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A Broader Impacts

We propose a single framework for multi-dataset multi-task segmentation, which especially benefits
memory-limited application scenarios, e.g., our work can make a single segmentation model that
meets all kinds of segmentation needs on memory-limited mobile devices (semantic segmentation for
photo editing, instance segmentation for object detection and image search, etc.), instead of using
separate models for various segmentation tasks.

Moreover, our approach improves segmentation performance from a data-centric view: We leverage
segmentation data from multiple sources to improve the overall segmentation performance, especially
on datasets of smaller scales, e.g., ADE20k semantic. We also transfer knowledge from other sources
to enable weakly-supervised segmentation. This is helpful on the scenario where segmentation data
are very hard to collect, we can cotrain on similar data to help improve the performance, or even
train on data with weaker supervision. e.g., if we want to train a segmentation model on rare wild
animals, we can co-train a model on a small set of these kinds of animals, and a larger dataset of
more common animals.

As for bias and fairness, our model learns from the training data, so it may inherit the bias and fairness
issues existing in the training data. Nonetheless, our model trains on multiple sources, and the fairer
datasets may compensate the bias and fairness issues in other datasets.

B More about our newly labeled Objects365 instance segmentation
evaluation dataset

We randomly sampled 1,000 images from the Objects365 V2 validation set. Different from the
“federated” LVIS dataset [18] (not all categories in each image are completely labeled), the bounding
boxes in Objects365 are completely labeled for all categories and we follow this complete annotation
in our instance masks. For each bounding box annotation, we generate a foreground/background
annotation question for the raters. In the question, raters are asked to paint a semi-transparent instance
mask on the original image, with the groundtruth bbox shown on the image as a guide and the
groundtruth category displayed on the side. We do not crop the original image to the bbox region,
but show the entire image to provide more context information, which is especially helpful for small
objects. If the boundary is too blurry or too dark to annotate the instance mask, the raters can skip the
question.

The annotation tool is a free painting tool, which allows the raters to freely draw the instance mask.
We ask the raters to try to draw within the bbox, but if the object is obviously exceeding the bbox,
then they can draw outside the bbox. The size of the stroke is adjustable. Raters can zoom-in/out,
draw straight lines, and fill the inside of a plotted boundary with a single click (which is quite useful
for instance segmentation). Unlike polygons in COCO etc., the annotation tool allows us to save
higher-resolution binary masks.

We inserted a total of 13,372 questions. Following the common practice in instance segmentation, we
did not label the crowd instances, as they are skipped in both training and inference. In the end, we
obtained 12,836 valid instance mask annotations. It took a total of 800.59 rater hours. On average,
raters spent 3.74 minutes on each valid mask.

In Fig. 5, we show some statistics about our Objects365 instance segmentation dataset. The number
of masks per category follows a relatively long-tailed distribution (Fig. 5(a)). The number of masks
per image reveals that a large number of images have many instance annotations (Fig. 5(b)). And the
statistics of the relative mask size is close to that of the LVIS datasets (Fig. 5(c)).

As visualized in Fig. 6, the mask annotations are very high-quality. The raters carefully handled small
objects, thin structures, complicated shapes, occluded objects, etc.

14



(a) Number of annotated instance
masks per category. It follows a rel-
atively long tail distribution.

(b) Number of annotated instance
masks per image. More than 500
images have more than 10 instances.

(c) Relative segmentation mask size
(square root of the ratio of mask
area to image area), compared with
COCO, LVIS, and ADE20K. Our
statistics are similar to LVIS.

Figure 5: Dataset statistics for our Objects365 instance segmentation evaluation set.

Figure 6: Visualization of our Objects365 instance segmentation dataset. We store binary masks, which has
higher mask quality compared with polygons. The quality on small objects are good (first two images). Complex
structures are also labeled delicately, e.g., the camels (1st image on 2nd row) and the decoration on the cake (1st
image on 3rd row). For occlusions, raters carefully avoided the occluded regions as they are not a part of the
object to annotate, e.g., the fruits in the basket are not included in the basket masks (last image on 1st row).

