(
⌃
T

K

⌥
2
�
)

n
+
X

t2T

2ntRt(H)

n
. (13)

The proof is presented in Appendix I. The baseline is recovered by setting K = 1. Thus, Theorem
1 demonstrates that the proposed method (i.e., the case of K > 1) can improve the generalization
capability of the baseline (i.e., the case of K = 1). Moreover, while the upper bound on L(✓̂)� L̂(✓̂)
decreases as K increases, it is expected that we loose more details of states with a larger value of K.
Therefore, there is a tradeoff in K: i.e., with a larger value of K, we expect a better generalization for
the diffusion process but a more loss of state-action details to perform RL tasks. On the other hand,
the conditional Rademacher complexity term Rt(H) in Theorem 1 tends to increase as the number
of parameters increases. Thus, there is also a tradeoff in the kernel size: i.e., with a larger kernel size,
we expect a worse generalization for the diffusion process but a better receptive field to perform RL
tasks. We provide the additional analysis on Rt(H) in Appendix H.
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H ON THE CONDITIONAL RADEMACHER COMPLEXITY

In this section, we state that the term
P

t2T

2ntRt(H)
n

in Theorem 1 is also smaller for the proposed
method with K � 2 when compared to the base model (i.e., with K = 1) under the following assump-
tions that typically hold in practice. We assume that we can express ✏✓(xm,m) = Wg(V xm,m)
for some functions g and some matrices W,V such that the parameters of g do not contain the
entries of W and V , and that ⇥ contains ✓ with W and V such that kWk1  ⇣W and kV k1 < ⇣V
for some ⇣W and ⇣V . This assumption is satisfied in most neural networks used in practice as
g is arbitrarily; e.g., we can set g = ✏✓, W = I and V = I to have any arbitrary function
✏✓(xm,m) = Wg(V xm,m) = g(xm,m). We also assume that Rt(H) does not increase when we
increase nt. This is reasonable since Rt(H) = O( 1

nt
) for many machine learning models, including

neural networks. Under this setting, the following proposition states that the term
P

t2T

2ntRt(H)
n

of
with the proposed method is also smaller than that of the base model:

Proposition 1. Let q � 2 and denote by R̄t(H̄) and R̃t(H̃) the conditional Rademacher complexities
for K = 1 (base case) and K � q (proposed method) respectively. Then, R̄t(H̄) � R̃t(H̃) for any
t 2 {1, . . . , T} such that st is not skipped with K = q.

The proof is presented in Appendix I.

I PROOFS

I.1 PROOF OF THEOREM 1

Proof. Let K 2 {1, . . . , T}. Define [H] = {1, . . . , H}. Define

`(x) = ⌧Em,✏[k✏� ✏
✓̂
(
p
↵̄mx+

p
1� ↵̄m✏,m)k2]]

Then, we have that L̂(✓̂) = 1
n

P
n

i=1 `(x
(i)
0 ) and L(✓̂) = Ex0 [`(x0)]. Here, `(x(1)

0 ), . . . , `(x(n)
0 ) are

not independent since ✓̂ is trained with the trajectories data (x(i)
0 )n

i=1, which induces the dependence
among `(x(1)

0 ), . . . , `(x(n)
0 ). To deal with this dependence, we recall that

x0 =

2

66664

g0 g1 . . . gH

a0 aK . . . aHK

a1 aK+1 . . . aHK+1
...

...
. . .

...
aK�1 a2K�1 . . . a(H+1)K�1

3

77775
2 X ✓ Rd,

where the baseline method is recovered by setting K = 1 (and hence H = T/K = T ). To utilize
this structure, we define Ck by

Ck =

8
>>>><

>>>>:

x0 =

2

66664

g0 g1 . . . gH

a0 aK . . . aHK

a1 aK+1 . . . aHK+1
...

...
. . .

...
aK�1 a2K�1 . . . a(H+1)K�1

3

77775
2 X : k = argmax

t2[H]
'(gt),

9
>>>>=

>>>>;

.

We first write the expected error as the sum of the conditional expected error:

Ex0 [`(x0)] =
X

k

Ex0 [`(x0)|x0 2 C
k
] Pr(x0 2 C

k
).

Similarly,

1

n

nX

i=1

`(x(i)
0 ) =

1

n

X

k2IK

X

i2Ik

`(x(i)
0 ) =

X

k2IK

|Ik|

n

1

|Ik|

X

i2Ik

`(x(i)
0 ),
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where Ik = {i 2 [n] : x(i)
0 2 Ck} and IK = {k 2 [H] : |I

k
| � 1}. Using these, we decompose the

difference into two terms:

Ex0 [`(x0)]�
1

n

nX

i=1

`(x(i)
0 ) =

X

k

Ex0 [`(x0)|x0 2 Ck]

✓
Pr(x0 2 C

k
)�

|I
k
|

n

◆
(14)

+

 
X

k

Ex0 [`(x0)|x0 2 Ck]
|I

k
|

n
�

1

n

nX

i=1

`(x(i)
0 )

!
.

