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Abstract1

We propose a geometric version of the Weisfeiler-Leman graph isomorphism test2

(GWL) for discriminating geometric graphs while respecting the underlying physi-3

cal symmetries: permutations, rotation, reflection, and translation. We use GWL4

to characterise the expressive power of Graph Neural Networks (GNNs) that are5

invariant or equivariant to physical symmetries in terms of the classes of geometric6

graphs they can distinguish. This allows us to formalise the advantages of equivari-7

ant GNNs over invariant GNNs: equivariant layers have greater expressive power8

as they enable propagating geometric information beyond local neighbourhoods,9

while invariant layers only reason locally via scalars and cannot discriminate geo-10

metric graphs with different non-local properties.11

1 Introduction12 Addressed
R2.1, R3.1,
R4.1, R4.12

13

The graph isomorphism problem and the Weisfeiler-Leman (WL) [1] test for distinguishing non-14

isomorphic graphs have become powerful tools for analysing the expressive power of Graph Neural15

Networks (GNNs) [2, 3]. The WL framework has been a major driver of progress for more expressive16

GNNs [4–8]. However, WL does not directly apply to the increasingly relevant special case of17

geometric graphs – graphs embedded in Euclidean space – which come equipped with a stronger18

notion of isomorphism that also takes spatial symmetries into account. The lack of theoretical19

tools is becoming more apparent as geometric graphs are increasingly used to model systems in20

biochemistry [9], material science [10], physical simulations [11], and multiagent robotics [12]. Graph21

Neural Networks (GNNs) with Euclidean symmetries ‘baked in’ have emerged as the architecture of22

choice for these domains [13].23

Geometric GNNs follow the message passing paradigm [14] where node features are updated in a24

permutation equivariant manner by aggregating features from local neighbourhoods. In addition to25

the permutation group, the geometric attributes of the nodes (e.g. coordinates, velocity) transform26

along with Euclidean transformations of the system, i.e. they are equivariant to a Lie group such as27

the group of rotations (SO(d)) or rotations and reflections (O(d)). We use G as a generic symbol Addressed
R2.3, R4.8

28

for such a Lie group. Based on this, we consider two classes of GNNs for geometric graphs: (1)29

G-equivariant models, where the intermediate features and propagated messages are G-equivariant30

geometric quantities such as vectors or tensors [15–19]; and (2) G-invariant models, which only31

propagate G-invariant scalar features such as distances and angles [20–22]. Despite promising32

empirical results for both classes of architectures, key theoretical questions remain unanswered: (1)33

How to characterise the expressive power of geometric GNNs? And (2) what is the tradeoff between34

G-equivariant and G-invariant GNNs?35

Contributions. In this work, we study the expressive power of geometric GNNs from the perspective36

of discriminating non-isomorphic geometric graphs. We propose a geometric version of the Weisfeiler-37

Leman graph isomorphism test, termed GWL. (Figure 1). We use GWL to formally characterise38

classes of graphs that can and cannot be distinguished by G-invariant and G-equivariant GNNs. We39

show how invariant models have limited expressive power as they only reason locally via scalar40

quantities, while equivariant models distinguish a larger class of graphs by propagating geometric41

vector quantities beyond local neighbourhoods.42

For Background and Preliminaries, please see Appendix A.43
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Figure 1: Geometric Weisfeiler-Leman Test. GWL distinguishes non-isomorphic geometric graphs
G1 and G2 by injectively assigning colours to distinct neighbourhood patterns, up to global symmetries
(here G = O(d)). Each iteration expands the neighbourhood from which geometric information can
be gathered (shaded for node i). Example inspired by [23].

2 The Geometric Weisfeiler-Leman Test44

Assumptions. Analogous to the WL test, the geometric and scalar features the nodes are equipped45

with come from countable subsets C ⊂ Rd and C ′ ⊂ R, respectively. As a consequence, when we46

require functions to be injective, we require them to be injective over the countable set of G-orbits47

that are obtained by acting with the symmetry group G on the dataset. This mimics the practically48

relevant situation of finite datasets, in which we have a finite pool P of geometric graphs (and their49

symmetry transformations) which we would like to distinguish. Addressed
R4.10

50

Intuition. For an intuition of how to generalise the WL test to geometric graphs, we note that WL51

uses a local, node-centric, procedure to update the colour of each node i using the colours of its the52

1-hop neighbourhood Ni. In the geometric setting, Ni is an attributed point cloud around the central53

node i. As a result, each neighbourhood carries two types of information: (1) neighbourhood type54

(invariant to G) and (2) neighbourhood geometric orientation (equivariant to G). From an axiomatic55

point of view, our generalisation of the WL neighbourhood aggregation procedure must meet two56

properties: Addressed
R2.1, R4.5

57

Property 1: Orbit injectivity of colours. If two neighbourhoods are the same up to an action of G58

(e.g. rotation), then the colours of the corresponding central nodes should be the same. Thus, the59

colouring must be G-orbit injective – which also makes it G-invariant – over the countable set of all60

orbits of neighbourhoods in our dataset.61

Property 2: Preservation of local geometry. A key property of WL is that the aggregation is62

injective. A G-invariant colouring procedure that purely satisfies Property 1 is not sufficient because,63

by definition, it loses spatial properties of each neighbourhood such as the relative pose or orientation64

[24]. Thus, we must additionally update auxiliary geometric information variables in a way that is65

G-equivariant and injective. Addressed
R4.11

66

Geometric Weisfeiler-Leman (GWL). These intuitions motivate the following definition of the67

GWL test. At initialisation, we assign to each node i ∈ V a scalar node colour ci ∈ C ′ and an68

auxiliary object gi containing the geometric information associated to it:69

c
(0)
i := HASH(si), g

(0)
i :=

(
c
(0)
i , v⃗i

)
, (1)

where HASH denotes an injective map over the scalar attributes si of node i. To define the inductive70

step, assume we have the colours of the nodes and the associated geometric objects at iteration t− 1.71

Then, we can aggregate the geometric information around node i into a new object as follows:72

g
(t)
i :=

(
(c

(t−1)
i , g

(t−1)
i ) , {{(c(t−1)

j , g
(t−1)
j , x⃗ij) | j ∈ Ni}}

)
, (2)

Here {{·}} denotes a multiset – a set in which elements may occur more than once. Importantly, the Addressed
R4.9

73

group G can act on the geometric objects above inductively by acting on the geometric information74

2



On the Expressive Power of Geometric Graph Neural Networks

inside it. This amounts to rotating (or reflecting) the entire t-hop neighbourhood contained inside:75

g ·g(0)
i :=

(
c
(0)
i , Qgv⃗i

)
, g ·g(t)

i :=
(
(c

(t−1)
i , g ·g(t−1)

i ), {{(c(t−1)
j , g ·g(t−1)

j ,Qgx⃗ij) | j ∈ Ni}}
)

Clearly, the aggregation building gi for any time-step t is injective and G-equivariant. Finally, we76

can compute the node colours at iteration t for all i ∈ V by aggregating the geometric information in77

the neighbourhood around node i: Addressed
R4.6

78

c
(t)
i := I-HASH(t)

