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Appendix A: Restricted Boltzmann machines

1. Marginal distributions over visible and hidden states

As we saw in the main text, the RBM defines the following marginal distribution over visible configurations given
by:

P (v) =
∑
h

P (v,h) =
1

Zv
e−E

v(v) , (A1)

where the effective energy, Ev(v), accounts for effective interactions that arise among visible units on account of the
marginalized hidden variables:

Ev(v) = − ln
∑
h

exp

(
N∑
i=1

M∑
µ=1

Wiµvihµ +

N∑
i=1

givi +

M∑
µ=1

cµhµ

)
(A2)

Taking advantage of the fact that visible units do not interact with hidden units, we can evaluate Ev(v), as follows:

Ev(v) = −
N∑
i=1

gi vi −
M∑
µ=1

Γµ(Iµ(v)) (A3)

Here, Iµ(v) =
N∑
i=1

Wiµvi denotes the input received by hidden unit hµ and Γµ(I) = log
∑
h exp [h (cµ + Iµ(v))] is

simple to compute for binary units h.
A similar expression is obtained for the effective energy Eh(h) corresponding to the log-probability of hidden

configurations, obtained through marginalization over visible configurations.

2. Alternative Gibbs sampling

The alternative Gibbs sampling procedure is defined as follows:

• Starting from a visible configuration vt at step t, a hidden configuration ht+1 is drawn from P (h|vt) =
M∏
µ=1

P (hµ|vt). Here P (hµ|v) ∝ exp [hµ(cµ + Iµ(v))]. This step can be seen as a stochastic extraction of features

from the configuration vt.

• A new visible configuration vt+1 is drawn from P
(
v|ht+1

)
=

N∏
i=1

P (vi|ht+1). Here P (vi|h) ∝ exp [vi(gi + Ii(h))],

where Ii(h) is the input of the visible unit vi, i.e Ii(h) =
M∑
µ=1

Wiµhµ. This step can be seen as a stochastic

reconstruction of v from the representation ht+1.

Given a large number of iterations, it is guaranteed to converge to the correct marginal distributions.

3. Training

The RBMs are trined by persistent contrastive divergence [1]. All RBMs are trained for 50000 stochastic gradient
descent iterations (regardless of the size of the dataset) using Adam [2]. Batchsize was fixed at 128, and the persistent
chains are updated with 20 Monte Carlo steps per iteration. The implementation follows closely previous works [3].

Appendix B: Lattice proteins

The lattice cube defines a set of N = 103, 406 distinct structures. The probability of a sequence v to fold in a given
structure S is expressed as

Pnat(S|v) =
exp (−ELP (v, S))∑

S′
exp (−ELP (v, S′))

(B1)
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where the sum runs over all N possible structures S′. For a given structure S, there are 28 contacts between the
amino acids, which in turn determine the energy of the sequence v in a structure S, as:

ELP (v, S) =
∑
i<j

cSij ∆EMJ(vi, vj) (B2)

where cSij = 1 if sites i and j are in contact in the fold S; otherwise, cSij = 0. The pairwise energy ∆EMJ(vi, vj) is the
Miyazawa-Jernigan (MJ) potential, a proxy for physico-chemical interactions between nearby amino acids [4].

Appendix C: Two-dimensional Ising model

We next consider the standard Ising model [5] on a two-dimensional regular L × L square grid, with L = 32,
with uniform positive interactions between nearest-neighbor spins. The values of the interaction, or, equivalently, of
the inverse temperature, can be varied to explore both paramagnetic (weak interactions) and ferromagnetic (strong
interactions) regimes. As is well known, the model suffers a phase transition from a disordered state to an ordered
one, at an inverse temperature βc ≈ 0.44.

The RBM is trained on a large number of equilibrium configurations of the Ising model, which are obtained by a
combination of Wolff cluster algorithm and local Metropolis sampling steps. The implementation is the same as in
[3].

1. Representations at different levels of the stacked RBMs on the Ising model

To interpret the weights of the stacked RBMs we compute the “effective” weights of a hidden unit in a top layer
when projected on the bottom layers. More precisely, we define effective weights Ŵ through the recurrence relation:

Ŵ ℓ
ik =

∑
j

W ℓ−1
ij W ℓ

jk (C1)

that for the bottom RBM is initialized simply as Ŵ 1
ij =W 1

ij . A similar definition has been used by [6] in connection to
a renormalization group interpretation of stacked RBMs. These effective weights are an approximate representation
of the indirect effect a hidden unit of an RBM along the stack has on the bottom Ising lattice. Figure S1 plots these
representations for selected hidden units across the stack. As claimed in the main text, the hidden units at different
level capture information about the magnetization of localized patches in the Ising lattice. In particular, the hidden
unit at the top RBM has all positive effective weights (between ≈ 3 and ≈ 7), and therefore computes an approximate
version of the total magnetization of the lattice. Indeed, if we sample hidden units progressively bottom to top,
starting from any equilibrium configuration of the Ising model at the bottom, we find that for > 98% of cases the top
hidden unit encodes for the sign of the total magnetization of the Ising configuration

Appendix D: Numbers of distinct representations at various depths in the stack for MNIST0/1 and Lattice
Protein datasets

Like many real datasets, MNIST0/1 and Lattice Proteins data are not simply organized in hierarchical and regular
clusters. Nevertheless, the different RBM at different levels in the stack, progressively cluster the representations of
the data. We computed the numbers of distinct representations at various depths, by finding the minima of Eh(h)
for each RBM. To do this, we start by random configurations h that we then greedily optimize until a local minimum
of Eh(h) is found. The results are shown in Table S1.

TABLE S1. Number of distinct representations of the data in the hidden layers, for the 4 stacked RBM in the MNIST0/1
dataset and for the 3 stacked RBM for Lattice Proteins SA/SB .

Level n=1 n=2 n=3 n=4
MNIST 12635 12560 3099 68

Lattice proteins 96234 39345 1273 -

We also computed the products wα that appear in the theory for the RBMs trained on MNIST0/1 and Lattice
proteins. See Table S2.
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FIG. S1. Representations of the weights of selected hidden units at each level of the stack of 3 RBMs trained on the 2-
dimensional Ising model. For each RBM at each level, we represent the effective weights (defined in Eq. (C1)) of selected
hidden units.

TABLE S2. Values of the products wα for the RBMs trained on MNIST0/1 and for Lattice Proteins SA/SB .

