
Under review as a conference paper at ICLR 2023

EXCESS RISK ANALYSIS FOR EPISTEMIC UNCERTAINTY
WITH APPLICATION TO VARIATIONAL INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian deep learning plays an important role especially for its ability evaluating
epistemic uncertainty (EU). Due to computational complexity issues, approxi-
mation methods such as variational inference (VI) have been used in practice to
obtain posterior distributions and their generalization abilities have been analyzed
extensively, for example, by PAC-Bayesian theory; however, little analysis exists
on EU, although many numerical experiments have been conducted on it. In this
study, we analyze the EU of supervised learning in approximate Bayesian inference
by focusing on its excess risk. First, we theoretically show the novel relations
between generalization error and the widely used EU measurements, such as the
variance and mutual information of predictive distribution, and derive their conver-
gence behaviors. Next, we clarify how the objective function of VI regularizes the
EU. With this analysis, we propose a new objective function for VI that directly
controls the prediction performance and the EU based on the PAC-Bayesian theory.
Numerical experiments show that our algorithm significantly improves the EU
evaluation over the existing VI methods.

1 INTRODUCTION

As machine learning applications spread, understanding the uncertainty of predictions is becoming
more important to increase our confidence in machine learning algorithms (Bhatt et al., 2021).
Uncertainty refers to the variability of a prediction caused by missing information. For example, in
regression problems, it corresponds to the error bars in predictions; and in classification problems, it
is often expressed as the class posterior probability, entropy, and mutual information (Hüllermeier &
Waegeman, 2021; Gawlikowski et al., 2022). There are two types of uncertainty (Bhatt et al., 2021):
1) Aleatoric uncertainty (AU), which is caused by noise in the data itself, and 2) Epistemic uncertainty
(EU), which is caused by a lack of training data. In particular, since EU can tell us where in the
input space is yet to be learned, integrated with deep learning methods, it is used in such applications
as dataset shift (Ovadia et al., 2019), adversarial data detection (Ye & Zhu, 2018), active learning
(Houlsby et al., 2011), Bayesian optimization (Hernández-Lobato et al., 2014), and reinforcement
learning (Janz et al., 2019).

Mathematically, AU is defined as Bayes risk, which expresses the fundamental difficulty of learning
problems (Depeweg et al., 2018; Jain et al., 2021; Xu, 2020). For EU, Bayesian inference is
useful because posterior distribution updated from prior distribution can represent a lack of data
(Hüllermeier & Waegeman, 2021). In practice, measurements like the variance of the posterior
predictive distribution, and associated conditional mutual information represented EU in practice
(Kendall & Gal, 2017; Depeweg et al., 2018).

In Bayesian inference, since posterior distribution is characterized by the training data and the
model using Bayes’ formula, its prediction performance and EU are determined automatically.
However, due to computational issues, such exact Bayesian inference is difficult to implement; we
often use approximation methods, such as variational inference (VI) (Bishop, 2006), especially for
deep Bayesian models. Since the derived posterior distribution also depends on the properties of
approximation methods, the prediction performance and EU of deep Bayesian learning are no longer
automatically guaranteed through Bayes’ formula. The prediction performance has been analyzed as
generalization error, for example, by PAC-Bayesian theory (Alquier, 2021). Since EU is also essential
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in practice, we must obtain a theoretical guarantee of the algorithm- and the sample- dependent
non-asymptotic theory for EU, similarly to generalization error analysis.

Unfortunately, study has been limited in that direction. Traditional EU analysis has focused on the
properties of the exact Bayesian posterior and predictive distributions (Fiedler et al., 2021; Lederer
et al., 2019) as well as large sample behaviors (Clarke & Barron, 1990). Since Bayesian deep learning
uses approximate posterior distributions, we cannot apply such traditional EU analysis based on
Bayes’ formula to Bayesian deep learning. The asymptotic theory of a sufficiently large sample may
overlook an important property of the EU that is due to the lack of training data.

Recently, analysis of EU focusing on loss functions was proposed for supervised learning (Xu &
Raginsky, 2020; Jain et al., 2021). EU was defined as the excess risk obtained by subtracting the
Bayes risk corresponding to the AU from the total risk. Thus, excess risk implies the loss due to
insufficient data when the model is well specified. Although this approach successfully defines EU
with loss functions, the following limitation still remains. Xu & Raginsky (2020) assume that the data
generating mechanism is already known and that we can precisely evaluate Bayesian posterior and
predictive distribution. A correct model is not necessarily a realistic assumption, and the assumption
about an exact Bayesian posterior hampers understanding EU in approximation methods.

To address these limitations, it appears reasonable to analyze excess risk under a similar setting as
PAC-Bayesian theory and apply it to EU of approximate Bayesian inference. However, as shown in
Sec. 2, analyzing excess risk in such a way leads to impractical theoretical results, and the relations
between excess risk and the widely used EU measurements remain unclear. This greatly complicates
EU analysis. Because of this difficulty, to the best of our knowledge, no research exists on excess risk
for EU for approximation methods.