(
g
(t)
i

)
, (3)

by using a G-orbit injective and G-invariant function that we denote by I-HASH. That is for any79

geometric objects g, g′, I-HASH(g) = I-HASH(g′) if and only if there exists g ∈ G such that80

g = g · g′.81

Overview. With each iteration, g(t)
i aggregates geometric information in progressively larger t-hop82

subgraph neighbourhoods N (t)
i around the node i. The node colours summarise the structure of these83

t-hops via the G-invariant aggregation performed by I-HASH. The procedure terminates when the84

partitions of the nodes induced by the colours do not change from the previous iteration. Finally, given85

two geometric graphs G and H, if there exists some iteration t for which {{c(t)i | i ∈ V(G)}} ̸= {{c(t)i |86

i ∈ V(H)}}, then GWL deems the two graphs as being geometrically non-isomorphic. Otherwise,87

we say the test cannot distinguish the two graphs.88

Invariant GWL. Since we are interested in understanding the role of G-equivariance, we also89

consider a more restrictive Invariant GWL (IGWL) that only updates node colours using the G-orbit90

injective I-HASH function and does not propagate geometric information:91

c
(t)
i := I-HASH

(
(c

(t−1)
i , v⃗i) , {{(c(t−1)

j , v⃗j , x⃗ij) | j ∈ Ni}}
)
. (4)

IGWL with k-body scalars. In order to further analyse the construction of the node colouring92

function I-HASH, we consider IGWL(k) based on the maximum number of nodes involved in the93

computation of G-invariant scalars (also known as the ‘body order’ [25]):94

c
(t)
i := I-HASH(k)

(
(c

(t−1)
i , v⃗i) , {{(c(t−1)

j , v⃗j , x⃗ij) | j ∈ Ni}}
)
, (5)

and I-HASH(k+1) is defined as:95

HASH
(
{{I-HASH

(
(c

(t−1)
i , v⃗i), {{(c(t−1)

j1
, v⃗j1 , x⃗ij1), . . . , (c

(t−1)
jk

, v⃗jk , x⃗ijk)}}
)
| j ∈ (Ni)

k}}
)
,

where j = [j1, . . . , jk] are all possible k-tuples formed of elements of Ni. Therefore, IGWL(k) is96

now constrained to extract information only from all the possible k-sized tuples of nodes (including97

the central node) in a neighbourhood. For instance, I-HASH(2) can identify neighbourhoods only up98

to pairwise distances among the central node and any of its neighbours (i.e. a 2-body scalar), while99

I-HASH(3) up to distances and angles formed by any two edges (i.e. a 3-body scalar). Notably, dis-100

tances and angles alone are incomplete descriptors of local geometry [26, 27]. Therefore, I-HASH(k)101

with lower k makes the colouring weaker.102

3 Characterising the Expressive Power of GWL103

3.1 What Geometric Graphs can GWL and IGWL Distinguish?104

In order to formalise the expressive power of GWL and IGWL, let us consider what geometric graphs105

can and cannot be distinguished by the tests. As a simple first observation, we note that when all106

coordinates and vectors are set equal to zero GWL coincides with the standard 1-WL. In this edge107

case, GWL has the same expressive power as 1-WL. Addressed
R4.13

108

Next, let us consider consider the simplified setting of two geometric graphs G1 = (A1,S1, V⃗1, X⃗1)109

and G2 = (A2,S2, V⃗2, X⃗2) such that the underlying attributed graphs (A1,S1) and (A2,S2) are110

isomorphic. This case frequently occurs in (bio)chemical modelling, where molecules occur in111

different conformations, but with the same graph topology given by the covalent bonding structure.112

3
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Recall that each iteration of GWL aggregates geometric information g
(k)
i from progressively larger113

neighbourhoods N (k)
i around the node i, and distinguishes (sub-)graphs via comparing G-orbit114

injective colouring of g(k)
i . We say G1 and G2 are k-hop distinct if for all graph isomorphisms b,115

there is some node i ∈ V1, b(i) ∈ V2 such that the corresponding k-hop subgraphs N (k)
i and N (k)

b(i)116

are distinct. Otherwise, we say G1 and G2 are k-hop identical if all N (k)
i and N (k)

b(i) are identical up117

to group actions. We can now formalise what geometric graphs can and cannot be distinguished by118

GWL.119

Proposition 1. GWL can distinguish any k-hop distinct geometric graphs G1 and G2 where the120

underlying attributed graphs are isomorphic, and k iterations are sufficient.121

Proposition 2. Up to k iterations, GWL cannot distinguish any k-hop identical geometric graphs G1122

and G2 where the underlying attributed graphs are isomorphic.123

Additionally, we can state the following results about the more constrained IGWL.124

Proposition 3. IGWL can distinguish any 1-hop distinct geometric graphs G1 and G2 where the125

underlying attributed graphs are isomorphic, and 1 iteration is sufficient.126

Proposition 4. Any number of iterations of IGWL cannot distinguish any 1-hop identical geometric127

graphs G1 and G2 where the underlying attributed graphs are isomorphic.128

We can now consider the more general case where the underlying attributed graphs for G1 =129

(A1,S1, V⃗1, X⃗1) and G2 = (A2,S2, V⃗2, X⃗2) are non-isomorphic and constructed from point clouds130

using radial cutoffs, as conventional for biochemistry and material science applications. Addressed
R4.2

131

Proposition 5. Assuming geometric graphs are constructed from point clouds using radial cutoffs,132

GWL can distinguish any geometric graphs G1 and G2 where the underlying attributed graphs are133

non-isomorphic. At most kMax iterations are sufficient, where kMax is the maximum graph diameter134

among G1 and G2.135

These results enable us to compare the expressive powers of GWL and IGWL.136

Theorem 6. GWL is strictly more powerful than IGWL.137

This statement formalises the advantage of G-equivariant intermediate layers for graphs and geometric138

data, as prescribed in the Geometric Deep Learning blueprint [28], in addition to echoing similar139

intuitions in the computer vision community. As remarked by [24], translation invariant models140

do not understand the relationship between the various parts of an image (colloquially called the141

“Picasso problem”). Similarly, our results explain how IGWL fails to understand how the various142

1-hops of a graph are stitched together. Finally, we identify a setting where this distinction between143

the two approaches disappears.144

Proposition 7. IGWL has the same expressive power as GWL for fully connected geometric graphs.145

3.2 Characterising the Expressive Power of Geometric GNNs146

We would like to characterise the maximum expressive power of geometric GNNs based on the GWL147

test. Firstly, we show that any message passing G-equivariant GNN can be at most as powerful as148

GWL in distinguishing non-isomorphic geometric (sub-)graphs.149

Theorem 8. Any pair of geometric graphs distinguishable by a G-equivariant GNN is also distin-150

guishable by GWL.151

With a sufficient number of iterations, the output of G-equivariant GNNs can be equivalent to GWL152

if certain conditions are met regarding the aggregate, update and readout functions.153