For the objects which do not have an instance mask since raters skipped it, it’s possible that the model
still predicts an instance mask for that object. We include the skipped annotations to make it optional
to ignore them during evaluation, so as to avoid treating such cases as false positive.

We release this dataset. We believe this effort can provide the research community a good benchmark
for instance segmentation evaluation, e.g., for evaluating weakly-supervised instance segmentation
learned from Objects365 bounding boxes.

C Open-vocabulary semantic segmentation on PASCAL VOC

We evaluate DaTaSeg on the PASCAL VOC 2012 semantic segmentation dataset [14], which includes
20 object classes and a background class. We directly transfer our trained model to its validation
set with 1,449 images without finetuning. We follow the setting in MaskCLIP+ [76] and ignore the
background class during evaluation.

15



Method Backbone mIoU mIoU-unseen mIoU-seen
SPNet [65]

DeepLabv2-ResNet101

56.9 0.0 75.8
SPNet-C [65] 63.2 15.6 78.0
ZS3Net [3] 61.6 17.7 77.3
CaGNet [17] 65.5 26.6 78.4
STRICT [51] 70.9 35.6 82.7
MaskCLIP+ [76] 88.1 86.1 88.8
Fully-supervised 88.2 87.0 88.6

DaTaSeg
ResNet-50 89.4 87.7 89.9
ViTDet-B 92.8 90.9 93.4
ViTDet-L 94.7 94.3 94.9

Table 6: Open-vocabulary semantic segmentation on the PASCAL VOC 2012 dataset. DaTaSeg outper-
forms all other zero-shot/open-vocabulary methods, and even the fully-supervised baseline. Comparison methods
are trained on 15 seen classes of PASCAL VOC and only 5 classes are unseen (mIoU-unseen). In contrast,
DaTaSeg has never seen the PASCAL VOC dataset during training (it’s trained on several other datasets). We
attribute DaTaSeg’s performance improvement to our multi-dataset multi-task training. Following [76], the
background class is ignored. The numbers of the comparison methods are from [76]. SPNet-C stands for SPNet
with calibration.

Fully-supervised Weakly-supervised transfer

Dataset sampling ratio
ADE COCO ADE O365

semantic panoptic semantic ! panoptic box ! instance
mIoU PQ PQ mask AP

1:4:4 48.1 49.0 29.8 14.3
1:2:2 46.8 48.6 29.1 12.8
1:1:1 45.3 48.0 28.4 13.7

Table 7: Ablation study on dataset sampling ratio (ADE:COCO:O365). Evaluated on a ResNet50 backbone.
Results show that our adopted sampling ratio (1:4:4) is better than the other sampling ratios.

We compare with other zero-shot and open-vocabulary segmentation methods in Table 6, which are
trained on 15 seen classes with 5 classes held out during training as unseen classes (potted plant,
sheep, sofa, train, and TV monitor). DaTaSeg has never seen the PASCAL VOC dataset during
training, though it is trained on other segmentation datasets (COCO panoptic, ADE semantic, and
Objects365 detection). DaTaSeg with a ResNet-50 backbone outperforms all these methods with
DeepLabv2-ResNet101 backbones. Surprisingly, DaTaSeg even outperforms the fully-supervised
counterpart. We attribute DaTaSeg’s performance improvement to our multi-dataset multi-task
training. We note this is not an apple-to-apple comparison, since the training sources are different.
The main purpose of this comparison is to show how our “data-centric” DaTaSeg is positioned
against zero-shot/open-vocabulary segmentation methods on the PASCAL VOC dataset, using a
direct transfer manner.

D Ablation studies

We perform more ablation studies in this section.

Ablation study on dataset sampling ratio: Our dataset sampling strategy (Sec. 3.5) avoids the
imbalance of dataset sampling by specifying the per-dataset sampling ratio. The proportion of training
samples coming from each dataset in the whole training process is determined by that sampling ratio.
In our main results, the sampling ratio is 1:4:4 for ADE:COCO:O365. We ablate the dataset sampling
ratio in Table 7. Results show that our adopted sampling ratio is better than the other sampling ratios.