Level n=1 n=2 n=3 n=4
MNIST 2.01 2.96 2.31 1.69

Lattice proteins 38.80 0.88 2.37 -

Appendix E: Solution of the RBM trained on two data points

In this section we discuss the weights of a spin RBM trained on two data points, justifying Equation (6) from the
main text, that we rewrite here

Wiµ =
1

N
×

{
v1i+v

2
i

1+x W+ if µ > ψM
v1i−v

2
i

1+x W− if µ < ψM
(E1)

That is, the hidden units of the RBM split into two groups, with a first group having weights wiµ ∝ v1i + v2i and a
second group having weights wiµ ∝ v1i − v2i . Here ψ = (1 − y)/2 and 1 − ψ are the fractions of hidden units of the
two kinds. In comparison to Eq. (6) in the main text, note that we here included the factors 2/(1 ± x), added here
for convenience.

It is also convenient to define the vectors along which the weights align,

U±
i =

1

2
(v1i ± v2i ) (E2)

giving respectively the center of mass of the two data points (U+
i ) and their separation (U−

i ).
In this section, we will show that the weights (E1) give a stationary point of the regularized log-likelihood that is

also a stable maximum. To do this, we consider a small perturbation ϵiµ added to the weights, (E1),

w̃iµ = wiµ + ϵiµ (E3)

We then Taylor-expand the regularized log-likelihood,

L̃ = −⟨Ẽv(v)⟩D − ln Z̃ − Nγ

2

∑
iµ

w̃2
iµ (E4)

in powers of ϵiµ up to second-order (hereafter a tilde denotes a quantity evaluated at the perturbed weights w̃iµ).
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Expanding each of the terms in (E4) results in:

−Ẽv(v) ≈ −Ev(v) +
∑
iµ

ϵiµvi⟨hµ|v⟩+
∑
ij

∑
µ

ϵiµϵjµ
2

vivj(1− ⟨hµ|v⟩2)

ln Z̃ ≈ lnZ +
∑
iµ

ϵiµ⟨vihµ⟩+
1

2

∑
ij

∑
µν

ϵiµϵjν (⟨vivjhµhν⟩ − ⟨vihµ⟩⟨vjhν⟩)∑
iµ

w̃2
iµ ≈

∑
iµ

w2
iµ + 2

∑
iµ

wiµϵiµ +
∑
iµ

ϵ2iµ

(E5)

where the moments are evaluated under the unterturbed RBM with weights (E1). The effective energy is then to be
averaged over the two data points, v1,2, giving

−⟨Ẽv(v)⟩D ≈ −⟨Ev(v)⟩D + tanh(W+)
∑
i

∑
µ>Mψ

ϵiµU
+
i + tanh(W−)

∑
i

∑
µ<Mψ

ϵiµU
−
i

+
∑
ij

(U+
i U

+
j + U−

i U
−
j )

∑
µ

ϵiµϵjµ
2

− tanh2(W+)
∑

µ>Mψ

ϵiµϵjµ
2

− tanh2(W−)
∑

µ<Mψ

ϵiµϵjµ
2

 (E6)

The second and fourth-order moments of the RBM, appearing in the expansion of lnZ, are also easy to evaluate under
the weights (E1). After some algebra, we find that, in the large N limit:

ln Z̃ ≈ lnZ +
∑
iµ

ϵiµ⟨vihµ⟩+
∑
ij

∑
µν

ϵiµϵjν
2

(⟨vivjhµhν⟩ − ⟨vihµ⟩⟨vjhν⟩)

= lnZ +m+n+
∑
i

∑
µ>Mψ

ϵiµU
+
i +m−n−

∑
i

∑
µ<Mψ

ϵiµU
−
i

+

(
1− 1 + x

2
m2

+ − 1− x

2
m2

−

)∑
i

n2+ ∑
µ,ν>Mψ

ϵiµϵiν
2

+ n2−
∑

µ,ν<Mψ

ϵiµϵiν
2


+m2

−n
2
+

∑
ij

∑
µ,ν>Mψ

ϵiµϵjν
2

U−
i U

−
j +m2

+n
2
−

∑
ij

∑
µ,ν<Mψ

ϵiµϵjν
2

U+
i U

+
j

+m+m−n+n−
∑
ij

U−
i U

+
j

∑
µ>Mψ>ν

ϵiµϵjν
2

+ U+
i U

−
j

∑
µ<Mψ<ν

ϵiµϵjν
2



(E7)

where the quantities m±, n± are “order parameters” that determine the magnetizations of the visible and hidden
units of the RBM, and satisfy the saddle-point equations (also given in the main text at Eq. (6))

m± = tanh

(
2α±W±n±

1± x

)
n± = tanh (W±m±)

(E8)

where α+ = (1− ψ)α and α− = ψα.

Finally for the regularization term, we may rewrite it as:

Nγ

2

∑
iµ

w̃2
iµ =

Nγ

2

∑
iµ

w2
iµ + 2

∑
iµ

wiµϵiµ +
∑
iµ

ϵ2iµ


=
Nγ

2

∑
iµ

w2
iµ +

2W+γ

1 + x

∑
i

∑
µ>Mψ

U+
i ϵiµ +

2W−γ

1− x

∑
i

∑
µ<Mψ

U−
i ϵiµ +

Nγ

2

∑
iµ

ϵ2iµ

(E9)
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Substituting everything back into (E4), gives the desired second-order expansion:

L̃ = −⟨Ẽeff(v)⟩D − ln Z̃ − Nγ

2

∑
iµ

w̃2
iµ

= L+ tanh(W+)
∑
i

∑
µ>Mψ

ϵiµU
+
i + tanh(W−)

∑
i

∑
µ<Mψ

ϵiµU
−
i

+
∑
ij

(U+
i U

+
j + U−

i U
−
j )