Proposition 9. G-equivariant GNNs have the same expressive power as GWL if the following154

conditions hold: (1) The aggregation AGG is an injective, G-equivariant multiset function. (2) The155

scalar part of the update UPDs is a G-orbit injective, G-invariant multiset function. (3) The vector156

part of the update UPDv is an injective, G-equivariant multiset function. (4) The graph-level readout157

f is an injective multiset function.158

Similar statements can be made for G-invariant GNNs and IGWL. Thus, we can directly transfer our159

results about GWL and IGWL to the class of GNNs bounded by the respective tests. This has several160

interesting practical implications, discussed in Appendix E. Addressed
R2.2, R2.6,
R4.4

161
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A Background266

A.1 Graph Isomorphism and the Weisfeiler-Leman Test267 Addressed
R3.1

268

An attributed graph G = (A,S) with a node set V of size n consists of an n× n adjacency matrix A269

and a matrix of scalar features S ∈ Rn×f . Two attributed graphs G,H are isomorphic if there exists270

an edge-preserving bijection b : V(G) → V(H) such that s(G)i = s
(H)
b(i) , where the subscripts index271

rows and columns in the corresponding matrices.272

The Weisfeiler-Leman test (WL) is an algorithm for testing whether two (attributed) graphs are273

isomorphic [1, 29]. At iteration zero the algorithm assigns a colour c(0)i ∈ C from a countable space274

of colours C to each node i. Nodes are coloured the same if their features are the same, otherwise,275

they are coloured differently. In subsequent iterations t, WL iteratively updates the node colouring by276

producing a new c
(t)
i ∈ C:277

c
(t)
i := HASH

(
c
(t−1)
i , {{c(t−1)

j | j ∈ Ni}}
)
, (6)

where HASH is an injective map (i.e. a perfect hash map) that assigns a unique colour to each input278

and {{·}} denotes a multiset – a set that allows for repeated elements. The test terminates when the279

partition of the nodes induced by the colours becomes stable. Given two graphs G and H, if there280

exists some iteration t for which {{c(t)i | i ∈ V(G)}} ≠ {{c(t)i | i ∈ V(H)}}, then the graphs are not281

isomorphic. Otherwise, the WL test is inconclusive, and we say it cannot distinguish the two graphs.282

Ever since Xu et al. [2], Morris et al. [3] noticed that Graph Neural Networks are at most as powerful283

as the Weisfeiler-Leman (WL) [1] test at distinguishing non-isomorphic graphs, the WL hierarchy284

became a powerful tool for analysing the expressive power of GNNs and guided the search for more285

expressive models [4–8].286

A.2 Group Theory287

We assume basic familiarity with group theory, see [30] for an overview. We denote the action of288

the group G on a space X by g · x. If G acts on spaces X and Y , we say a function f : X → Y289

is G-equivariant if f(g · x) = g · f(x). A function f : X → Y is G-invariant if f(g · x) = f(x).290

The G-orbit of x ∈ X is OG(x) = {g · x | g ∈ G} ⊆ X . When x and x′ are part of the same orbit,291

we write x ≃ x′. We say a function f : X → Y is G-orbit injective if we have f(x1) = f(x2)292

if and only if x1 ≃ x2 for any x1, x2 ∈ X . Necessarily, such a function is G-invariant, since293

f(g · x) = f(x).294

We work with the permutation group over n elements Sn and the Lie groups G = SO(d) or295

G = O(d). Invariance to the translation group T (d) is conventionally handled using relative positions296

or by subtracting the centre of mass from all nodes positions. Given one of the standard groups above, Addressed
R2.3, R2.8,
R4.8

297

for an element g we denote by Mg (or another capital letter) its standard matrix representation.298

A.3 Geometric Graphs299

A geometric graph G = (A,S, V⃗ , X⃗) with a node set V is an attributed graph that is also decorated300

with geometric attributes: node coordinates X⃗ ∈ Rn×d and (optionally) vector features V⃗ ∈ Rn×d301

(e.g. velocity, acceleration). Without loss of generality, we work with a single vector feature per node.302

Our results generalise to multiple vector features or higher-order geometric tensors per node. Addressed
R2.7

303

The geometric attributes transform as follows under the action of the relevant groups: (1) Sn acts on304

the graph via PσG := (PσAP⊤
σ ,PσS,PσV⃗ ,PσX⃗); (2) Orthogonal transformations Qg ∈ G act305

on V⃗ , X⃗ via V⃗ Qg, X⃗Qg; and (3) Translations t⃗ ∈ T (d) act on the coordinates X⃗ via x⃗i + t⃗ for all306

nodes i.307

Two geometric graphs G and H are geometrically isomorphic (denoted G ≃ H) if there exists an308

attributed graph isomorphism b such that the geometric attributes are equivalent, up to global group309

actions Qg ∈ G and t⃗ ∈ T (d): Addressed
R2.3

310 (
s
(G)
i , v⃗

(G)
i , x⃗

(G)
i

)
=

(
s
(H)
b(i) , Qgv⃗

(H)
b(i) , Qg(x⃗

(H)
b(i) + t⃗)

)
for all i ∈ V(G). (7)
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Note that if two geometric graphs are geometrically isomorphic, they are also isomorphic as attributed311

graphs. However, the converse is not true.312

Systems in biochemistry [9], material science [10], physical simulations [11], and multiagent313

robotics [12] are conventionally modelled as geometric graphs. For example, molecules are repre-314

sented as a set of nodes corresponding to atoms, which contain information about the atom type315

as well as its 3D spatial coordinates and other geometric quantities such as velocity or accelera-316

tion. The geometric attributes transform along with Euclidean transformations of the system. In Addressed
R2.7, R3.1

317

biochemistry and material science, the conventional procedure for constructing the geometric graph318

G = (A,S, V⃗ , X⃗) is via the underlying point cloud (S, V⃗ , X⃗) using a predetermined radial cutoff r.319

Thus, the adjacency matrix is defined as aij = 1 if ∥x⃗i − x⃗j∥2 ≤ r, or 0 otherwise, for all aij ∈ A.320

Geometric graph isomorphism and distinguishing (sub-)graph geometries has important practical321

implications for representation learning. For e.g., in molecular systems, an ideal architecture should322

map distinct local structural environments around atoms to distinct embeddings in representation323

space [26, 27]. Addressed
R4.2

324

A.4 Geometric Graph Neural Networks325

We consider two broad classes of geometric GNN architectures. G-equivariant GNN layers [15–19]326

update scalar and vector features from iteration t to t+1 via learnable aggregate and update functions,327

AGG and UPD, respectively:328

m
(t)
i , m⃗

(t)
i := AGG

(
{{(s(t)i , s

(t)
j , v⃗

(t)
i , v⃗

(t)
j , x⃗ij) | j ∈ Ni}}

)
(Aggregate) (8)

s
(t+1)
i , v⃗

(t+1)
i := UPD

(
(s

(t)
i , v⃗

(t)
i ) , (m

(t)
i , m⃗

(t)
i )

)
(Update) (9)

For e.g., PaiNN [23] interaction layers aggregate scalar and vector features via learnt radial filters: Addressed
R2.2

329

s
(t+1)
i := s

(t)
i +

∑
j∈Ni

f1

(
s
(t)
j , ∥x⃗ij∥

)
(10)

v⃗
(t+1)
i := v⃗

(t)
i +

∑
j∈Ni

f2

(
s
(t)
j , ∥x⃗ij∥

)
⊙ v⃗

(t)
j +

∑
j∈Ni

f3

(
s
(t)
j , ∥x⃗ij∥

)
⊙ x⃗ij (11)