Ablation study on the portion of Objects365 training data: Readers may have the question about
the trade-offs between the quality and quantity of the training samples when we introduce the weakly-
supervised training data (Objects365). In Table 2, we show the results with and without cotraining on
Objects365. The performance is generally better when cotraining on Objects365. In addition, we
experiment with cotraining on different portions of the dataset: we cotrain DaTaSeg on the full COCO
panoptic and ADE semantic datasets, and 10% / 25% / 50% / 100% of O365 training data. We show
the results in Table 8. Results show that when increasing the number of O365 weakly-supervised
training samples, O365 performance increases, COCO panoptic performance is not affected, and
ADE20k performance slightly decreases. Overall, the gains are larger than the losses.
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Fully-supervised Weakly-supervised transfer

Portion of O365 training data
ADE COCO ADE O365

semantic panoptic semantic ! panoptic box ! instance
mIoU PQ PQ mask AP

10% 48.5 48.7 30.0 10.4
25% 48.6 48.3 30.6 12.0
50% 47.7 48.5 29.8 13.1

100% 47.2 48.7 29.4 14.5

Table 8: Ablation study on the portion of O365 training data. Evaluated on a ResNet50 backbone. When
increasing the number of O365 weakly-supervised samples, O365 performance increases, COCO panoptic
performance is not affected, and ADE20k performance slightly decreases.

�proj µproj
ADE COCO ADE O365

semantic panoptic semantic ! panoptic box ! instance
5.0 1.0 45.5 48.3 28.4 12.5
2.0 0.5 47.2 48.7 29.4 14.5

Table 9: Ablation study on the projection loss Lproj weights. Evaluated on a ResNet50 backbone. The results
indicate that the 2nd setting (our final setting) has a better performance on all datasets.
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Figure 7: Dataset-specific queries in the transformer decoder. We use different dataset-specific queries Qd

for each dataset d, which are treated the same as the segment queries Qs, and involved in both cross-attention
and self-attention. All dataset-specific queries are discarded before predicting masks and classes.

Ablation study on projection loss Lproj weights: Our settings of � and µ (Table 13) closely follow
Maskformer series [10, 8]. We add the the bounding-box projection loss Lproj for Objects365. We
run an ablation study on the weights (�proj and µproj) for the projection loss in Table 9. The results
indicate that the 2nd setting (our final setting) has a better performance on all datasets. Finding the
optimal weights for multiple losses is an interesting yet challenging problem, and we leave it for
future work.

E Adding dataset-specific modules hurts performance

In this section, we first introduce our designed dataset-specific modules and then show more ablation
studies on these modules.

As prior works have pointed out [33, 61], there are many inconsistencies across segmentation datasets,
including labels having their own particular definition, being annotated using different protocols, etc.
We explore if adding dataset-specific modules can improve overall performance by designing the
following modules.

Dataset-specific queries: In our architecture design introduced in Sec. 3.4, an input image will not
get any dataset-specific information until the text embedding classifier, which is almost at the final
stage of the network. We thus propose to add a few dataset-specific queries Qd as an auxiliary input
to the beginning of transformer decoder. Each training dataset d has its own Qd. The dataset-specific
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Figure 8: Overview of incorporating all our designed dataset-specific modules into our universal multi-
dataset multi-task segmentation model (DaTaSeg). We design a set of dataset-specific queries fed into the
transformer decoder, dataset-specific classification head, and dataset-specific background classifier. They are
highlighted in orange. All these modules are learnable. Different datasets have separate parameters for these
modules.

queries are treated the same as regular segment queries Qs. The only difference is that we do not
make mask and class predictions for the dataset-specific queries. Fig. 7 shows the details. In the
cross-attention layer, Qd cross attends to the image features — the cross-attention weight is:
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where Imulti are the multi-scale image features in Sec. 3.4. Wq,Wk denote the linear projection
weights; A denotes the attention mask.