∑
µ

ϵiµϵjµ
2

− tanh2(W+)
∑

µ>Mψ

ϵiµϵjµ
2

− tanh2(W−)
∑

µ<Mψ

ϵiµϵjµ
2


−m+n+

∑
i

∑
µ>Mψ

ϵiµU
+
i −m−n−

∑
i

∑
µ<Mψ

ϵiµU
−
i

−
(
1− 1 + x

2
m2

+ − 1− x

2
m2

−

)∑
i

n2+ ∑
µ,ν>Mψ

ϵiµϵiν
2

+ n2−
∑

µ,ν<Mψ

ϵiµϵiν
2


−m2

−n
2
+

∑
ij

∑
µ,ν>Mψ

ϵiµϵjν
2

U−
i U

−
j −m2

+n
2
−

∑
ij

∑
µ,ν<Mψ

ϵiµϵjν
2

U+
i U

+
j

−m+m−n+n−
∑
ij

U−
i U

+
j

∑
µ>Mψ>ν

ϵiµϵjν
2

+ U+
i U

−
j

∑
µ<Mψ<ν

ϵiµϵjν
2


− 2W+γ

1 + x

∑
i

∑
µ>Mψ

U+
i ϵiµ − 2W−γ

1− x

∑
i

∑
µ<Mψ

U−
i ϵiµ − Nγ

2

∑
iµ

ϵ2iµ

(E10)

Assuming that the weights satisfy the stationarity equation given in the main-text,

γW± = tanh

(
1± x

2
W±

)
−m±n± (E11)

which can be found by differentiation of the log-likelihood with respect toW±, we find that all the terms of linear-order
in (E10) cancel, confirming the stationarity of the weights (E1).

To study the stability of this critical point of the log-likelihood, we must consider the second-order terms. It is
convenient to define H+

µ = Θ(µ −Mψ) and H−
µ = Θ(Mψ − µ), where we use Θ(x) to denote the Heaviside Theta

symbol, equal to 1 for x > 0 and zero otherwise. We can write

L̃ ≈ L+
∑
ij

∑
µν

Qµν
ij

ϵiµϵjν
2

(E12)

since the first-order terms vanish. The quadratic form writes:

Qµν
ij = (U+

i U
+
j + U−

i U
−
j )(1− tanh2(W+)H

+
µ − tanh2(W−)H

−
µ )δµν

−
(
1− 1 + x

2
m2

+ − 1− x

2
m2

−

)
(n2+H

+
µ H

+
ν + n2−H

−
µ H

−
ν )δij

−m2
−n

2
+U

−
i U

−
j H

+
µ H

+
ν −m2

+n
2
−U

+
i U

+
j H

−
µ H

−
ν

− 1

2
m+m−n+n−(U

−
i U

+
j H

+
µ H

−
ν + U+

i U
−
j H

−
µ H

+
ν )

−Nγδijδµν

(E13)

To save some space, let’s denote

T± = 1− tanh2(W±), A = 1− 1 + x

2
m2

+ − 1− x

2
m2

−, C =
1

2
m+m−n+n−, B± = m2

∓n
2
± (E14)

Then,

Qµν
ij =


T+(U

+
i U

+
j + U−

i U
−
j )δµν −B+U

−
i U

−
j −An2

+δij −Nγδijδµν µ, ν > Mψ

T−(U
+
i U

+
j + U−

i U
−
j )δµν −B−U

+
i U

+
j −An2

−δij −Nγδijδµν µ, ν < Mψ

−CU−
i U

+
j µ > Mψ > ν

−CU+
i U

−
j µ < Mψ < ν

(E15)
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We would like to diagonalize this form, that is, find eigenvectors ϵiµ with their corresponding eigenvalues λ, such that:∑
jν

Qµν
ij ϵjν = λϵiµ (E16)

If we can show that all such eigenvalues are negative, we will have established that the rank-2 weights (E1) we have
found are indeed a local maximum of the log-likelihood.

1. Symmetric eigenvectors

The form Qµν
ij is invariant under permutation of hidden units within the + and − groups (that is, permutations

that preserve the inequalities µ > Mψ and µ < Mψ). We therefore propose eigenvectors of the form:

ϵiµ = ϵ+i H
+
µ + ϵ−i H

−
µ =

{
ϵ+i µ > Mψ

ϵ−i µ < Mψ
(E17)

These vectors fully preserve the symmetry of hidden units within a group. Substituting this eigenvector proposal, we
find∑
jν

Qµν
ij ϵjν =

∑
j

∑
ν>Mψ

Qµν
ij ϵ

+
j +

∑
j

∑
ν<Mψ

Qµν
ij ϵ

−
j

=

{
T+
∑
j ϵ

+
j (U

+
i U

+
j + U−

i U
−
j )−M+B+

∑
j ϵ

+
j U

−
i U

−
j − (M+An

2
+ +Nγ)ϵ+i −M−C

∑
j U

−
i U

+
j ϵ

−
j µ > Mψ

T−
∑
j ϵ

−
j (U

+
i U

+
j + U−

i U
−
j )−M−B−

∑
j ϵ

−
j U

+
i U

+
j − (M−An

2
− +Nγ)ϵ−i −M+C

∑
j U

+
i U

−
j ϵ

+
j µ < Mψ

(E18)
To have an eigenvector here, this must be equal to λϵiµ, where λ is an eigenvalue. We can then write the eigen-
equations:

T+
∑
j

ϵ+j (U
+
i U

+
j + U−

i U
−
j )−M+B+

∑
j

ϵ+j U
−
i U

−
j −M−C

∑
j

U−
i U

+
j ϵ

−
j = (λ+M+An

2
+ +Nγ)ϵ+i

T−
∑
j

ϵ−j (U
+
i U

+
j + U−

i U
−
j )−M−B−

∑
j

ϵ−j U
+
i U

+
j −M+C

∑
j

U+
i U

−
j ϵ

+
j = (λ+M−An

2
− +Nγ)ϵ−i

(E19)

The most general ϵ±i can be written in the form ϵ±i = ζ±+U
+
i +ζ±−U

−
i +ζ±⊥Y

±
i , where Y ±

i are some vectors perpendicular

to the data, that is,
∑
i Y

±
i V

k
i = 0. The coefficients ζ’s are to be determined. Recalling the squared norm of U±

i is
N 1±x

2 , it follows that:

NT+

(
1 + x

2
ζ++U

+
i +

1− x

2
ζ+−U

−
i

)
−NM+B+

1− x

2
ζ+−U

−
i −NM−C

1 + x

2
ζ−+U

−
i

= (λ+M+An
2
+ +Nγ)(ζ++U

+
i + ζ+−U

−
i + ζ+⊥Y

+
i )

(E20)

and

NT−

(
1 + x

2
ζ−+U

+
i +

1− x

2
ζ−−U

−
i

)
−NM−B−

1 + x

2
ζ−+U

+
i −NM+C

1− x

2
ζ+−U

+
i

= (λ+M−An
2
− +Nγ)(ζ−+U

+
i + ζ−−U

−
i + ζ−⊥Y

−
i )