In this paper, we propose a new theoretical analysis for EU that addresses the above limitations of
these existing settings. Our contributions are the followings:

• We show non-asymptotic analysis for widely used EU measurements (Theorems 2 and 3).
We propose computing the Bayesian excess risk (BER) (Eq. (9)) and show that this excess
risk equals to widely used EU measurements. Then we theoretically show the convergence
behavior of BER using PAC-Bayesian theory (Eqs. (13)) and (18)).

• Based on theoretical analysis, we give a new interpretation of the existing VI that clarifies
how the EU is regularized (Eqs. (19) and (20)). Then we propose a novel algorithm that
directly controls the prediction and the EU estimation performance simultaneously based
on PAC-Bayesian theory (Eq. (21)). Numerical experiments suggest that our algorithm
significantly improves EU evaluation over the existing VI.

2 BACKGROUND OF PAC-BAYESIAN THEORY AND EPISTEMIC UNCERTAINTY

Here we introduce preliminaries. Such capital letters as X represent random variables, and such
lowercase letters as x represent deterministic values. All the notations are summarized in Appendix A.
In Appendix B, we show summary of the settings.

2.1 PAC-BAYESIAN THEORY

We consider a supervised setting and denote input-output pairs by Z = (X,Y ) ∈ Z := X × Y .
We assume that all the data are i.i.d. from some unknown data-generating distribution ν(Z) =
ν(Y |X)ν(X). Learners can access N training data, ZN := (Z1, . . . , ZN ) with Zn := (Xn, Yn),
which are generated by ZN ∼ ν(Z)N . We express ν(Z)N as ν(ZN ). We express conditional
distribution as ν(Y |X = x) as ν(Y |x) for simplicity. We introduce loss function l : Y × A → R
whereA is an action space. We express loss of action a ∈ A and target variable y is written as l(y, a).
We introduce a model fθ : X → A, parameterized by θ ∈ Θ ⊂ Rd. When we put a prior p(θ) over θ,
the PAC-Bayesian theory (Alquier, 2021; Germain et al., 2016) guarantees the prediction performance
by focusing on the average of the loss with respect to posterior distribution q(θ|ZN ) ∈ Q. Q is a
family of distributions and q(θ|ZN ) is not restricted to Bayesian posterior distribution. In this work
we consider the log loss and the squared loss. For the log loss, we consider model p(y|x, θ), and the
loss is given as l(y, p(y|x, θ)) = − ln p(y|x, θ), where A is probability distributions. For the squared
loss, we use model fθ(x) and l(y, fθ(x)) = |y − fθ(x)|2, where Y = A = R.
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PAC-Bayesian theory provides a guarantee for the generalization of test error
Rl(Y |X,ZN ) := Eν(ZN )Eq(θ|ZN )Eν(Z)l(Y, fθ(X)) and training error Eν(ZN )r

l(ZN ) :=

Eν(ZN )Eq(θ|ZN )
1
N

∑N
n=1 l(Yn, fθ(Xn)). A typical PAC-Bayesian error bound takes form

Rl(Y |X,ZN ) ≤ Eν(ZN )r
l(ZN ) + Genl(ZN ). Genl(ZN ) is called generalization error. Under

suitable assumptions (Alquier, 2021), Genl(ZN ) is upper-bounded byO(1/Nα) for α ∈ (1/2, 1]. In
many cases, it depends on the complexity of the posterior distribution, such as Kullback-Leibler (KL)
divergence KL(q(θ|ZN )|p(θ)). When Genl(ZN ) = KL(q(θ|ZN )|p(θ))/λ+ c, where λ and c are
positive constants, given training data ZN = zN , we get a posterior distribution for the prediction by

q̂(θ|zN ) = argmin
q(θ|zN )∈Q

r(zN ) +
KL(q(θ|zN )|p(θ))

λ
. (1)

When the log loss and λ = N is used, this minimization is closely related to variational inference
(VI) in Bayesian inference. See (Germain et al., 2016) for details.

Under additional moderate assumptions, using q̂(θ|zN ) for the test error, we can derive the following
excess risk (ER) bound from the PAC-Bayesian generalization bound (Alquier, 2021):

ERl(Y |X,ZN , θ∗) := Rl(Y |X,ZN )−Rl(Y |X, θ∗) ≤ C1
lnN

Nα
, (2)

where Rl(Y |X, θ∗) = Eν(Z)l(Y, fθ∗(X)) and θ∗ = argminθEν(Z)l(Y, fθ(X)). Constant C1 de-
pends only on the problem. Since we aim to analyze EU, we do not further discuss the details of the
PAC-Bayesian bound. See Appendix C.2 for the explicit conditions of this bound.

Although PAC-Bayesian theory focuses on the average test error over posterior distribution, we use
predictive distribution for predictions in Bayesian inference. Thus we define Prediction Risk (PR):

PRl(Y |X,ZN ) := Eν(ZN )Eν(Z)l(Y,Eq(θ|ZN )fθ(X)). (3)

When the loss is log loss, PRlog(Y |X,ZN ) = −Eν(ZN )Eν(Z) log p
q(Y |X,ZN ) where

pq(y|x, zN ) := Eq(θ|zN )p(y|x, θ) is the approximate predictive distribution. Thus, PRlog(Y |X,ZN )
corresponds to the log loss of the predictive distribution, which is commonly used in the analysis of
Bayesian inference (Watanabe, 2009; 2018).