In the self-attention layers, there are interactions for all pairs of Qd and Qs, allowing the segment
queries to be aware of the dataset-specific information at the beginning of transformer decoder. This
can be shown by the self-attention weight calculation:
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Dataset-specific classification head and background classifier: We observe that dataset incon-
sistency tends to primarily be a classification issue, rather than localization issue. Hence, for all
datasets we use the same set of parameters for localization (backbone, pixel decoder, transformer
decoder, mask embedding head) to enhance knowledge sharing. For classification, we design some
dataset-specific components: specifically, we use a dataset-specific MLP class embedding head as
well as a learnable dataset-specific background classifier, since the definitions of background vary
from dataset to dataset.

Overall dataset-specific architecture: The overall architecture equipped with all our dataset-
specific modules is shown in Fig. 8. We design the dataset-specific modules to be light-weight,
which allows us to save on memory costs. With this design of a mixture of a mostly shared network
and light-weight dataset-specific modules, the model has the freedom to choose whether to leverage
dataset-specific information, or to use the shared knowledge across datasets/tasks. However, one
significant disadvantage of adding dataset-specific modules is that it’s hard to decide which set of
dataset-specific parameters to use when directly transferring to other datasets (Sec. 4.5), and thus it
hurts the open-vocabulary capability.

Ablation studies on dataset-specific modules: We ablate on the number of dataset-specific queries
Qd in Table 10. It shows that removing the dataset-specific queries achieves the best results on COCO
panoptic and Objects365 by a large margin. It also achieves reasonable performance on other datasets.
Using 30 queries hurts the performance on COCO panoptic and ADE semantic.
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Fully-supervised Weakly-supervised transfer

# of dataset-specific queries
ADE COCO ADE O365

semantic panoptic semantic ! panoptic box ! instance
mIoU PQ PQ mask AP

0 47.8 48.1 28.6 13.1
10 48.0 46.2 28.0 11.2
20 48.6 46.6 28.5 11.7
30 47.1 45.8 27.4 11.7

Table 10: Ablation study on the number of dataset-specific queries Qd. Evaluated on a ResNet50 backbone.
Without dataset-specific queries, the performance on COCO panoptic and Objects365 instance segmentation is
much better. Using a large number of dataset-specific queries, e.g., 30, hurts performance on many datasets,
since it weakens knowledge sharing among datasets & tasks.

w/ dataset-specific classification w/o dataset-specific classification
ADE semantic mIoU 47.9 48.1 (+0.2)
COCO panoptic PQ 48.5 49.0 (+0.5)
ADE panoptic† PQ 28.7 29.8 (+1.1)
O365 instance† AP 12.9 14.3 (+1.4)

Table 11: Adding dataset-specific classification modules hurt performance on almost all datasets, espe-
cially the weakly-supervised transfer results†. The dataset-specific classification modules include the classifica-
tion embedding head and the learnable background classifier. Evaluated on a ResNet50 backbone, without other
dataset-specific modules.

In Table 11, we compare using and not using dataset-specific classification modules (the classifi-
cation embedding head and background classifier). Results indicate that removing dataset-specific
classification improves performance on all datasets & tasks, especially the weakly-supervised tasks.
We suspect it’s because weakly-supervised tasks rely more on knowledge sharing.

System-level comparison between with and without dataset-specific modules: In the main paper,
due to space limit, we only show results of adding all dataset-specific modules on a ResNet50
backbone. In Table 12, we show the same comparison on more backbones, i.e., ResNet50, ViTDet-B,
and ViTDet-L. The observation is consistent across all backbones: adding dataset-specific modules
hurts performance on all datasets. The difference is more significant on backbones of smaller scales,
and on COCO panoptic and Objects365 instance segmentation datasets.

F Comparison with related contemporary work

We discuss the differences between DaTaSeg and some contemporary related work as below.

Comparison with Segment Anything [30]: SAM [30] is a related work on multi-task universal
segmentation model. There are several major differences between DaTaSeg and SAM. 1) The
main use-case for SAM is prompt-based segmentation, i.e., the user inputs a point or box, and the
model segments the object referred by the prompt. While we aim to segment all objects and stuff
in a bottom-up way. 2) Besides, SAM built their own large-scale dataset with more than 1 billion
masks (SA-1B) by designing a data engine consisting of model-assisted manual annotation and
semi-automatic stage, which is very costly; while we only utilize multiple publicly available datasets
and train a joint segmentation model to improve the performance. Hence, DaTaSeg and SAM’s results
are not comparable in terms of the training data. 3) Except for the explicitly trained text-to-mask task,
SAM’s outputs are class-agnostic binary masks (the SA-1B datasets are also class-agnostic), while
our model outputs the class predictions together with the mask predictions.