(E21)

Considering the linearly independent components, these equations break apart into:(
NT+

1 + x

2
− λ−M+An

2
+ −Nγ

)
ζ++ = 0, (along U+

i , µ > Mψ)(
NT−

1− x

2
− λ−M−An

2
− −Nγ

)
ζ−− = 0, (along U−

i , µ < Mψ)(
N(T+ −M+B+)

1− x

2
− λ−M+An

2
+ −Nγ

)
ζ+− −NM−C

1 + x

2
ζ−+ = 0, (along U−

i , µ > Mψ)(
N(T− −M−B−)

1 + x

2
− λ−M−An

2
− −Nγ

)
ζ−+ −NM+C

1− x

2
ζ+− = 0, (along U+

i , µ < Mψ)

(λ+M+An
2
+ +Nγ)ζ+⊥ = 0, (along Y +

i , µ > Mψ)

(λ+M−An
2
− +Nγ)ζ−⊥ = 0, (along Y −

i , µ < Mψ)

(E22)
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Here we are careful to not eliminate the coefficients ζ’s because they can be zero! Indeed, we have the following
possibilities:

• ζ++ is non-zero. Then λ++ = NT+
1+x
2 −M+An

2
+ −Nγ. All the other coefficients ζ’s vanish. The perturbation

is ϵiµ ∝ U+
i H

+
µ .

• ζ−− is non-zero. Then λ−− = NT−
1−x
2 −M−An

2
− −Nγ. All the other coefficients ζ’s vanish. The perturbation

is ϵiµ ∝ U−
i H

−
µ .

• ζ+⊥ is non-zero. Then λ+⊥ = −M+An
2
+ −Nγ. All the other coefficients ζ’s vanish. This has degeneracy N − 2

for all the directions that Y +
i can take. The perturbation is ϵiµ ∝ Y +

i H
+
µ .

• ζ−⊥ is non-zero. Then λ−⊥ = −M−An
2
− −Nγ. All the other coefficients ζ’s vanish. This has degeneracy N − 2

for all the directions that Y −
i can take. The perturbation is ϵiµ ∝ Y −

i H
−
µ .

The only remaining possibility has ζ+− , ζ
−
+ non-zero, and all the other coefficients ζ++ = ζ−− = ζ+⊥ = ζ−⊥ = 0 zero. The

perturbation is of the ”mix” form ϵiµ = ζ−+U
+
i H

−
µ + ζ+−U

−
i H

+
µ . These perturbations can be interpreted as a partial

displacement of hidden units from being aligned to U+
i , towards being aligned to U−

i (or vice-versa). In this case we
obtain a 2× 2 system of equations:(

N(T+ −M+B+)
1− x

2
−M+An

2
+ −Nγ

)
ζ+− −NM−C

1 + x

2
ζ−+ = λζ+−(

N(T− −M−B−)
1 + x

2
−M−An

2
− −Nγ

)
ζ−+ −NM+C

1− x

2
ζ+− = λζ−+

(E23)

Defining a± = N(T± −M±B±)
1∓x
2 −M±An

2
± −Nγ and b± = NM∓C

1±x
2 , we can write this as:

a+ζ
+
− − b+ζ

−
+ = λζ+−

a−ζ
−
+ − b−ζ

+
− = λζ−+

(E24)

This has the two eigenvalues (we won’t write the corresponding eigenvectors as they are messy),

λmix
± =

1

2

(
a+ + a− ±

√
(a+ − a−)2 + 4b+b−

)
(E25)

Substituting,

λmix
± =

N

2

(
(T+ −M+B+)

1− x

2
+ (T− −M−B−)

1 + x

2
−A(α+n

2
+ + α−n

2
−)− 2γ

)

± N

2

√(
(T+ −M+B+)

1− x

2
− (T− −M−B−)

1 + x

2
−A(α+n2+ − α−n2−)

)2

+ 4M+M−C2
1 + x

2

1− x

2

(E26)

Recalling the definitions

T± = 1− tanh2(W±), A = 1− 1 + x

2
m2

+ − 1− x

2
m2

−, C =
1

2
m+m−n+n−, B± = m2

∓n
2
± (E27)

We then have the large N dominant behavior:

λmix
± = −N

2

(
M+B+

1− x

2
+M−B−

1 + x

2

)

± N

2

√(
M+B+

1− x

2
−M−B−

1 + x

2

)2

+M+M−B+B−
1 + x

2

1− x

2

(E28)

where we note that 4C2 = B+B−.
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2. Eigenvectors that break hidden unit symmetry

In the previous section we have found 2N eigenvectors. We must find in total NM , thus to find the remaining
N(M − 2), we must break the symmetry of the hidden units in each group. We may consider perturbations of the
form:

ϵiµ = ϵ+i W
+
µ H

+
µ + ϵ−i W

−
µ H

−
µ =

{
ϵ+i W

+
µ µ > Mψ

ϵ−i W
−
µ µ < Mψ

(E29)

with some W±
µ that carry the newly introduced differentiation of the hidden units. These perturbations should be

orthogonal to those already considered, so we must require
∑
µH

±
µ ϵiµ = 0, which implies that∑

µ>Mψ

W+
µ =

∑
µ<Mψ

W−
µ = 0 (E30)

Now recall the full expression of the tensor Qµν
ij ,

Qµν
ij =


T+(U

+
i U

+
j + U−

i U
−
j )δµν −B+U

−
i U

−
j −An2

+δij −Nγδijδµν µ, ν > Mψ

T−(U
+
i U

+
j + U−

i U
−
j )δµν −B−U

+
i U

+
j −An2

−δij −Nγδijδµν µ, ν < Mψ

−CU−
i U

+
j µ > Mψ > ν

−CU+
i U

−
j µ < Mψ < ν

(E31)

When forming the product
∑
jν Q

µν
ij ϵjν , any sum of ϵjν over ν > Mψ or ν < Mψ will vanish. This observation implies

that ∑
jν

Qµν
ij ϵjν =

∑
jν

Q̃µν
ij ϵjν (E32)

where we have removed from the ”effective” tensor Q̃ any contributions that are proportional to H±
ν ,

Q̃µν
ij =


T+(U

+
i U

+
j + U−

i U
−
j )δµν −Nγδijδµν µ, ν > Mψ

T−(U
+
i U

+
j + U−

i U
−
j )δµν −Nγδijδµν µ, ν < Mψ

0 otherwise

(E33)