2.2 EPISTEMIC UNCERTAINTY MEASUREMENTS

Here, we introduce widely used EU measurements in approximate Bayesian inference. For the log
loss, conditioned on (X,ZN ) = (x, zN ), the approximate mutual information has been widely used
for uncertainty estimation (Depeweg et al., 2018):

Iν(θ;Y |x, zN ) = H[pq(Y |x, zN )]− Eq(θ|zN )H[p(Y |x, θ)], (4)

where H[pq(Y |x, zN )] := −Epq(Y |x,zN ) log p
q(Y |x, zN ) is the entropy of the approximate predic-

tive distribution and Eq(θ|zN )H[p(Y |x, θ)] is the conditional entropy. Iν(θ;Y |x, zN ) has been used in
Bayesian experimental design (Foster et al., 2019) and reinforcement learning (Depeweg et al., 2018).
Note that by taking the expectation, we have Iν(θ;Y |X,ZN ) = Eν(X=x)Iν(ZN=zN )(θ;Y |x, zN ).

In the case of squared loss, the variance of the model is often used for EU. This is a common
practice in VI, Monte Carlo (MC) dropout (Kendall & Gal, 2017), and deep ensemble methods
(Lakshminarayanan et al., 2017). Conditioned on (X,ZN ) = (x, zN ), it is written as

Varθ|zN fθ(x) = Eq(θ|zN )(fθ(x)− Eq(θ|zN )fθ(x))
2. (5)

Although Eqs. (4) and (5) are widely used in application, there have been limited theoretical study
for them as discussed in Sec. 1.

2.3 EXCESS RISK ANALYSIS AND EPISTEMIC UNCERTAINTY

Recently, the analysis of EU based on excess risk was proposed (Xu & Raginsky, 2020). The
key idea of this analysis is to assume that our statistical model p(y|x, θ) is correct and address the
average performance of this model by assuming a prior distribution over θ with distribution p(θ).
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Specifically, the joint distribution of the training data, the test data, and parameter of the model
is given as pB(ZN , Z, θ) := p(θ)

∏N
n=1 p(Yn|Xn, θ)ν(Xn)p(Y |X, θ)ν(X). Under this setting,

the goal of learning is to infer decision rule ψ : ZN × X → A that minimizes expected loss
EpB(ZN ,Z,θ)[l(Y, ψ(X,Z

N ))]. They refer to this setting as Bayesian learning since we marginalize
out parameter θ. With this notation, Xu & Raginsky (2020) defined minimum excess risk as

MERl(Y |X,ZN ) := inf
ψ:ZN×X→A

EpB(ZN ,Z,θ)[l(Y, ψ(X,Z
N ))]− inf

ϕ:Θ×X→A
EpB(ZN ,Z,θ)[l(Y, ϕ(θ,X))], (6)

where the first term is the minimum achievable risk using the training data and the second term is the
Bayes risk since it uses learning rule ϕ : Θ×X → A, which takes true parameter θ instead of the
training data. Thus, the second term is the aleatroic uncertainty (AU) since it expresses the task’s
fundamental difficulty. Then MER can be regarded as the EU since it is the difference between the
total risk and the AU (Xu & Raginsky, 2020; Hafez-Kolahi et al., 2021).

For the log loss, the first term is H[p(Y |X,ZN )] and the second term is Ep(θ)H[p(Y |X, θ)]. Thus,
MERlog(Y |X,ZN ) = I(θ;Y |X,ZN ), which is the conditional mutual information. Other than the
log loss, if the loss function satisfies the σ2 sub-Gaussian property conditioned on (X,ZN ) = (x, zN ),
MERl(Y |X,ZN ) ≤

√
2σ2I(θ;Y |X,ZN ) holds (Xu & Raginsky, 2020). In many practical settings

I(θ;Y |X,ZN ) is upper-bounded by O(lnN/N). Thus, EU converges with O(lnN/N) under this
settings. See Appendix C for more details.

Although this analysis successfully defined EU with rigorous theoretical analysis, the assumptions are
clearly impractical since we assume that the correct model, exact Bayesian posterior, and predictive
distributions are available. To extend this analysis into approximate Bayesian inference, it is tempting
to combine the theory of MER with PAC-Bayesian theory where the data are generated i.i.d from
ν(Z). For that extension, here we introduce the Prediction Excess Risk (PER) using Eq. (3):

PERl(Y |X,ZN ) := PRl(Y |X,ZN )− inf
ϕ̃:X→A

Eν(Z)[l(Y, ϕ̃(X))], (7)

where the second term corresponds to the Bayes risk. Although we introduced this definition inspired
by Eq. (6), it is impractical for evaluating EU. In practice, we are interested in evaluating EU using
only input x, as shown in Eqs. (4) and (5). However, we cannot use Eq. (7) for that purpose since we
do not know both ν(Y |x) and the Bayes risk in the second term. Despite less practical definition, as
shown in Sec.3, PER plays a fundamental role in understanding the algorithm-dependent behavior of
the widely used EU measurements in Eqs. (4) and (5).