Alternatively, G-invariant layers [20–22] do not update vector features and only aggregate scalar330

quantities from local neighbourhoods:331

s
(t+1)
i := UPD

(
s
(t)
i , AGG

(
{{(s(t)i , s

(t)
j , v⃗i, v⃗j , x⃗ij) | j ∈ Ni}}

))
. (12)

For e.g., SchNet [20] uses relative distances to scalarise local geometric information, while DimeNet332

[22] uses both distances and angles, as follows: Addressed
R2.2

333

s
(t+1)
i := s

(t)
i +

∑
j∈Ni

f1

(
s
(t)
j , ∥x⃗ij∥

)
(SchNet) (13)

s
(t+1)
i :=

∑
j∈Ni

f1

(
s
(t)
i , s

(t)
j ,

∑
k∈Ni\{j}

f2

(
s
(t)
j , s

(t)
k , ∥x⃗ij∥, x⃗ij · x⃗ik

))
(DimeNet) (14)

For both G-invariant and G-equivariant architectures, the scalar features {s(T )
i } at the final iteration334

T are mapped to graph-level features via a permutation-invariant readout f : Rn×f → Rf ′
.335

Invariant GNNs have shown strong performance for protein design [31, 32] and electrocatalysis336

[33, 34], while equivariant GNNs are being used within learnt interatomic potentials for molecular337

dynamics [23, 35, 36].338

B Discussion339

Practical Implications. Proposition 10, together with Propositions 1 and 4, highlight critical340

theoretical limitations of G-invariant GNNs. Our results suggest that G-equivariant GNNs should341

be preferred when working with large geometric graphs such as macromolecules with thousands of342

nodes, where message passing is restricted to local radial neighbourhoods around each node.343

8
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Motivated by these limitations, two straightforward approaches to improving G-invariant GNNs344

may be: (1) pre-computing non-local geometric properties as input features, e.g. models such as345

GemNet [33] and GearNet [31] successfully use two-hop dihedral angles. And (2) working with fully346

connected geometric graphs, as Proposition 7 suggests that G-equivariant and G-invariant GNNs347

can be made equally powerful when performing all-to-all message passing. This is supported by the348

empirical success of recent G-invariant ‘Graph Transformers’ [34, 37] for small molecules with tens349

of nodes, where working with full graphs is tractable.350

Related Work. Literature on the completeness of atom-centred interatomic potentials has focused351

on distinguishing 1-hop local neighbourhoods (point clouds) around atoms by building spanning sets352

for continuous, G-equivariant multiset functions [27, 38–40]. Recent theoretical work on geometric353

GNNs and their universality has shown that Tensor Field Networks [41], GemNet [33], and GVP354

[17] can be universal approximators of continuous, G-equivariant or G-invariant multiset function355

over point clouds (not sparse graphs). In contrast, the GWL framework studies the expressive356

power of geometric GNNs from the perspective of geometric graph isomorphism. Geometric graph357

matching has also been studied from the perspective of finding global isometries in the computer358

vision community[42]. Our notion of geometric graph isomorphism is more general as it considers359

local message passing procedures as well as both scalar and geometric node attributes. Overall, Addressed
R4.3

360

our work formalises what classes of geometric graphs can and cannot be distinguished by message361

passing G-invariant/equivariant GNNs while abstracting away implementation details.362

Future Work. GWL provides an abstraction to study the limits of geometric GNNs, but in practice363

it is challenging to build maximally powerful GNNs that satisfy the conditions of Proposition 9 as364

GWL relies on G-orbit injective colouring and G-equivariant propagation of auxiliary geometric365

information. Based on the intuitions gained from GWL, future work will explore building provably366

powerful, practical geometric GNNs for applications in biochemistry, material science, and multiagent367

robotics, and better characterise the trade-offs related to practical implementation choices.368

C Proofs for What GWL and IGWL can Distinguish369

The following results are a consequence of the construction of GWL as well as the definitions of370

k-hop distinct and k-hop identical geometric graphs. Note that k-hop distinct geometric graphs are371

also (k + 1)-hop distinct. Similarly, k-hop identical geometric graphs are also (k − 1)-hop identical,372

but not necessarily (k + 1)-hop distinct.373

Given two distinct neighbourhoods N1 and N2, the G-orbits of the corresponding geometric multisets374

g1 and g2 are mutually exclusive, i.e. OG(g1) ∩ OG(g2) ≡ ∅. By the properties of I-HASH this375

implies c1 ̸= c2. Conversely, if N1 and N2 were identical up to group actions, their G-orbits would376

overlap, i.e. g1 = g g2 for some g ∈ G and OG(g1) = OG(g2) ⇒ c1 = c2.377

Proposition 1. GWL can distinguish any k-hop distinct geometric graphs G1 and G2 where the378

underlying attributed graphs are isomorphic, and k iterations are sufficient.379

Proof of Proposition 1. The k-th iteration of GWL identifies the G-orbit of the k-hop subgraph N (k)
i380

at each node i via the geometric multiset g(k)
i . G1 and G2 being k-hop distinct implies that there exists381

some bijection b and some node i ∈ V1, b(i) ∈ V2 such that the corresponding k-hop subgraphs N (k)
i382

and N (k)
b(i) are distinct. Thus, the G-orbits of the corresponding geometric multisets g(k)

i and g
(k)
b(i) are383

mutually exclusive, i.e. OG(g
(k)
i ) ∩ OG(g

(k)
b(i)) ≡ ∅ ⇒ c

(k)
i ̸= c

(k)
b(i). Thus, k iterations of GWL are384

sufficient to distinguish G1 and G2.385

Proposition 2. Up to k iterations, GWL cannot distinguish any k-hop identical geometric graphs G1386

and G2 where the underlying attributed graphs are isomorphic.387

Proof of Proposition 2. The k-th iteration of GWL identifies the G-orbit of the k-hop subgraph N (k)
i388

at each node i via the geometric multiset g(k)
i . G1 and G2 being k-hop identical implies that for all389

bijections b and all nodes i ∈ V1, b(i) ∈ V2, the corresponding k-hop subgraphs N (k)
i and N (k)

b(i) are390

identical up to group actions. Thus, the G-orbits of the corresponding geometric multisets g(k)
i and391

9
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Figure 2: Invariant GWL Test. IGWL cannot distinguish G1 and G2 as they are 1-hop identical:
The G-orbit of the 1-hop neighbourhood around each node is the same, and IGWL cannot propagate
geometric orientation information beyond 1-hop (here G = O(d)).