With this in mind, it follows that
∑
jν Q

µν
ij ϵjν simplifies to:∑

jν

Qµν
ij ϵjν =

∑
j

[T+(U
+
i U

+
j + U−

i U
−
j )−Nγδij ]ϵ

+
j W

+
µ H

+
µ

+
∑
j

[T−(U
+
i U

+
j + U−

i U
−
j )−Nγδij ]ϵ

−
j W

−
µ H

−
µ

(E34)

Recalling that
∑
i(U

±
i )2 = N 1±x

2 , and that W+
µ ,W

−
µ each span M+− 1 and M−− 1 dimensional spaces, respectively,

we can write down immediately the 6 eigenvectors:

• ϵ+i ∝ U+
i and ϵ−i = 0, with eigenvalue λb++ = NT+

1+x
2 −Nγ. The W+

µ are free to span a M+ − 1-dimensional

space subject to
∑
µ>MψW

+
µ = 0.

• ϵ+i ∝ U−
i and ϵ−i = 0, with eigenvalue λb−+ = NT+

1−x
2 −Nγ. The W+

µ are free to span a M+ − 1-dimensional
space.

• ϵ−i ∝ U+
i and ϵ+i = 0, with eigenvalue λb+− = NT−

1+x
2 −Nγ. The W−

µ are free to span a M− − 1-dimensional
space.

• ϵ−i ∝ U−
i and ϵ+i = 0, with eigenvalue λb−− = NT−

1−x
2 −Nγ. The W−

µ are free to span a M− − 1-dimensional
space.

• ϵ+i , ϵ
−
i are both perpendicular to both U+

i and U−
i , spanning a N − 2-dimensional space. The eigenvalue equals

−Nγ. The W+
µ ,W

−
µ together span a M − 2-dimensional space.

Summing the multiplicities of these eigenvalues, we have a total of 2M − 4 + (N − 2)(M − 2) = N(M − 2), indeed
just what we were missing.
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FIG. S2. Comparison of Rank-2 ansatz to weights obtained from training RBMs on two data points with different values of
the regularization γ.

3. Signs of the eigenvalues

Now we want to check whether these eigenvectors we have found have negative eigenvalues. The perpendicular
modes λ±⊥ < 0 are manifestly negative. Similarly, λmix

− < 0 is clearly negative. For λmix
+ , noting that 4C2 = B+B−,

we can write:

λmix
+ = −N

2

(
M+B+

1− x

2
+M−B−

1 + x

2

)

+
N

2

√(
M+B+

1− x

2
+M−B−

1 + x

2

)2

− 3M+M−B+B−
1 + x

2

1− x

2

≤ −N
2

(
M+B+

1− x

2
+M−B−

1 + x

2

)
+
N

2

√(
M+B+

1− x

2
+M−B−

1 + x

2

)2

= 0

(E35)

and thus is also negative.
The modes λ++, λ

−
− correspond to perturbations that do not change the form of the rank-2 solution we have proposed.

Since we claim this solution to be a maximum among weights of this form, at least within solutions of this form, these
modes should be negative!

Finally consider the modes breaking the hidden unit symmetry. We observe that λ++ = λb++ −M+An
2
+ ≤ λb++

and λ−− = λb−− −M−An
2
− ≤ λb−−. Also, since we assume that x ≥ 0, we have that λb−+ ≤ λb++ and λb−− ≤ λb+−.

Therefore, to establish the stability of a solution, it suffices to consider the eigenvalues λb++ and λb+−. We have checked
numerically that these pair of eigenvalues are negative, across a wide range of values of x, α, γ.

4. Numerical verification

To conclude, we have shown that the weights (E1) give a stable local maxima of the regularized log-likelihood.
We cannot rule out the possibility of a better global maximum, but this seems unlikely. We also report numerical
simulations of RBMs trained by persistent contrastive divergence at various levels of regularization and which show
excellent agreement with (E1). See Figure S2.
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5. Phase transition from rank-1 to rank-2 weights

For large enough γ the weights are are of rank-1, thus ψ = 0 in (E1). In this case all hidden units align along the
principal direction U+

i (recall we assume throughout x > 0). By repeating the above perturbative analysis around
the rank-1 weights, we find that this solution eventually becomes unstable to perturbations U−

i that affect some of
the hidden units and thus break their equivalence.

This is a genuine phase transition, where ψ passes from being zero, to taking non-zero values as the weights become
of rank 2. To find the critical parameters separating the two regimes, we can differentiate the log-likelihood with
respect to ψ, and evaluate at ψ = 0. This gradient is negative in the rank-1 regime (where increasing ψ is detrimental
to the likelihood), but becomes positive in the rank-2 phase. Thus setting ∂LL/∂ψ = 0, gives the equation:

ln cosh(W+)− ln cosh(W+m+)−
W 2

+γ

1 + x
=

ln cosh(W−)− ln cosh(W−m−)−
W 2

−γ

1− x

(E36)

where W±,m± are the solutions of the previous saddle-point equations. These equations determine critical values of
x, γ, α at the boundary between the rank-1 and rank-2 phases.

Appendix F: Computation of τswap

As in the main text, we consider two stacked RBMs:

• Bottom RBM, with N0 = N visible units and N1 = α1N hidden units.

• Top RBM, with N1 = α1N visible units and N2 = α1α2N hidden units.

Let (v1,h1) and (v2,h2) be visible and hidden configurations of the bottom and top RBMs, respectively. The
probability of accepting a swap h1 ↔ v2 is given by the Metropolis rule,

A(h1,v2) = min

(
1,
P 1
h (v

2)P 2
v (h

1)

P 1
h (h

1)P 2
v (v

2)

)
(F1)

where P ℓv (z) and P ℓh(z) are the marginal probabilities of the visible and hidden configurations of the two RBMs,
ℓ = 1, 2. We want to compute the average acceptance probability,

⟨A⟩ =
∑
h1,v2

P 1
h (h

1)P 2
v (v

2)A(h1,v2)

=
∑
h1,v2

min
(
P 1
h (h

1)P 2
v (v

2), P 1
h (v

2)P 2
v (h

1)
) (F2)