3 ANALYSIS OF EPISTEMIC UNCERTAINTY BASED ON EXCESS RISK

In this section, we develop theories for analyzing the widely used EU measurements introduced in
Sec 2.2. We focus on the following questions. (Q1) The convergence behaviors of those measurements
are not apparent. As the number of training data points increases, we expect these measurements to
converge to zero. (Q2) The relationship between these measurements and the generalization error is
unclear. Since these measurements depend on the training data and the algorithm, we expect some
meaningful relationships must exist. All the proofs in this section are shown in Appendix D.

3.1 RELATION BETWEEN EPISTEMIC UNCERTAINTY AND BAYESIAN EXCESS RISK

First, to connect the practical EU evaluation methods in Sec.2.2 with the excess risk analysis in
Sec.2.3, we introduce the approximate joint distribution of test data, training data, and parameters:

ν(ZN )q(θ|ZN )ν(Z) ≈ pq(θ,ZN , Z) := ν(ZN )q(θ|ZN )ν(X)p(Y |X, θ). (8)

When the log loss is used, we employ model for p(y|x, θ) in Eq. (8). When the squared loss is used,
we assume Gaussian distribution p(y|x, θ) = N(y|fθ(x), v2) for some v ∈ R.

When a model is well specified, that is, ν(y|x) = p(y|x, θ∗) holds for some θ∗ ∈ Θ, we expect that
the predictive distribution converges to p(y|x, θ∗) and the approximation of Eq. (8) becomes accurate
as N increases. We discuss the quality of this approximation in Sec.3.2. Under this setting, we define
Bayesian Excess risk (BER):

BERl(Y |X,ZN ) := BPRl(Y |X,ZN )− inf
ϕ:Θ×X→A

Epq(θ,ZN ,Z)l(Y, ϕ(θ,X)) (9)
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where BPR is the Bayesian Prediction Risk defined as

BPRl(Y |X,ZN ) := Epq(θ,ZN ,Z)l(Y,Eq(θ′|ZN )fθ′(X)), (10)
and the second term is the Bayes risk under the approximate joint distribution of Eq. (8). Note that
BERl(Y |X,ZN ) is always larger than 0; see Appendix D.2 for details. We also show the formal
definitions of BER and BPR conditioned on (X,ZN ) = (x, zN ) in Appendix D.1.

BER and BPR are defined, motivated by PER, PR, and MER. The difference is the mechanism of
through which the test data are generated. In BER, we assume that our model p(y|x, θ) is correct,
and the parameters follow the approximate posterior distribution q(θ|zN ). Thus, the data-generating
mechanism resembles the setting in Sec.2.3. Therefore, similar to MER, BER implies the loss due to
insufficient data under the assumption that our current model q(θ|zN )p(y|x, θ) is correct.

The next theorem elaborate this intuition and connects BER to widely used EU measurements:
Theorem 1. Conditioned on (x, zN ), we express BERlog(Y |x, zN ) for the log loss and
BER(2)(Y |x, zN ) for the squared loss. Under the definition of Eq. (9), we have

BERlog(Y |x, zN ) = Iν(θ;Y |x, zN ), BER(2)(Y |x, zN ) = Varθ|zN fθ(x). (11)

Thus, by studying BER, we can analyze the widely used EU measurements. We point out that
BPRlog(Y |x, zN ) = H[pq(Y |x, zN )], and the Bayes risk is given as Eq(θ|zN )H[p(Y |x, θ)].
Remark 1. BER captures EU when our model is well specified. On the other hand, PER (Eq. (7))
represents the prediction performance, which has the relation to the quality of approximation of
Eq. (8) under the given loss function. This intuition leads to our new VI in Sec.3.3.

3.2 ANALYSIS OF EXCESS RISK BASED ON PAC-BAYESIAN THEORY

Based on the definitions introduced in Sec. 3.1, here we develop a novel relation between BER and
the generalization. First, we show the results of the squared loss. For simplicity, assume Y = R. See
Appendix D.6 for Y = Rd.
Theorem 2. Conditioned on (x, zN ), assume that a regression function is well specified, that is,
Eν(Y |x)[Y |x] = fθ∗(x) holds. Then we have

PER(2)(Y |x, zN ) + BER(2)(Y |x, zN ) = ER(2)(Y |x, zN , θ∗) ≤ R(2)(Y |x, zN ). (12)
Furthermore assume that the PAC-Bayesian bound Eq. (2) holds, and then we have

PER(2)(Y |X,ZN ) + BER(2)(Y |X,ZN ) = ER(2)(Y |X,ZN , θ∗) ≤ C1 lnN

Nα
. (13)

Proof. We use the following relation about the Jensen gap and BER:

Lemma 1. For any (x, y) and any posterior distribution conditioned on ZN = zN , we have

|y − Eq(θ|zN )fθ(x)|2 +Varθ|zN fθ(x) = Eq(θ|zN )|y − fθ(x)|2. (14)

From this lemma, the theorem follows directly.