Figure 3: Geometric Computation Trees for GWL and IGWL. Unlike GWL, geometric orientation
information cannot flow from the leaves to the root in IGWL, restricting its expressive power. IGWL
cannot distinguish G1 and G2 as all 1-hop neighbourhoods are computationally identical.

g
(k)
b(i) overlap, i.e. OG(g

(k)
i ) = OG(g

(k)
b(i)) ⇒ c

(k)
i = c

(k)
b(i). Thus, up to k iterations of GWL cannot392

distinguish G1 and G2.393

Proposition 3. IGWL can distinguish any 1-hop distinct geometric graphs G1 and G2 where the394

underlying attributed graphs are isomorphic, and 1 iteration is sufficient.395

Proof of Proposition 3. Each iteration of IGWL identifies the G-orbit of the 1-hop local neighbour-396

hood N (k=1)
i at each node i. G1 and G2 being 1-hop distinct implies that there exists some bijection397

b and some node i ∈ V1, b(i) ∈ V2 such that the corresponding 1-hop local neighbourhoods N (1)
i398

and N (1)
b(i) are distinct. Thus, the G-orbits of the corresponding geometric multisets g(1)

i and g
(1)
b(i) are399

mutually exclusive, i.e. OG(g
(1)
i ) ∩ OG(g

(1)
b(i)) ≡ ∅ ⇒ c

(1)
i ̸= c

(1)
b(i). Thus, 1 iteration of IGWL is400

sufficient to distinguish G1 and G2.401

Proposition 4. Any number of iterations of IGWL cannot distinguish any 1-hop identical geometric402

graphs G1 and G2 where the underlying attributed graphs are isomorphic.403

Proof of Proposition 4. Each iteration of IGWL identifies the G-orbit of the 1-hop local neighbour-404

hood N (k=1)
i at each node i, but cannot identify G-orbits beyond 1-hop by the construction of IGWL405

as no geometric information is propagated. G1 and G2 being 1-hop identical implies that for all406

bijections b and all nodes i ∈ V1, b(i) ∈ V2, the corresponding 1-hop local neighbourhoods N (k)
i and407

N (k)
b(i) are identical up to group actions. Thus, the G-orbits of the corresponding geometric multisets408

10
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g
(1)
i and g

(1)
b(i) overlap, i.e. OG(g

(1)
i ) = OG(g

(1)
b(i)) ⇒ c

(k)
i = c

(k)
b(i). Thus, any number of IGWL409

iterations cannot distinguish G1 and G2.410

Proposition 5. Assuming geometric graphs are constructed from point clouds using radial cutoffs,411

GWL can distinguish any geometric graphs G1 and G2 where the underlying attributed graphs are412

non-isomorphic. At most kMax iterations are sufficient, where kMax is the maximum graph diameter413

among G1 and G2.414

Proof of Proposition 5. We assume that a geometric graph G = (A,S, V⃗ , X⃗) is constructed from a415

point cloud (S, V⃗ , X⃗) using a predetermined radial cutoff r. Thus, the adjacency matrix is defined416

as aij = 1 if ∥x⃗i − x⃗j∥2 ≤ r, or 0 otherwise, for all aij ∈ A. Such construction procedures are417

conventional for geometric graphs in biochemistry and material science.418

Given geometric graphs G1 and G2 where the underlying attributed graphs are non-isomorphic,419

identify kMax the maximum of the graph diameters of G1 and G2, and chose any arbitrary nodes420

i ∈ V1, j ∈ V2. We can define the kMax-hop subgraphs N (kMax)
i and N (kMax)

j at i and j, respectively.421

Thus, N (kMax)
i = V1 for all i ∈ V1, and N (kMax)

j = V2 for all j ∈ V2. Due to the assumed construction422

procedure of geometric graphs, N (kMax)
i and N (kMax)

j must be distinct. Otherwise, if N (kMax)
i and423

N (kMax)
j were identical up to group actions, the sets (S1, V⃗1, X⃗1) and (S2, V⃗2, X⃗2) would have424

yielded isomorphic graphs.425

The kMax-th iteration of GWL identifies the G-orbit of the kMax-hop subgraph N (kMax)
i at each node426

i via the geometric multiset g(kMax)
i . As N (kMax)

i and N (kMax)
j are distinct for any arbitrary nodes427

i ∈ V1, j ∈ V2, the G-orbits of the corresponding geometric multisets g(kMax)
i and g

(kMax)
j are mutually428

exclusive, i.e. OG(g
(kMax)
i ) ∩ OG(g

(kMax)
j ) ≡ ∅ ⇒ c

(kMax)
i ̸= c

(kMax)
j . Thus, kMax iterations of GWL429

are sufficient to distinguish G1 and G2.430

Theorem 6. GWL is strictly more powerful than IGWL.431

Proof of Theorem 6. Firstly, we can show that the GWL class contains IGWL if GWL can learn the432

identity when updating gi for all i ∈ V , i.e. g(t)
i = g

(t−1)
i = g

(0)
i ≡ (si, v⃗i). Thus, GWL is at least433

as powerful as IGWL, which does not update gi.434

Secondly, to show that GWL is strictly more powerful than IGWL, it suffices to show that there exist435

a pair of geometric graphs that can be distinguished by GWL but not by IGWL. We may consider any436

k-hop distinct geometric graphs for k > 1, where the underlying attributed graphs are isomorphic.437

Proposition 1 states that GWL can distinguish any such graphs, while Proposition 4 states that IGWL438

cannot distinguish them. An example is the pair of graphs in Figures 1 and 2.439

Proposition 7. IGWL has the same expressive power as GWL for fully connected geometric graphs.440

Proof of Proposition 7. We will prove by contradiction. Assume that there exist a pair of fully441

connected geometric graphs G1 and G2 which GWL can distinguish, but IGWL cannot.442

If the underlying attributed graphs of G1 and G2 are isomorphic, by Proposition 1 and Proposition443

4, G1 and G2 are 1-hop identical but k-hop distinct for some k > 1. For all bijections b and all444

nodes i ∈ V1, b(i) ∈ V2, the local neighbourhoods N (1)
i and N (1)

b(i) are identical up to group actions,445

and OG(g
(1)
i ) = OG(g

(1)
b(i)) ⇒ c

(1)
i = c

(1)
b(i). Additionally, there exists some bijection b and446

some nodes i ∈ V1, b(i) ∈ V2 such that the k-hop subgraphs N (k)
i and N (k)

b(i) are distinct, and447

OG(g
(k)
i ) ∩ OG(g

(k)
b(i)) ≡ ∅ ⇒ c

(k)
i ̸= c

(k)
b(i). However, as G1 and G2 are fully connected, for any k,448

N (1)
i = N (k)

i and N (1)
b(i) = N (k)

b(i) are identical up to group actions. Thus, OG(g
(1)
i ) = OG(g

(k)
i ) =449

OG(g
(1)
b(i)) = OG(g

(k)
b(i)) ⇒ c

(1)
i = c

(k)
i = c

(k)
b(i) = c

(k)
b(i). This is a contradiction.450

If G1 and G2 are non-isomorphic and fully connected, for any arbitrary i ∈ V1, j ∈ V2 and any k-hop451

neighbourhood, we know that N (1)
i = N (k)

i and N (1)
j = N (k)

j . Thus, a single iteration of GWL and452
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IGWL identify the same G-orbits and assign the same node colours, i.e. OG(g
(1)
i ) = OG(g

(k)
i ) ⇒453

c
(1)
i = c

(k)
i and OG(g

(1)
j ) = OG(g

(k)
j ) ⇒ c

(1)
j = c

(k)
j . This is a contradiction.454

D Proofs for equivalence between GWL and Geometric GNNs455

Our proofs adapt the techniques used in [2, 3] for connecting 1-WL with GNNs. Note that we omit456

including the relative position vectors x⃗ij = x⃗i − x⃗j in GWL and geometric GNN updates for457

brevity, as relative positions vectors can be merged into the vector features.458