=
X

k

Ex0 [`(x0)|x0 2 Ck]

✓
Pr(x0 2 C

k
)�

|I
k
|

n

◆

+
1

n

X

k2IK

|I
k
|

 
Ex0 [`(x0)|x0 2 Ck]�

1

|I
k
|

X

i2Ik

`(x(i)
0 )

!
.

By following the proof of Lemma 5 of (Kawaguchi et al., 2023) and invoking Lemma 1 of (Kawaguchi
et al., 2022), we have that for any � > 0, with probability at least 1� �,

X

k

Ex0 [`(x0)|x0 2 Ck]

✓
Pr(x0 2 C

k
)�

|I
k
|

n

◆
(15)



 
X

k

Ex0 [`(x0)|x0 2 Ck]
q
Pr(x0 2 C

k
)

!r
2 ln(H/�)

n

 C

 
X

k

q
Pr(x0 2 C

k
)

!r
2 ln(H/�)

n
.

Here, note that for any (f, h,M) such that M > 0 and B � 0 for all X , we have that P(f(X) �
M) � P(f(X) > M) � P(Bf(X) + h(X) > BM + h(X)), where the probability is with respect
to the randomness of X . Thus, by combining equation 14 and equation 15, we have that for any
� > 0, with probability at least 1� �, the following holds:
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We now bound the first term in the right-hand side of equation equation 16. Define
H = {x 7! ⌧Em,✏[k✏� ✏✓(

p
↵̄mx+

p
1� ↵̄m✏,m)k2] : ✓ 2 ⇥},

and

Rt(H) = E
(x(i)

0 )ni=1
E⇠

2

4sup
h2H

1

|I
t
|

|It|X

i=1

⇠ih(x
(i)
0 ) | x(i)

0 2 Ct

3

5 .

with independent uniform random variables ⇠1, . . . , ⇠n taking values in {�1, 1}. We invoke Lemma
4 of (Pham et al., 2021) to obtain that for any � > 0, with probability at least 1� �,
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where the last line follows from the Cauchy–Schwarz inequality applied on the term
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On the other hand, by using Jensen’s inequality,
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By combining equations equation 16 and equation 17 with union bound along with equation 18, it
holds that any � > 0, with probability at least 1� �,
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Since H  dT/Ke, this implies that any � > 0, with probability at least 1� �,
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. This proves the first statement of this theorem.

I.2 PROOF OF PROPOSITION 1

Proof. For the second statement, let K = 1 and we consider the effect of increasing K from one
to an arbitrary value greater than one. Denote by Rt(H) and R̃t(H̃) the conditional Rademacher
complexities for K = 1 (base case) and K > 1 (after increasing K) respectively: i.e., we want to
show that Rt(H) � R̃t(H̃). Given the increasing value of K, let t 2 {1, . . . , T} such that st is not
skipped after increasing K. From the definition of H,
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where everything is defined for K = 1 and &(x(i)
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1� ↵̄m✏. Here, we recall that

✏✓(xm,m) = Wg(xm,m) for some function g and an output layer weight matrix W such that the
parameters of g does not contain the entries of the output layer weight matrix W . This implies that
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and that we can decompose ⇥ = W ⇥V ⇥ ⇥̃ with which ✓ can be decomposed into W 2W , V 2 V ,
and ✓̃ 2 ⇥̃. Using this,
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where Wj is the j-th row of W . Recall that when we increase K, some states are skipped and
accordingly d decreases. Let d0 be the d after K increased from one to some value greater than
one: i.e., d0  d. Without loss of generality, let us arrange the order of the coordinates over
j = 1, 2 . . . , d0, d0 + 1, . . . , d so that j = d0 + 1, d0 + 2, . . . , d are removed after K increases.

Since ⇥ contains ✓ with W and V such that kWk1  ⇣W and kV k1 < ⇣V for some ⇣W and
⇣V , the set W contains W such that Wj = 0 for j = d0 + 1, d0 + 2, . . . , d. Define W0 such that
W = W0 ⇥ W̃0 where (Wj)
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W 2W , setting Wj = 0 for j = d0 + 1, d0 + 2, . . . , d attains a lower bound as
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Similarly, since ⇥ contains ✓ with W and V such that kWk1  ⇣W and kV k1 < ⇣V for some ⇣W
and ⇣V , the set V contains V such that Vj = 0 for j = d0 + 1, d0 + 2, . . . , d, where Vj is the j-th
row of V . Define V0 such that V = V0 ⇥ Ṽ0 where (Vj)
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where Bi(d) =
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0 with skipping states, and R̃t(H̃) is the conditional Rademacher
complexity after increasing K > 1. The last line follows from the same steps of equation 19 and
equation 20 applied for R̃t(H̃) and the fact that |It| of Rt(H) is smaller than that of Rt(H̃) (due to
the effect of removing the states), along with the assumption that Rt(H) does not increase when we
increase nt. This proves the second statement.
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