Remark 2. When we use a flexible model, such as a deep neural network for fθ(x), assumption
Eν(Y |x)[Y |x] = fθ∗(x) holds even when ν(Y |x) ̸= p(y|x, θ∗), which means we misspecify the noise
function in regression tasks.

From Eq. (12), Varθ|zN fθ(x) clearly is a lower bound of excess risk and test error, consistent with the
well-known result that the variance of the predictor often underestimates EU (Lakshminarayanan et al.,
2017). From Eq. (13), BER(2)(Y |X,ZN ) converges to 0 with the same order as the PAC-Bayesian
bound. Finally, we remark that from Lemma 1, we have

R(2)(Y |X,ZN ) = PR(2)(Y |X,ZN ) + BER(2)(Y |X,ZN ). (15)
This indicates that the test error is decomposed into PR and BER. As pointed out in Remark 1, BER
is EU under the approximation of Eq. (8), and PER represents the quality of that approximation,
Eq. (15) suggests that the test error simultaneously regularizes those BER and PER.

Next we show the log loss result. Our analysis requires additional assumption about model p(y|x, θ).
We define log density ratio L(y, x, θ, θ∗) := − ln p(y|x, θ) + ln p(y|x, θ∗).
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Assumption 1. Conditioned on (x, θ, zN ), there exists convex function h(ρ) for [0, b) such that
cumulant function L(y, x, θ, θ∗) is upper-bounded by h(ρ),i.e., the following inequality holds:

lnEp(Y |x,θ)e
ρ(L(Y,x,θ,θ∗)−Ep(Y |x,θ)L(Y,x,θ,θ

∗)) ≤ h(ρ). (16)

For example, if h(ρ) = ρ2σ2(x, θ)/2 and b = ∞, this assumption resembles the σ2 sub-Gaussian
property given (x, θ, zN ). When considering Gaussian likelihood p(y|x, θ) = N(y|fθ(x), v2), we
have h(ρ) = ρ2

2v2 |fθ(x)− fθ∗(x)|2. Thus, σ2(x, θ) depends on x and θ, and we refer to this σ2(x, θ) as
a sub-Gaussian property. Other than the Gaussian likelihood, when the log loss is bounded, it satisfies
the sub-Gaussian property. In this paper, we focus on this sub-Gaussian setting for Assumption 1 to
clarify the presentation. We show an example of the logistic regression in Appendix D.11.
Theorem 3. When the model is well specified, that is, ν(y|x) = p(y|x, θ∗) holds and σ2(x, θ) sub-
Gaussian property is satisfied for L(y, x, θ, θ∗), as discussed above. Assume that Eq(θ|zN )σ

2(x, θ) <

σ2
p <∞. Conditioned on (x, zN ), we have

PERlog(Y |x, zN ) + BERlog(Y |x, zN ) ≤
√
2σ2

pER
log(Y |x, zN , θ∗). (17)

Moreover, assume PAC-Bayesian bound Eq. (2) and Eν(zN )q(θ|ZN )ν(X)σ
2(X, θ) < σ2

q <∞ hold, and
then we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤
√

2σ2
qER

log(Y |X,ZN , θ∗) ≤
√

2σ2
qC1 lnN

Nα
. (18)

Proof. Using Assumption 1, we apply change-of-measure inequalities (Ohnishi & Honorio, 2021) to
control the approximation error of Eq. (8).

Remark 3. When we use a generalized linear model, the assumption of a well-specified model is
relaxed so that Eν(Y |x)[Y |x] is well specified, similar to Remark 2. See Appendix D.9 for details.

From Eq. (17), Iν(θ;Y |x, zN ) is a lower bound of the excess risk and test error.
From Eq. (18), Iν(θ;Y |X,ZN ) converges in the order of O(

√
lnN/Nα) if we can

upper-bound Eν(ZN )q(θ|ZN )ν(X)σ
2(X, θ) < σ2

q <∞. For the Gaussian likelihood, we have
Eν(ZN )q(θ|ZN )ν(X)σ

2(X, θ) ≤2ERlog(Y |X,ZN , θ∗)≤ 2C1 lnN
Nα := σ2

q . See Appendix D.8 for a detail.

In a similar way, we can derive the convergence rate of the entropy of the predictive distribution,
which shows H[pq(Y |X,ZN )] = H[p(Y |X, θ∗)] +O(

√
lnN/Nα). See Appendix D.10 for a formal

statement. We show similar results for Theorem 3 under sub-exponential property in Appendix E.