Theorem 8. Any pair of geometric graphs distinguishable by a G-equivariant GNN is also distin-459

guishable by GWL.460

Proof of Theorem 8. Consider two geometric graphs G and H. The theorem implies that if the GNN461

graph-level readout outputs f(G) ̸= f(H), then the GWL test will always determine G and H to be462

non-isomorphic, i.e. G ̸= H.463

We will prove by contradiction. Suppose after T iterations, a GNN graph-level readout outputs464

f(G) ̸= f(H), but the GWL test cannot decide G and H are non-isomorphic, i.e. G and H always465

have the same collection of node colours for iterations 0 to T . Thus, for iteration t and t + 1 for466

any t = 0 . . . T − 1, G and H have the same collection of node colours {c(t)i } as well as the same467

collection of neighbourhood geometric multisets
{
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

}
up to group468

actions. Otherwise, the GWL test would have produced different node colours at iteration t+ 1 for G469

and H as different geometric multisets get unique new colours.470

We will show that on the same graph for nodes i and k, if (c(t)i , g
(t)
i ) = (c

(t)
k , g · g(t)

k ), we always471

have GNN features (s(t)i , v⃗
(t)
i ) = (s

(t)
k ,Qgv⃗

(t)
k ) for any iteration t. This holds for t = 0 because472

GWL and the GNN start with the same initialisation. Suppose this holds for iteration t. At iteration473

t+ 1, if for any i and k, (c(t+1)
i , g

(t+1)
i ) = (c

(t+1)
k , g · g(t+1)

k ), then:474 {
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

}
=

{
(c

(t)
k , g · g(t)

k ) , {{(c(t)j , g · g(t)
j ) | j ∈ Nk}}

}
(15)

By our assumption on iteration t,475 {
(s

(t)
i , v⃗

(t)
i ) , {{(s(t)j , v⃗

(t)
j ) | j ∈ Ni}}

}
=

{
(s

(t)
k ,Qgv⃗

(t)
k ) , {{(s(t)j ,Qgv⃗

(t)
j ) | j ∈ Nk}}

}
(16)

As the same aggregate and update operations are applied at each node within the GNN, the same476

inputs, i.e. neighbourhood features, are mapped to the same output. Thus, (s(t+1)
i , v⃗

(t+1)
i ) =477

(s
(t+1)
k ,Qgv⃗

(t+1)
k ). By induction, if (c

(t)
i , g

(t)
i ) = (c

(t)
k , g · g(t)

k ), we always have GNN node478

features (s(t)i , v⃗
(t)
i ) = (s

(t)
k ,Qgv⃗

(t)
k ) for any iteration t. This creates valid mappings ϕs, ϕv such that479

s
(t)
i = ϕs(c

(t)
i ) and v⃗

(t)
i = ϕv(c

(t)
i , g

(t)
i ) for any i ∈ V .480

Thus, if G and H have the same collection of node colours and geometric multisets, then G and H481

also have the same collection of GNN neighbourhood features482 {
(s

(t)
i , v⃗

(t)
i ) , {{(s(t)j , v⃗

(t)
j ) | j ∈ Ni}}

}
=

{
(ϕs(c

(t)
i ), ϕv(c

(t)
i , g

(t)
i )) , {{(ϕs(c

(t)
j ), ϕv(c

(t)
i , g

(t)
i )) | j ∈ Ni}}

}
Thus, the GNN will output the same collection of node scalar features {s(T )

i } for G and H and the483

permutation-invariant graph-level readout will output f(G) = f(H). This is a contradiction.484

Proposition 9. G-equivariant GNNs have the same expressive power as GWL if the following485

conditions hold: (1) The aggregation AGG is an injective, G-equivariant multiset function. (2) The486

scalar part of the update UPDs is a G-orbit injective, G-invariant multiset function. (3) The vector487

part of the update UPDv is an injective, G-equivariant multiset function. (4) The graph-level readout488

f is an injective multiset function.489

Proof of Theorem 9. Consider a GNN where the conditions hold. We will show that, with a sufficient490

number of iterations t, the output of this GNN is equivalent to GWL, i.e. s(t) ≡ c(t).491
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Let G and H be any geometric graphs which the GWL test decides as non-isomorphic at iteration492

T . Because the graph-level readout function is injective, i.e. it maps distinct multiset of node scalar493

features into unique embeddings, it suffices to show that the GNN’s neighbourhood aggregation494

process, with sufficient iterations, embeds G and H into different multisets of node features.495

For this proof, we replace G-orbit injective functions with injective functions over the equivalence496

class generated by the actions of G. Thus, all elements belonging to the same G-orbit will first be497

mapped to the same representative of the equivalence class, denoted by the square brackets [. . . ],498

followed by an injective map. The result is G-orbit injective. Addressed
R2.3

499

Let us assume the GNN updates node scalar and vector features as:500

s
(t)
i = UPDs

([
(s

(t−1)
i , v⃗

(t−1)
i ) , AGG

(
{{(s(t−1)

i , s
(t−1)
j , v⃗

(t−1)
i , v⃗

(t−1)
j ) | j ∈ Ni}}

)])
(17)

v⃗
(t)
i = UPDv

(
(s

(t−1)
i , v⃗

(t−1)
i ) , AGG

(
{{(s(t−1)

i , s
(t−1)
j , v⃗

(t−1)
i , v⃗

(t−1)
j ) | j ∈ Ni}}

))
(18)

with the aggregation function AGG being G-equivariant and injective, the scalar update function501

UPDs being G-invariant and injective, and the vector update function UPDv being G-equivariant and502

injective.503

The GWL test updates the node colour c(t)i and geometric multiset g(t)
i as:504

c
(t)
i = hs

([
(c

(t−1)
i , g

(t−1)
i ) , {{(c(t−1)

j , g
(t−1)
j ) | j ∈ Ni}}

])
, (19)

g
(t)
i = hv

(
(c

(t−1)
i , g

(t−1)
i ) , {{(c(t−1)

j , g
(t−1)
j ) | j ∈ Ni}}

)
, (20)

where hs is a G-invariant and injective map, and hv is a G-equivariant and injective operation (e.g.505

in equation 2, expanding the geometric multiset by copyingt). Addressed
R2.3

506

We will show by induction that at any iteration t, there always exist injective functions φs and φv507

such that s(t)i = φs(c
(t)
i ) and v⃗

(t)
i = φv(c

(t)
i , g

(t)
i ). This holds for t = 0 because the initial node508

features are the same for GWL and GNN, c(0)i ≡ s
(0)
i and g

(0)
i ≡ (s

(0)
i , v⃗

(0)
i ) for all i ∈ V(G),V(H).509

Suppose this holds for iteration t. At iteration t + 1, substituting s
(t)
i with φs(c