Comparison with X-Decoder [80]: X-Decoder is a related work on multi-task segmentation. There
are multiple differences between our work and X-Decoder, which makes it hard to have a strict
comparison. We detail the differences below: 1) Task and Focus: The pre-training in X-Decoder
includes panoptic segmentation, referring segmentation, and image-text pairs (image-text retrieval
and image captioning), which has a focus on vision-language tasks. These tasks are very different
from ours: we cotrain on three mainstream segmentation tasks (panoptic/semantic/instance) and
exclusively focus on segmentation. 2) Training paradigm: We directly cotrain on multiple datasets
using a shared set of parameters (single model), while the ADE and COCO results in X-Decoder
Table 1 is task-specific transfer. That is, X-Decoder first pretrains on large-scale data and then
fine-tunes on each target dataset using different sets of fine-tuned parameters. 3) Training data:
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Fully-Supervised Weakly-Supervised Transfer

Backbone Model
ADE COCO ADE O365

semantic panoptic semantic ! panoptic box ! instance
mIoU PQ PQ mask AP

ResNet50 +D-S modules 48.1 46.0 26.9 10.9
DaTaSeg 48.1 (+0.0) 49.0 (+3.0) 29.8 (+2.9) 14.3 (+3.4)

ViTDet-B +D-S modules 51.0 50.8 31.0 13.1
DaTaSeg 51.4 (+0.4) 52.8 (+2.0) 32.9 (+1.9) 16.1 (+3.0)

ViTDet-L +D-S modules 53.9 52.3 33.5 13.7
DaTaSeg 54.0 (+0.1) 53.5 (+1.2) 33.4 (-0.1) 16.4 (+2.7)

Table 12: Comparing DaTaSeg with the alternative architecture adding all dataset-specific modules on
various backbones. Results show that removing the dataset-specific modules improve performance on
all datasets and all backbones. The gains are most significant on Objects365 instance and COCO panoptic
segmentation (with dataset-specific modules, it cannot outperform the separately trained baseline on COCO
panoptic).

X-Decoder pretrains on COCO panoptic and referring segmentation and 4M image-text pairs with a
long schedule, and we quote from their paper: “all the pre-trained models are trained with 50 epochs
of COCO data and roughly 45 epochs of 10 million image-text pairs”. Afterwards, they fine-tune the
model on COCO and ADE20k. By contrast, we only train on COCO panoptic, ADE20k semantic,
and Objects365 v2 detection with a total of 1.8M of training images, which is much fewer than
X-Decoder. We also do not train on large amounts of text data. 4) Model architecture: X-Decoder
adopts Mask2Former. Our model architecture is different as explained in Sec. G. More importantly,
we don’t have an online text encoder in our model architecture.

G Architecture change from Mask2Former

Our network architecture is based on Mask2Former [8]. However, due to hardware difference (TPU
vs. GPU), we need to make modifications to Mask2Former architecture to run on our hardware.
Unlike GPUs, TPUs require a static computation graph with fixed-shape data (otherwise, it recompiles
for each computation graph change, and causes significant slowdown). Therefore, we drop all the
TPU-unfriendly operations in Mask2Former. In particular, we change the multi-scale deformable
attention transformer [79] pixel decoder to a plain FPN [43]. The performance comparison is shown
in Table 4(e) in the Mask2Former paper (51.9 PQ of deformable-attention vs. 50.7 PQ of FPN on
COCO panoptic). Also, we do not use the sampled point loss [9] in either the matching loss or the
training loss calculation, and use the vanilla mask loss. The performance comparison is shown in
Table 5 in the Mask2Former paper (51.9 PQ of point loss vs. 50.3 PQ of mask loss). Besides, we do
not use varying input size during evaluation and use a fixed input size (first resize then pad).