In summary, we obtained the convergence of widely used EU measurements and the entropy in the
approximate Bayesian inference for the first time. They converges faster than excess risks. Moreover
we obtained two messages from Theorems 2 and 3. First, the widely used EU measurements are the
lower bounds of the test error and excess risks. This is consistent with the experimental fact that these
EU measurements often underestimate EU. Second, the sum of PER and BER is upper-bounded by
excess risk (test error). Thus, when minimizing the test error, we also simultaneously minimize PER
and BER. This interpretation extends the intuition of Remark 1 and leads to a new VI in Sec. 3.3.

3.3 NOVEL EU REGULARIZATION METHOD FOR VARIATIONAL INFERENCE

As seen in Sec. 3.2, minimizing the test error leads to minimizing BER and PER. In this section, we
discuss this relation using the objective function of VI. As an explicit example, consider a regression
problem usingN(y|fθ(x), v2). Then from Lemma 1, the loss function of the standard VI (eliminating
KL(q(θ|zN )|p(θ))) can be written:

−Eν(Z)Eq(θ|zN ) lnN(y|fθ(x), v2) = Eν(Z)

|Y − Eq(θ|zN )fθ(X)|2 +Varθ|zN fθ(X)

2v2
+

ln 2πv2

2

=
PR(2)(Y |X, zN ) + BER(2)(Y |X, zN )

2v2
+

ln 2πv2

2
. (19)

Eq. (19) implies that the standard VI tries to fit the mean of the predictive distribution to target
variable y with the regularization term about the variance of the predictor. These terms corresponds
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to PR(2)(Y |X, zN ) and BER(2)(Y |X, zN ). Note that there is a relation BERlog(Y |x, zN ) ≤
Varθ|zN fθ(x)/v

2 for the Gaussian likelihood. This interpretation is consistent with Remark 1.

It has been numerically reported that the standard VI often underestimates EU. Alternative objective
functions have been proposed to address this issue. For example, the entropic loss defined as
Entlα(y, x) := − 1

α lnEq(θ|zN )e
−αl(y,fθ(x)) for α > 0, which is used in the α-divergence dropout

(α-DO) (Li & Gal, 2017) and the second order PAC-Bayesian methods (2nd-PAC) (Masegosa, 2020;
Futami et al., 2021), can capture EU better than the standard VI. Note that when α = 1 and the log
loss is used, the entropic risk corresponds to the log loss using the predictive distribution. For the
Gaussian likelihood, we can upper-bound the entropic risk:

Eν(Z)Ent
log
α=1(Y,X) ≤Eν(Z)

|Y −Eq(θ|zN )fθ(X)|2
v2

+
Varθ|zN fθ(X)

v2
−BERlog(Y |X, zN )+ln 2πv2, (20)

where we used Eq. (17). See Appendix D.12 for the derivation. Compared to Eq. (19), the entropic
risk implicitly introduces a smaller regularization term for BER. This explains why α-DO and 2nd-
PAC showed larger EU than the standard VI. We show a similar result for the entropic risk of the
general log loss other than the Gaussian likelihood in Appendix D.12.

From these relations, balancing BER and PR appropriately leads to a solution that better evaluates
the EU. Motivated by the decomposition in Eqs. (19) and (20), we directly control the prediction
performance and the Bayesian excess risk for the Gaussian likelihood:

rBER(λ) =
1

N

N∑
i=1

|yi−Eq(θ|zN )fθ(xi)|2
2v2

+ λ
Varθ|zN fθ(xi)

2v2
+

ln 2πv2

2
+

1

N
KL(q(θ|zN )|p(θ)), (21)

where 0 < λ ≤ 1 is the coefficient of the BER regularizer. KL(q(θ|zN )|p(θ)) is a regularization term
motivated by PAC-Bayesian theory. We select λ by cross-validation and it should be smaller than 1
since λ = 1 corresponds to the standard VI from Eq. (19) and the standard VI often underestimates
the EU. We call Eq. (21) the regularized Bayesian Excess Risk VI (rBER) and show the PAC-Bayesian
generalization guarantee for our rBER in Appendix F. In Sec. 5.2, we numerically evaluated this
objective function.

rBER can also be seen as an extension of the standard VI. In the standard VI, the test loss is lower-
bounded by the sum of the PR and BER with equal weights (Eq. (15)). rBER has the flexible weights
between PR and BER. See Appendix F for a detailed comparison.

4 RELATION TO EXISTING WORK

The existing theoretical analysis of uncertainty focused on the calibration performance and clarified
when a model over- and underestimates uncertainty (Nixon et al.; Bai et al., 2021; Naeini et al.,
2015; Guo et al., 2017). We did not focus on analyzing the calibration property in this work because
considering only the EU is not sufficient to deal with the calibration. We need to study both the AU
and EU simultaneously. This is the limitation of our work. Other than calibration, the analysis of
Gaussian processes (GP) has been gaining attention since GP’s posterior predictive distribution can
be expressed analytically (Fiedler et al., 2021; Lederer et al., 2019). Some research focused on the
distance or geometry between the test and training data points to derive EU (Liu et al., 2020; Tian
et al., 2021). Other approaches connect the randomness of the posterior distribution to predictions
by the delta method (Nilsen et al., 2022). Differently, the information-theoretic approach (Xu &
Raginsky, 2020) focused on the loss function of the problem and defined the excess risk as the
EU. Loss function-based analysis was proposed in the deterministic learning algorithm (Jain et al.,
2021). Our theory, which can be regarded as an extension of the information-theoretic approach (Xu
& Raginsky, 2020) to approximate Bayesian inference, derived the convergence properties of the
variance and the entropy of the posterior predictive distributions.