(t)
i ), and v⃗

(t)
i with510

φv(c
(t)
i , g

(t)
i ) gives us511

s
(t+1)
i = UPDs

([
(φs(c

(t)
i ), φv(c

(t)
i , g

(t)
i )) , AGG

(
{{(φs(c

(t)
i ), φs(c

(t)
j ), φv(c

(t)
i , g

(t)
i ), φv(c

(t)
j , g

(t)
j )) | j ∈ Ni}}

)])
v⃗
(t+1)
i = UPDv

(
(φs(c

(t)
i ), φv(c

(t)
i , g

(t)
i )) , AGG

(
{{(φs(c

(t)
i ), φs(c

(t)
j ), φv(c

(t)
i , g

(t)
i ), φv(c

(t)
j , g

(t)
j )) | j ∈ Ni}}

))
The composition of multiple injective functions is injective. Therefore, there exist some injective512

functions gs and gv such that:513

s
(t+1)
i = gs

([
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

])
, (21)

v⃗
(t+1)
i = gv

(
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

)
, (22)

We can then consider:514

s
(t+1)
i = gs ◦ h−1

s hs

([
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

])
, (23)

v⃗
(t+1)
i = gv ◦ h−1

v hv

(
(c

(t)
i , g

(t)
i ) , {{(c(t)j , g

(t)
j ) | j ∈ Ni}}

)
, (24)

Then, we can denote φs = gs ◦h−1
s and φv = gv ◦h−1

v as injective functions because the composition515

of injective functions is injective. Hence, for any iteration t+ 1, there exist injective functions φs516

and φv such that s(t+1)
i = φs

(
c
(t+1)
i

)
and v⃗

(t+1)
i = φv

(
c
(t+1)
i , g

(t+1)
i

)
.517

At the T -th iteration, the GWL test decides that G and H are non-isomorphic, which means the518

multisets of node colours {c(T )
i } are different for G and H. The GNN’s node scalar features519

{s(T )
i } = {φs(c

(T )
i )} must also be different for G and H because of the injectivity of φs.520

521
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E Understanding the Design Space of Geometric GNNs via GWL522

We can use the GWL framework to better understand key design choices for building geometric523

GNNs [25]: (1) Depth or number of layers; and (2) Body order of invariant scalars. In doing so, we524

formalise theoretical limitations of current geometric GNNs and provide practical implications. Addressed
R2.6, R4.4

525

E.1 Role of Depth: Propagating Geometric Information526

Each iteration of GWL expands the neighbourhood from which geoemtric information can be gath-527

ered. Thus, stacking multiple G-equivariant GNN layers enables the computation of compositional528

geometric features.529

This can be understood via a geometric version of computation trees [43]. A computation tree T (t)
i530

represents the maximum information contained in GWL/IGWL colours or GNN features at iteration531

t by an ‘unrolling’ of the message passing procedure. Geometric computation trees are constructed532

recursively: T (0)
i = (si, v⃗i) for all i ∈ V . For t > 0, we start with a root node (si, v⃗i) and add a533

child subtree T (t−1)
j for all j ∈ Ni along with the relative position x⃗ij along the edge, as shown in534

Figure 3. To obtain the root node’s embedding or colour, both scalar and geometric information is535

propagated from the leaves up to the root. Thus, if two nodes have identical geometric computation536

trees, they will be mapped to the same node embedding or colour.537

Critically, geometric orientation information cannot flow from one level to another in the computation538

trees for IGWL and G-invariant GNNs, as they only update scalar information. In the recursive539

construction procedure, we must insert a connector node (sj , v⃗j) before adding the child subtree540

T (t−1)
j for all j ∈ Ni and prevent geometric information propagation between them. Consequently,541

even the most powerful G-invariant GNNs are restricted in their ability to compute global and542

non-local geometric properties.543

Proposition 10. IGWL and G-invariant GNNs cannot decide several geometric graph properties:544

(1) perimeter, surface area, and volume of the bounding box/sphere enclosing the geometric graph;545

(2) distance from the centroid or centre of mass; and (3) dihedral angles.546

Practical Implications. Proposition 10, together with Propositions 1 and 4, highlight critical547

theoretical limitations of G-invariant GNNs. Our results suggest that G-equivariant GNNs should548

be preferred when working with large geometric graphs such as macromolecules with thousands of549

nodes, where message passing is restricted to local radial neighbourhoods around each node.550

Motivated by these limitations, two straightforward approaches to improving G-invariant GNNs551

may be: (1) pre-computing non-local geometric properties as input features, e.g. models such as552

GemNet [33] and GearNet [31] successfully use two-hop dihedral angles. And (2) working with fully553

connected geometric graphs, as Proposition 7 suggests that G-equivariant and G-invariant GNNs554

can be made equally powerful when performing all-to-all message passing. This is supported by the555

empirical success of recent G-invariant ‘Graph Transformers’ [34, 37] for small molecules with tens556

of nodes, where working with full graphs is tractable.557

Synthetic Experiment: k-chains. We present a simple synthetic experiment to demonstrate the role Addressed
R1.1, R3.3

558

of depth in propagating geometric information beyond local neighbourhoods. We consider k-chain559

geometric graphs, which generalise the examples from [23] and the pair of graphs presented in Fig-560

ure 3. Each pair of k-chains consists of k+2 nodes with k nodes arranged in a line and differentiated561

by the orientation of the 2 end points. Thus, k-chain graphs are (k − 1)-hop distinguishable, and562

(k − 1) iterations of GWL are sufficient to distinguish them. In Table 1, we find that (k − 1) layers563

of G-equivariant message passing can learn to perfectly distinguish any k-chains, while G-invariant564

GNNs are unable to distinguish k-chains for k ≥ 2.565

E.2 Role of Body Order: Distinguishing G-Orbits566

At each iteration of GWL and IGWL, the I-HASH function assigns a G-invariant colouring to567

distinct geometric neighbourhood patterns. For geometric GNNs, this corresponds to scalarising local568

geometric information when updating the scalar features, as shown in equation 13 and equation 14.569

Let us analyse the construction of the I-HASH function via the k-body variations IGWL(k). In doing570

so, we will make connections between IGWL and 1-WL for non-geometric graphs.571
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(k = 6-chains) Number of layers
GNN Layer 1 2 3 4 5 6 7

Rand. guess 50%
Non-geom. 50% 50% 50% 50% 50% 50% 50%
O(3)-Inv. 50% 50% 50% 50% 50% 50% 50%
O(3)-Equiv. 50% 50% 50% 50% 100% 100% 100%

SO(3)-Equiv. 100% 100% 100% 100% 100% 100% 100%

Table 1: k-chain geometric graphs. k-chain graphs are (k − 1)-hop distinguishable, and (k − 1)
iterations of G-equivariant message passing are sufficient to distinguish them, while G-invariant
message passing is unable to distinguish k-chains for k ≥ 2 (for G = O(3)).

Figure 4: Two geometric graphs for which IGWL and G-invariant GNNs cannot distinguish their
geometric properties such as perimeter, surface area, and volume of the bounding box/sphere, distance
from the centroid, and dihedral angles. The centroid is denoted by a red point and distances from it
are denoted by dotted red lines. The bounding box enclosing the geometric graph is denoted by the
dotted green lines.