To improve the training speed, we modify the deep supervision in the masked attention transformer
decoder: for every decoder layer, we use the same matching indices computed from the outputs of
the last decoder layer, but use a different prediction head. We do not use the mask predictions from
the initial queries as attention masks, since the predictions are not made based on the input image.

H Additional implementation details

In addition to the implementation details described in Sec. 4, we provide more datails here.

Preprocessing. In order to do 1:1 Hungarian matching, we preprocess the groundtruth into the
same format as the predictions described in Sec. 3.2. In panoptic segmentation, we transfer the
groundtruth into a set of binary masks with class labels. For “thing” categories, we group the pixels
belonging to each instance into a separate groundtruth mask; for “stuff” categories, we group all
pixels in each stuff category as the groundtruth mask. Similarly, in semantic segmentation, we
group all pixels in each category as the groundtruth mask. For instance segmentation, since we are
using bounding box weak supervision, we do not need this preprocessing step. For all mask proposal
groundtruth, we downsample it by 4 times, to save memory cost during training.

Training settings. We randomly scale the input image in the range of [0.1, 2.0] and then pad or crop
it to 1024⇥ 1024. For ADE20k dataset, since the image size is smaller than other datasets, we use
a scaling range of [0.5, 2.0]. We use the AdamW optimizer [46] with a weight decay of 0.05. We
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µce µfocal µdice µproj �ce �focal �dice �proj

ADE semantic 1 20 5 0 1 20 5 0
COCO panoptic 1 0 1 0 1 20 5 0
O365 instance (box GT) 1 0 0 0.5 1 0 0 2

Table 13: The weights we use to compute the matching cost and total loss (Eqn. 4,5 in the main paper)
for all training datasets. µ’s are for the matching cost and �’s are for the total training loss.

clip the gradients with a max norm of 0.1. The weight for the background class is set to 0.05 in Lce.
The matching cost and loss weight settings for Eqn. 4,5 in the main paper are shown in Table 13. We
use a dataset sampling ratio of 1:4:4 for ADE semantic, COCO panoptic, and Objects365 detection.
We adopt a different learning rate multiplier for each dataset: We multiply the learning rate on ADE
semantic, COCO panoptic, and Objects365 detection by 3, 5, 2, respectively. Since Objects365
detection dataset has a large vocabulary with imbalanced distribution, we apply repeat factor sampling
with a frequency threshold t = 0.01 [18]. On ResNet50 backbones, we use a batch size of 384 and
train 500k iterations, with a learning rate of 3e-5. We adopt the step learning rate schedule: We
multiply the learning rate by 0.1⇥ at the 0.9 and 0.95 fractions of the total training iterations. On
the ViTDet-B backbones, we train 600k iterations with a learning rate of 6e-5. On ViTDet-L, we
use a batch size of 256 and train 540.5k iterations with a learning rate of 4e-5. For ResNet50, we
train on 64 TPU v4 chips; for ViTDet backbones, we train on 128 TPU v4 chips. All evaluations are
conducted on 4 V100 GPUs with a batch size of 8.

Postprocessing. We first apply the MERGE operation described in Sec. 3.2. We follow the postpro-
cessing operations in [8] with some modifications: In panoptic segmentation, we use a confidence
threshold of 0.85 to filter mask proposals for COCO panoptic, and set the threshold to 0.8 for
ADE panoptic. For panoptic and instance segmentation, we filter out final segments whose area is
smaller than 4. For instance segmentation, we return a maximum of 100 instances per image with a
score threshold of 0.0. For all tasks, the final scores are the production of classification scores and
localization scores (obtained from binary mask classification).

I Limitations

Our proposed method is not without limitations. Since we are the first work to explore universal
multi-dataset multi-task segmentation models, we do not introduce the complexity for an efficient
framework. There are several ways to improve the model efficiency, e.g., calculating the mask loss
on sampled points only [8], while we do not deploy this in our framework, since it’s not our key
contribution. Moreover, as shown in the experiment section (Table 1), our framework is orthogonal to
the detailed network architectures as long as the network is able to output our universal segmentation
representation.