Although the excess risk bound in Eq. (2) has been discussed by PAC-Bayesian theory (Alquier,
2021), its relation to the EU has not been investigated. The relationship between PAC-Bayesian
theory and Bayesian inference has been investigated in terms of marginal likelihood (Germain et al.,
2016; Rothfuss et al., 2021). Our work established new relationships that connect the uncertainty of
the Bayesian predictive distribution and the PAC-Bayesian generalization bound. The information-
theoretic approach (Xu & Raginsky, 2020) clarified that EU can be expressed by conditional mutual
information. This relation was extended to meta-learning (Jose et al., 2021). However, the researchers
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Figure 1: Rresult of toy data experiments: N represents number of training data points, and vertical
line is value of each excess risk.
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Figure 2: Real data experiments of depth estimation: Vertical line is the value of each risk.

assumed that correct models and exact posterior distributions are available. Our proposed analysis
relaxes these assumptions.

5 NUMERICAL EXPERIMENTS

In this section, we numerically confirm the theoretical findings in Sec. 3 and our proposed rBER in
Eq. (21). We show the detailed experimental settings and additional results in Appendix G.

5.1 NUMERICAL EVALUATION OF THEOREM 2

We numerically confirm the statement of Theorem 2. First, we consider toy data experiments
where the true model is y = 0.5x3 + ϵ, ϵ ∼ N(0, 1), x ∼ N(0, 1). We consider a Bayesian
neural network (BNN) for fθ(x) as a 4 layer neural network model with ReLU activation. We
approximate the posterior distribution of the parameters of the neural network by Bayes by back-
propagation (BBB)(Hernández-Lobato & Adams, 2015), dropout (Kendall & Gal, 2017), and
deep ensemble (Lakshminarayanan et al., 2017). We evaluate PER(2)(Y |X,Z), BER(2)(Y |X,Z)
(:= Eν(X)Varθ|ZN fθ(X)), and R(2)(Y |X,Z) (test error). The results are shown in Fig. 1. Our
numerical results satisfy Eq. (13) in Theorem 2, that is, PER(2)(Y |X,Z) and BER(2)(Y |X,Z) are
upper-bounded by R(2)(Y |X,Z) and converge to zero as the number of samples increases. We
calculated the Spearman Rank Correlation (SRC) among PER(2)(Y |X,Z), BER(2)(Y |X,Z), and
R(2)(Y |X,Z) and showed at least 0.97 suggesting high correlation relation between them.

Next, we confirm Theorem 2 using a real-world dataset. Following the setting of existing work (Amini
et al., 2020), we trained a U-Net style network (Ronneberger et al., 2015) with the data of the NYU
Depth v2 dataset (Silberman et al., 2012), which consists of RGB-to-depth. We applied dropout and
deep ensemble methods. Since we cannot evaluate PER(2)(Y |X,Z), we instead evaluated Eq. (15),
which only requires PR(2)(Y |X,Z), BER(2)(Y |X,Z), and R(2)(Y |X,Z). The result is shown in
Fig. 2. We found that PR(2)(Y |X,Z), BER(2)(Y |X,Z) are upper-bounded by R(2)(Y |X,Z) for
real dataset experiments. We calculated the SRC among PR(2)(Y |X,Z), BER(2)(Y |X,Z), and
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Table 1: Benchmark results on test RMSE, PICP, and MPIW.
Dataset Avg. Test RMSE Avg. Test PICP and MPIW in parenthesis

f-SVGD VAR rBER(0) rBER(0.05) f-SVGD VAR rBER(0) rBER(0.05)
Concrete 4.33±0.8 4.30±0.7 4.47±0.6 4.48±0.7 0.82±0.03 (0.13±0.00) 0.87±0.04 (0.16±0.01) 0.99±0.02 (0.50±0.04) 0.95±0.02 (0.25±0.02)
Boston 2.54±0.50 2.53±0.50 2.53±0.50 2.53±0.51 0.63±0.07 (0.10±0.02) 0.76±0.05 (0.14±0.01) 0.97±0.01 (0.33±0.04) 0.92±0.04(0.22±0.02)
Wine 0.61±0.04 0.61±0.04 0.64±0.04 0.63±0.02 0.79±0.03 (0.32±0.05) 0.85±0.02 (0.39±0.06) 0.99±0.00 (1.61±0.00) 0.95±0.03 (0.32±0.15)
Power 3.78±0.14 3.75±0.13 3.66±0.15 3.69±0.12 0.43±0.01 (0.07±0.00) 0.82±0.01 (0.15±0.00) 0.99±0.01 (0.81±0.01) 0.96±0.01 (0.37±0.01)
Yacht 0.64±0.28 0.60±0.28 0.75±0.41 0.78±0.48 0.92±0.04 (0.02±0.01) 0.93±0.04 (0.04±0.01) 0.96±0.03 (0.10±0.01) 0.94±0.04 (0.08±0.01)