Firstly, we formalise the relationship between the injectivity of I-HASH(k) and the maximum cardi-572

nality of local neighbourhoods in a given dataset.573

Proposition 11. I-HASH(m) is G-orbit injective for m = max({|Ni| | i ∈ V}), the maximum574

cardinality of all local neighbourhoods Ni in a given dataset.575

While building provably injective I-HASH(k) functions may require intractably high k, the hierarchy576

of IGWL(k) tests enable us to study the expressive power of practical G-invariant aggregators used in577

current geometric GNN layers, e.g. SchNet [20], E-GNN [18], and Tensor Field Networks [15] use578

distances; DimeNet [22] uses distances and angles; and MACE [36] constructs scalars up to arbitrary579

k via Atomic Cluster Expansion [39]. We can state the following about the IGWL(k) hierarchy and580

the corresponding GNNs.581

Proposition 12. IGWL(k) is at least as powerful as IGWL(k−1). For k ≤ 5, IGWL(k) is strictly more582

powerful than IGWL(k−1).583

Finally, we show that IGWL(2) is equivalent to 1-WL when all the pairwise distances between the584

nodes are the same. A similar observation was recently made by [44].585

Proposition 13. Let G1 = (A1,S1, X⃗1) and G2 = (A2,S2, X⃗2) be two geometric graphs with the586

property that all edges have equal length. Then, IGWL(2) distinguishes the two graphs if and only if587

1-WL can distinguish the attributed graphs (A1,S1) and (A1,S1).588

This equivalence also points out the limitations of G-invariant models like SchNet [20] and589

CGCNN [21] which only rely on pairwise distances and consequently suffer from all well-known590

failure cases of 1-WL. For instance, such models cannot distinguish two equilateral triangles from591

the regular hexagon [22].592
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E.3 Geometric GNN Design Space Proofs593

Proposition 10. IGWL and G-invariant GNNs cannot decide several geometric graph properties:594

(1) perimeter, surface area, and volume of the bounding box/sphere enclosing the geometric graph;595

(2) distance from the centroid or centre of mass; and (3) dihedral angles.596

Proof of Proposition 10. Following [43], we say that a class of models decides a geometric graph597

property if there exists a model belonging to this class such that for any two geometric graphs that598

differ in the property, the model is able to distinguish the two geometric graphs.599

In Figure 4 we provide an example of two geometric graphs that demonstrate the proposition. G1 and600

G2 differ in the following geometric graph properties:601

• Perimeter, surface area, and volume of the bounding box enclosing the geometric graph1: (32602

units, 40 units2, 16 units3) vs. (28 units, 24 units2, 8 units3).603

• Multiset of distances from the centroid or centre of mass: {0.00, 1.00, 1.00, 2.45, 2.45} vs.604

{0.40, 1.08, 1.08, 2.32, 2.32}.605

• Dihedral angles: ∠(ljkm) =
(x⃗jk×x⃗lj)·(x⃗jk×x⃗mk)
|x⃗jk×x⃗lj ||x⃗jk×x⃗mk| are clearly different for the two graphs.606

However, according to Proposition 4 and Theorem ??, both IGWL and G-invariant GNNs cannot607

distinguish these two geometric graphs, and therefore, cannot decide all these properties.608

We can also show this by constructing geometric computation trees for any number of IGWL or609

G-invariant GNN iterations, as illustrated in Figure 3. We observe that the geometric computation610

trees of any pair of isomorphic nodes are identical, as all 1-hop neighbourhoods are computationally611

identical. Therefore, the set of node colours or node scalar features will also be identical, which612

implies that G1 and G2 cannot be distinguished.613

Proposition 11. I-HASH(m) is G-orbit injective for m = max({|Ni| | i ∈ V}), the maximum614

cardinality of all local neighbourhoods Ni in a given dataset.615

Proof of Proposition 11. As m is the maximum cardinality of all local neighbourhoods Ni under616

consideration, any distinct neighbourhoods N1 and N2 must have distinct multisets of m-body scalars.617

As I-HASH(m) computes scalars involving up to m nodes, it will be able to distinguish any such N1618

and N2. Thus, I-HASH(m) is G-orbit injective.619

Proposition 12. IGWL(k) is at least as powerful as IGWL(k−1). For k ≤ 5, IGWL(k) is strictly more620

powerful than IGWL(k−1).621

Proof of Proposition 12. By construction, I-HASH(k) computes G-invariant scalars from all possible622

tuples of up to k nodes formed by the elements of a neighbourhood and the central node. Thus,623

the I-HASH(k) class contains I-HASH(k−1), and I-HASH(k) is at least as powerful as I-HASH(k−1).624

Thus, the corresponding test IGWL(k) is at least as powerful as IGWL(k−1).625

Secondly, to show that IGWL(k) is strictly more powerful than IGWL(k−1) for k ≤ 5, it suffices to626

show that there exist a pair of geometric neighbourhoods that can be distinguished by IGWL(k) but627

not by IGWL(k−1):628

• For k = 3 and G = O(3) or SO(3), for the local neighbourhood from Figure 1 in [23], two629

configurations with different angles between the neighbouring nodes can be distinguished by630

IGWL(3) but not by IGWL(2).631

• For k = 4 and G = O(3) or SO(3), the pair of local neighbourhoods from Figure 1 in [27] can632

be distinguished by IGWL(4) but not by IGWL(3).633

• For k = 5 and G = O(3), the pair of local neighbourhoods from Figure 2(e) in [27] can be634

distinguished by IGWL(5) but not by IGWL(4).635

1The same result applies for the bounding sphere, not shown in the figure.

16



On the Expressive Power of Geometric Graph Neural Networks

• For k = 5 and G = SO(3), the pair of local neighbourhoods from Figure 2(f) in [27] can be636

distinguished by IGWL(5) but not by IGWL(4).637

638

Proposition 13. Let G1 = (A1,S1, X⃗1) and G2 = (A2,S2, X⃗2) be two geometric graphs with the639

property that all edges have equal length. Then, IGWL(2) distinguishes the two graphs if and only if640

1-WL can distinguish the attributed graphs (A1,S1) and (A1,S1).641

Proof of Proposition 13. Let c and k the colours produced by IGWL(2) and 1-WL, respectively, and642

let i and j be two nodes belonging to any two graphs like in the statement of the result. We prove the643

statement inductively.644

Clearly, c(0)i = k
(0)
i for all nodes i and c

(0)
i = c

(0)
j if and only if k(0)i = k

(0)
j . Now, assume that the645

statement holds for iteration t. That is c(t)i = c
(t)
j if and only if k(t)i = k

(t)
j holds for all i. Note that646

c
(t+1)
i = c

(t+1)
j if and only if c(t)i = c

(t)
j and {{(c(t)p , ∥x⃗ip∥) | p ∈ Ni}} = {{(c(t)p , ∥x⃗jp∥) | p ∈ Nj}},647

since the norm of the relative vectors is the only injective invariant that IGWL(2) can compute (up to648

a scaling). Since all the norms are equal, by the induction hypothesis, this is equivalent to k
(t)
i = k

(t)
j649

and {{k(t)p | p ∈ Ni}} = {{k(t) | p ∈ Nj}}. Therefore, this is equivalent to k
(t+1)
i = k

(t+1)
j650
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