For weakly-supervised panoptic segmentation on ADE20k panoptic, we notice that sometimes
multiple instances of the same category are not separated in the prediction. In the weakly-supervised
instance segmentation results on Objects365, there are some visual artifacts in the mask prediction.
We believe using certain data augmentation techniques, e.g., MixUp [73] or Copy-Paste [15], may
farther enhance knowledge transfer between datasets of different tasks, and thus may help mitigate
this issue. We leave it for future work to improve on these limitations.

J Additional qualitative results

We notice sometimes our predictions do not match the groundtruth, but it does not necessarily
mean the predictions are not good. Fig. 9 shows two examples on COCO panoptic. On the left
column, DaTaSeg does a better job in segmenting ‘sky’ and ‘tree-merged’ than the groundtruth.
The classification of ‘pavement-merged’ is also better than ‘dirt-merged, which is probably due to
language ambiguity: the British meaning of ‘pavement’ is sidewalk, while the annotator may be
more used to the North American usage of ‘pavement’. On the right column, DaTaSeg predicts
‘window-other’, while the groundtruth is ‘tree-merged’ for the scene through the window, and both
make sense due to label ambiguity. In addition, DaTaSeg is able to predict the ‘mirror-stuff’, ‘shelf’,
‘light’, ‘bottle’, and more ‘book’s, which are missing from the groundtruth.

We show qualitative results for the direct transfer experiments in Fig. 10,11,12,13, on PASCAL
Context 59 (PC-59), PASCAL Context 459 (PC-459), COCO semantic, and Cityscapes panoptic

21



(a) DaTaSeg predictions

(b) Groundtruths

Figure 9: Examples on COCO panoptic showing that sometimes DaTaSeg’s predictions do not match
the groundtruth, but it does not necessarily mean they are wrong. On the left, DaTaSeg’s prediction is
‘pavement-merged’, while the groundtruth is ‘dirt-merged’ (Probably because the British meaning of ‘pavement’
is sidewalk, while the annotator is more used to the North American meaning of ‘pavement’). Ours also segments
‘tree’ and ‘sky’ better. On the right, the definition for the scene through the window is ambiguous: ‘window-other’
(ours) v.s. ‘tree-merged’ (GT). The groundtruth misses to label several objects, while DaTaSeg recognizes more
objects, e.g., ‘mirror-stuff’, ‘light’, ‘shelf’, ‘bottle’. Legends for ‘book’ are truncated due to space limit.

datasets, respectively. These results serve as a supplementary material for Table 3 in the main paper.
They show DaTaSeg directly transfer to other segmentation datasets unseen during training with
high quality both in localization and classification. DaTaSeg performs well on large-vocabulary
segmentation (PC-459), and handles hard cases well (thin structures, small objects, complicated
scenes, occlusions, etc.).
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Figure 10: Qualitative results of DaTaSeg directly transferring to PASCAL Context semantic dataset
with 59 categories (PC-59). The results demonstrate DaTaSeg has good generalization ability. The top row
shows DaTaSeg is able to segment small objects (aeroplane), and the last row indicates DaTaSeg segments fine
structures (bicycles) well. For each row, the left is the input image, the middle is our prediction, and the right is
groundtruth. With a ViTDet-L backbone.
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Figure 11: Qualitative results of DaTaSeg directly transferring to PASCAL Context semantic dataset
with 459 categories (PC-459). The results demonstrate DaTaSeg has good generalization ability, and enables
open-vocabulary segmentation. For each row, the left is the input image, the middle is our prediction, and the
right is groundtruth. With a ViTDet-L backbone.
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Figure 12: Qualitative results on COCO semantic dataset. DaTaSeg does high-quality semantic segmentation
on COCO. Note that DaTaSeg trains on COCO panoptic. For each row, the left is the input image, the middle is
our prediction, and the right is groundtruth. Our model is with a ViTDet-L backbone.
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Figure 13: Qualitative results of DaTaSeg directly transferring to Cityscapes panoptic dataset. Cityscapes
focuses on street view, which is different from all our training datasets. The results demonstrate good generaliza-
tion ability. For each row, the left is our prediction and the right is groundtruth. Our model is with a ViTDet-L
backbone.
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