The typical swap time, τswap, can be estimated as the inverse of ⟨A⟩.
We assume here that the weights W 1

ij ,W
2
jk of the two RBMs are of the forms (E1), so

W 1
ij =

{
W 1

+

N0

V 1
i +V 2

i

1+x0 j > N1ψ1

W 1
−

N0

V 1
i −V 2

i

1−x0 j < N1ψ1
, W 2

jk =

{
W 2

+

N1

H1
j+H

2
j

1+x1 k > N2ψ2

W 2
−

N1

H1
j−H

2
j

1−x1 k < N2ψ2
(F3)

Here V 1
i , V

2
i refer to the two data points on which the bottom RBM was trained, while H1

j , H
2
j refer to their most

probable ”images”, that is, the most probable states of the hidden units of the bottom RBM, when conditioned on
one data point, or the other. These are given by:

H1
j = 1, H2

j =

{
+1 j > N1ψ1

−1 j < N1ψ1
(F4)

That is, we assume that the top RBM has been trained on the modes of the representations of the two bottom data
points (so we ignore fluctuations in these representations). We take care not to confuse the upper indices in V 1

i , V
2
i
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and H1
j , H

2
j , which refer to the two data points, with the upper indices used elsewhere to refer to the two RBMs of

the stack.

In turn, the most likely hidden unit configurations of the top RBM, when conditioned on H1
j , H

2
j at its visible layer,

are given by

G1
k = 1, G2

k =

{
+1 k > N2ψ2

−1 k < N2ψ2
(F5)

We also define the overlaps between the data points and their representations at each level of the stack:

x0 =
1

N0

∑
i

V 1
i V

2
i = 1− 2ψ0

x1 =
1

N1

∑
j

H1
jH

2
j = 1− 2ψ1

x2 =
1

N2

∑
k

G1
kG

2
k = 1− 2ψ2

(F6)

We can assume without losing generality that V 1
i = 1 for all i, and that V 2

i = 1 or V 2
i = −1 according to whether

i > N0ψ0 or i < N0ψ0, with x0 = 1− 2ψ0 (see below). This can always be arranged by re-defining the signs of some
sites i, and by re-ordering indexes i appropriately. Then the weights can be writen in block-form:

W 1
ij =


W 1

+

N0
+

i > N0ψ0, j > N1ψ1

W 1
−

N0
−

i < N0ψ0, j < N1ψ1

0 otherwise

, W 2
jk =


W 2

+

N1
+

j > N1ψ1, k > N2ψ2

W 2
−

N1
−

j < N1ψ1, k < N2ψ2

0 otherwise

(F7)

where N ℓ
± = N ℓ 1±xℓ

2 . That is, the weight matrices W 1 and W 2 are block-diagonal. On the bottom RBM, the visible

units i > N0ψ0 are only connected to hidden units j > N1ψ1, while the visible units i < N0ψ0 are only connected to
hidden units j < N1ψ1. The RBM decouples into two independent ”sub-RBMs”. Similar remarks hold of course for
the top RBM.

The hidden layer of the bottom RBM and the visible layer of the top RBM have the same dimensions and can
exchange their configurations. For a configuration h1,v2 of either of these layers, we can define the overlaps:

n+(h) =
1

N1
+

∑
j>N1ψ1

hj , n−(h) =
1

N1
−

∑
j<N1ψ1

hj (F8)

With these definitions, we have that:

P 1
h (h

1) =
e−N

1E1
h(h

1)

Z1
, P 2

v (v
2) =

e−N
1E2

v(v
2)

Z2
(F9)

where Z1, Z2 are the partition functions of the two RBMs, and E1
h(h

1), E2
v (v

2) are the effective energies in each layer,
divided by the number of units in the layer:

−E1
h(h

1) =
1

N1

∑
i

ln 2 cosh

∑
j

W 1
ijh

1
j


=
ψ0
+

α1
ln cosh

W 1
+

N0
+

∑
j>N1ψ1

h1j

+
ψ0
−
α1

ln cosh

W 1
−

N0
−

∑
j<N1ψ1

h1j

+
ln 2

α1

=
ψ0
+

α1
ln cosh

(
ψ1
+

ψ0
+

α1W 1
+n+(h

1)

)
+
ψ0
−
α1

ln cosh

(
ψ1
−

ψ0
−
α1W 1

−n−(h
1)

)
+

ln 2

α1

(F10)
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and

−E2
v (v

2) =
1

N1

∑
k

ln 2 cosh

∑
j

W 2
jkv

2
j


= α2ψ2

+ ln cosh

W 2
+

N1
+

∑
j>N1ψ1

v2j

+ α2ψ2
− ln cosh

W 2
−

N1
−

∑
j<N1ψ1

v2j

+ α2 ln 2

= α2ψ2
+ ln cosh

(
W 2

+n+(v
2)
)
+ α2ψ2

− ln cosh
(
W 2

−n−(v
2)
)
+ α2 ln 2

(F11)

where ψℓ+ = 1 − ψℓ and ψℓ− = ψℓ. Notice that the dependence on the configurations h1,v2 occurs only through the
overlaps n±(h

1), n±(v
2). Let’s denote n = (n+(h

1), n−(h
1)) and m = (n+(v

2), n−(v
2)), to distinguish them. We

can define:

E1
h(n) =

ψ0
+

α1
E1
+(n+) +

ψ0
−
α1

E1
−(n−)

E2
v (m) = α2ψ2

+E2
+(m+) + α2ψ2

−E2
−(m−)

(F12)

with,

−E1
±(n±) = ln cosh

(
ψ1
±

ψ0
±
α1W 1

±n±

)
+ ln 2

−E2
±(m±) = ln cosh(W 2

±m±) + ln 2

(F13)

It follows that,

⟨A⟩ =
∑
h1,v2

min

(
e−N

1E1
h(h

1)

Z1

e−N
1E2

v(v
2)

Z2
,
e−N

1E1
h(v

2)

Z1

e−N
1E2

v(h
1)

Z2

)

=

∫
min

(
e−N

1E1
h(n)

Z1

e−N
1E2

v(m)

Z2
,
e−N

1E1
h(m)

Z1

e−N
1E2

v(n)

Z2

)
eN

1[S(n)+S(m)]dndm

(F14)

where we have defined the entropy:

eN
1S(n) =

∑
h

δ

n+ − 1

N1
+

∑
j>N1ψ1

hj

 δ

n− − 1

N1
−

∑
j<N1ψ1

hj

 (F15)

with the sum over h going through all 2N1 configurations of the contact layer. We note here the expression for this
entropy:

S(n) = ψ1
+S+

h (n+) + ψ1
−S−

h (n−) (F16)

where

S±(n±) = min
n̂

[−n±n̂± + ln cosh(n̂±)] + ln 2 (F17)

Since the constraint acting on the units j < N1ψ1 is independent from the constraint acting on the units j > N1ψ1,
the entropy decouples, with two independent additive contributions. Clearly n± = tanh(n̂±), so that

S±(n±) = −n± atanh(n±) + ln cosh atanh(n±) + ln 2

= −1 + n±
2

ln

(
1 + n±

2

)
− 1− n±

2
ln

(
1− n±

2

)
(F18)

equals the Spin entropy. Defining the action

A(n,m) = max{E1
h(n) + E2

v (m), E1
h(m) + E2

v (n)} − S(n)− S(m) (F19)
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it follows that

⟨A⟩ = 1

Z1Z2

∫
e−N

1A(n,m)dndm (F20)

For large N this is dominated by the n,m that minimizes A. Notice that the total entropy S(n) +S(m) remains the
same before and after the swap. At the minimum of A, the energies before and after the swap must coincide:

E1
h(n) + E2

v (m) = E1
h(m) + E2

v (n) (F21)

i.e., at such a point there is no energy cost to swapping the configurations. Clearly n = m satisfies this condition.
Let’s minimize A, subject to this condition. We introduce a Lagrangian, of the form

L(n,m;λ) = E1
h(n) + E2

v (m)− S(n)− S(m)− λ
[
E1
h(n) + E2

v (m)− E1
h(m)− E2

v (n)
]

(F22)

that we minimize over n,m, while setting the Lagrange multiplier λ so as to satisfy the previous energy equality at
the exchange. Rearranging terms, we can write

L = L(n;λ) + L(m; 1− λ) (F23)

with

L(n;λ) = (1− λ)E1
h(n) + λE2

v (n)− S(n)

Recall that

E1
h(n) =

ψ0
+

α1
E1
+(n+) +

ψ0
−
α1

E1
−(n−)

E2
v (m) = α2ψ2

+E2
+(m+) + α2ψ2

−E2
−(m−)

S(n) = ψ1
+S+(n+) + ψ1

−S−(n−)

(F24)

with

E1
±(n±) = − ln cosh

(
ψ1
±

ψ0
±
α1W 1

±n±

)
− ln 2

E2
±(m±) = − ln cosh(W 2

±m±)− ln 2

S±(n±) = min
n̂

[−n±n̂± + ln cosh(n̂±)] + ln 2

(F25)

It follows that:

L(n;λ) = L+(n+;λ) + L−(n−;λ)

with

L±(n±;λ) = (1− λ)
ψ0
±
α1

E1
±(n±) + λα2ψ2

±E2
±(n±)− ψ1

±S±(n±) (F26)

Therefore

L = L+(n+;λ) + L−(n−;λ) + L+(m+; 1− λ) + L−(m−; 1− λ) (F27)

Differentiating,

∂L
∂n±

= −(1− λ)ψ1
±W

1
± tanh

(
ψ1
±

ψ0
±
α1W 1

±n±

)
− λα2ψ2

±W
2
± tanh(W 2

±n±) + ψ1
±n̂±

∂L
∂m±

= −λψ1
±W

1
± tanh

(
ψ1
±

ψ0
±
α1W 1

±m±

)
− (1− λ)α2ψ2

±W
2
± tanh(W 2

±m±) + ψ1
±m̂±

(F28)

We set these to zero and obtain saddle-point equations giving n̂±, m̂± as function of the others. Then we also use
n± = tanh(n̂±) and m± = tanh(m̂±) to complete the system of equations.
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FIG. S3. Crossing between minima in a simple free-energy landscape.

To finish the calculation we need the partition functions Z1, Z2. But these follow for free, by setting λ = 0 in the
previous Lagrangian.

Having determined these saddle-points, at λ = λ∗ (which satisfies the equivalent exchange energy condition) and
at λ = 0 (for the partition functions), we have that, in the large N limit,

⟨A⟩ ∼ e−N
1A(λ∗)

e−N1A(0)

where A(λ) denotes the saddle-point value,

A(λ) = A(n,m) = E1
h(n) + E2

v (m)− S(n)− S(m)

with m,n solving the previous saddle-point conditions, at the given value of λ.
It is also not difficult to see that we must have λ∗ = 1/2, and the exchange happens at a point with m = n,

A∗ = extr
m+,m−

E1
h(m) + E2

v (m)− 2S(m) (F29)

as claimed in the main text.

Appendix G: Computation of τcross

The time to cross from one minima of the free energy to another can be estimated from the tallest energetic barrier
that needs to be crossed along the path that connects them [7].
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The RBM with weights (E1), generates data around four clusters that can be labeled by the signs of the overlap
parameters m+,m−, as follows: (m+,m−), (m+,−m−), (−m+,m−), and (−m+,−m−). Here m+,m− are the
(positive) roots of the saddle-point equations (7) in the main text.

The values m± = 0 are always stationary solution of equations (7). But they do not correspond to minima of the
free-energy, instead they are saddle-points. The RBM can jump from one cluster to another, by passing through these
saddle-points. We can define the free-energy as a function of the saddle-point overlaps:

F ∼ − 1

N
lnZ ∼ F+(m+, n+) + F−(m−, n−) (G1)

where

−F± = α±W±m±n± +
1± x

2
S±
v (m±) + α±S±

h (n±) (G2)

and

S±
v (m±) = min

m̂±
[−m±m̂± + ln cosh(m̂±)] + ln 2

S±
h (n±) = min

n̂±
[−n±n̂± + ln cosh(n̂±)] + ln 2

(G3)

Then, if a saddle-point with non-zero m−, n− exists, it is the minimum of the free energy, while the solution m− =
n− = 0, which continues to exist, is a saddle-point. These saddle-points are used to cross from one cluster to another,
see Fig. S3. For instance, to cross from (m+,m−) to (m+,−m−), the least-action path is through m− = 0, and the
transition energy cost corresponds to

F−(m−)−F−(0) (G4)

Appendix H: Parameters used in simulations of crossing rates

Figure 5(b) in the main text simulates the rate at which two stacked RBMs jump between between energetic wells,
in two parameter settings:

• x = 0.8, α1 = 0.4, w1 = 1.2, y1 = 0.2 for the bottom RBM, and α2 = 0.9, w2 = 1.5, y2 = 0.3 for the top (in
black in the Figure).

• x = 0.8, α1 = 0.4, w1 = 2.0, y1 = 0.4 for the bottom RBM, and α2 = 0.9, w2 = 1.7, y2 = 0.3 for the top (blue
in the Figure).

Then in Figure 5(c) of the main text we considering the time it takes for an RBMs to jump between energetic wells,
in two parameter settings:

• α = 0.7, x = 0.2, y = 0.1 and w = 1.5 (black).

• α = 0.7, x = 0.4, y = 0.2 and w = 1.8 (blue).

H(m) = −1 +m

2
ln

(
1 +m

2

)
− 1−m

2
ln

(
1−m

2

)
(H1)

Appendix I: Supplementary tables
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1st RBM 2nd RBM 3rd RBM 4th RBM
MNIST (0/1) 8 4 4 2
MNIST (full) 15 5 4 3
2-D Ising 10 5 2 -

Lattice proteins 30 5 < 1 -

TABLE S3. Stacked RBMs training times (in minutes) for each dataset. All RBMs were trained on a NVIDIA RTX A5000
GPU, as described in Section A.

AGS PT(10) PT(100) PT(1000) ST
MNIST (0/1) < 1 6 10 67 3
2-D Ising 1 7 14 76 6

Lattice proteins 2 10 17 93 7

TABLE S4. Stacked RBMs sampling times (in minutes) for each dataset and algorithm. The time reported is the time necessary
to complete 10000 alternate Gibbs sampling (AGS) steps times 100 MC chains, in each case. Note that different algorithms
perform more or less AGS per iteration. A full sweep over all temperatures in PT involves one AGS per temperature, while a
full sweep of exchanges in ST involves one AGS per RBM in the stack. Computations performed on a NVIDIA RTX A5000
GPU.

AGS PT(10) PT(100) PT(1000) ST
MNIST (0/1) 6.3× 103 1.4× 103 1.1× 103 1.0× 103 1.5× 102

2-D Ising 3.3× 105 1.5× 105 5.2× 104 4.1× 104 9.7× 102

Lattice proteins 4.0× 107 2.9× 107 2.8× 106 3.1× 105 5.0× 102

TABLE S5. Autocorrelation times of different sampling strategies: Alternate Gibbs sampling (AGS), Parallel Tempering (PT,
number of intermediate temperatures indicated), and Stacked Tempering (ST). Estimated as the exponential decay of the
correlation coefficient in time of the digit classification score (for MNIST0/1), the magnetization (for the Ising model), or the
structure probability (for the Lattice proteins). See also Figure S7 for different sizes of the 2-D Ising model (here L = 32).
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Appendix J: Additional Figures
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FIG. S4. Overlaps of representations in the 2D Ising model dataset. The left column shows histograms of the Ising spins,
the hidden representations of the first RBM, and the hidden representations of the second RBM, in each row. The overlap
is defined as the dot product of two configurations, divided by the number of spins. In blue and green we compute overlaps
between configurations of the same magnetization sign, while in yellow the overlaps are computed between configurations of
opposite magnetization signs. The right column plots the average overlap in each case, for each RBM layer. At deeper levels
in the stack, configurations of opposite magnetizations are mapped to representations that become more distant in terms of
overlaps, while configurations having magnetizations of the same sign get closer. This geometry is consistent with a clustering
of related data points, as indicated by the green arrows.
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FIG. S5. Overlaps of representations in the MNIST 0/1 dataset. Like Fig. S4, but for the MNIST0/1 dataset. Overlaps of
images in the data space are computed by ignoring pixels that are always off across all images. At deeper levels in the stack,
images of distinct digits are mapped to representations that become more distant in terms of overlaps, while pairs of images of
the same digit are drawn closer to each other. This geometry is consistent with clustering of similar data points, as indicated
by the green arrows.
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FIG. S6. Overlaps of representations in the MNIST (full) dataset at different levels along the stack of RBMs. Light red
lines correspond to pairs of different digits (e.g., overlaps between images of digits 4 and images of digits 5), while gray lines
correspond to overlaps between images of the same digit. The thick lines depict the average trend over all pairs of same digits
(black) and all pairs of distinct digits (red). At deeper levels in the stack, images of distinct digits are mapped to representations
that become more distant in terms of overlaps, while pairs of images of the same digit are drawn closer to each other. This
geometry is consistent with clustering of similar data points, as indicated by the green arrows.
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FIG. S7. Autocorrelation times (defined as in Table S5, and in terms of the number of AGS steps) in the 2D-Ising model for
different algorithms, as function of the system length, L (the number of spins equals L2 in the square grid). See also Table S5
which gives the results for L = 32. Time in the x-axis is measured as the number of alternative Gibbs sampling (AGS) steps for
each algorithm. For example, in Stacked Tempering (ST) with 4 RBM layers, each iteration of the algorithm involves 4 AGS
steps (one per RBM). A) Compares ST with parallel tempering (PT) with different numbers of intermediate temperatures,
and to AGS. In A) and in the simulations shown in main-text, the bottom RBM has m = 50 hidden units, which might not
be the optimal choice for different system sizes L. To illustrate the dependence on m, we compare in B) the autocorrelations
for m = 50 and m = 100, both for ST and for AGS. Increasing m lets the bottom RBM fit better the Ising model data, but
decreases the exchange rates with deeper RBMs (whose hyper-parameters have not changed).
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FIG. S8. Example magnetization trajectories as function of time for sampled configurations of the 2D-Ising model (L = 32),
for different algorithms: AGS (top row), ST (second row), PT (bottom row). Time is measured in terms of the number of
Alternating Gibbs sampling (AGS) steps performed in each case. For example, stacked tempering (ST) with 4 RBM layers
performs 4 AGS steps per iteration.
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FIG. S9. Schematic representation of the landscape Ev
1 (v), E

v
2 (v) and Ev

3 (v) learned by the different RBMs represented in the
panel (d). The details of the landscape are progressively smoothing out but in the same time the free energy barriers between
the different modes are decreasing.
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Appendix K: Source code

A Julia package implementing the algorithms discussed in this paper can be found at: https://github.com/
2024stacktemperingrbm/StackedTempering.jl.

https://github.com/2024stacktemperingrbm/StackedTempering.jl
https://github.com/2024stacktemperingrbm/StackedTempering.jl
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