Protein 3.98±0.54 3.92±0.05 3.83±0.10 3.85±0.05 0.53±0.01 (0.24±0.01) 0.83±0.00 (0.58±0.01) 1.0 ±0.00 (5.04±0.01) 0.96±0.01 (0.86±0.00)

Table 2: Cumulative regret relative to that of the uniform sampling.
Dataset MAP PAC2

E f-SVGD VAR rBER(0) rBER(0.01) rBER(0.05)
Mushroom 0.129±0.098 0.037±0.012 0.043±0.009 0.029±0.010 0.075±0.005 0.024±0.009 0.021±0.004
Financial 0.791±0.219 0.189±0.025 0.154±0.017 0.155±0.024 0.351±0.030 0.075±0.024 0.075±0.031
Statlog 0.675 ±0.287 0.032±0.003 0.010±0.000 0.006±0.000 0.145±0.223 0.005±0.001 0.005±0.000

CoverType 0.610±0.051 0.396±0.006 0.372±0.007 0.291±0.004 0.610±0.051 0.351±0.003 0.290±0.002

R(2)(Y |X,Z) and showed at least 0.98, suggesting a high correlation relation between them. We
also evaluated the convergence behaviors of BER and show the result on the right in Fig. 2. BER
converges with O(1/N1/2), which is consistent with Eq. (13).

5.2 REAL DATA EXPERIMENTS OF REGULARIZED BAYESIAN EXCESS RISK VI

We numerically compared the prediction and EU evaluation performances of our proposed method
shown in Eq. (21) in regression and contextual bandit tasks. Motivated by the success of the entropic
risk in particle VI (PVI) (Masegosa, 2020; Futami et al., 2021), which approximates the posterior
distribution by the ensemble of models, we also applied our rBER to the PVI setting. Thus, the
posterior distribution is expressed as q(θ) := 1

N

∑M
i=1 δθi(θ), where δθi(θ) is the Dirac distribution

that has a mass at θi. See Appendix G for details about PVI. We refer to rBER(0) when λ = 0 in
Eq. (21). We compared our method with the existing PVI methods, f-SVGD (Wang et al., 2019),
PAC2

E (Masegosa, 2020), and VAR (Futami et al., 2021).

We used the UCI dataset (Dheeru & Karra Taniskidou, 2017) for regression tasks. The model is a
single-layer network with ReLU activation, and we used 20 ensembles. The results of 20 repetitions
are shown in Table 1. We evaluated the fitting performance by RMSE and the uncertainty estimation
performance by the prediction interval coverage probability (PICP), which shows the number of test
observations inside the estimated prediction interval where the interval was set to 0.95. PICP is best
when it is close to 0.95. We evaluated the mean prediction interval width (MPIW), which shows
an average width of a prediction interval. A smaller MPIW is a better uncertainty estimate when
PICP is near the best. Due to space limitations, the results of PAC2

E and the other λs and the negative
log-likelihood are shown in Appendix G. We found the existing PVIs show small PICP and MPIW,
indicating that the existing methods underestimate the uncertainty. rBER(0) shows a large PICP
and MPIW since the Bayesian excess risk is not regularized. rBER(0.05) shows a moderate MPIW
with a better PICP and almost identical prediction performance in RMSE. Thus, rBER successfully
controlled the prediction and the uncertainty evaluation performances.

Next we evaluated the rBER using contextual bandit problems (Riquelme et al., 2018). We need to
balance the trade-off between exploitation and exploration to achieve small cumulative regret. For
that purpose, our algorithms must appropriately control the prediction and uncertainty evaluation
performance. We used the Thompson sampling algorithm with BNN and two hidden layers. We used
20 ensembles for approximating the posterior distribution. The results of 10 repetitions are shown
in Table 2. Our approach outperformed other methods, which means our proposed method showed
better prediction and uncertainty control than the existing methods.

6 CONCLUSION

We theoretically and numerically analyzed the epistemic uncertainty of approximate inference. We
clarified the novel relations among excess risk, epistemic uncertainty, and generalization error. We
then showed the convergence rate of the widely used uncertainty measures for the first time. Motivated
by theoretical analysis, we proposed a novel variational inference (VI) and applied it to the particle VI.
In future work, it would be interesting to explore the relation between BER and evidential learning.
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A NOTATION

Distributions

ν(z) A data generating distribution

p(y|x, θ) A model

p(θ) A prior distribution

q(θ|zN ) A posterior distribution

pq(y|x, zN ) The predictive distribution obtained by the expectation over
q(θ|zN )

pq(θ, zN , z) The approximate joint distribution defined as
ν(zN )q(θ|zN )ν(x)p(y|x, θ)

pB(z
N , z, θ) The joint model used in Xu & Raginsky (2020) defined as

p(θ)
∏N
n=1 p(yn|xn, θ)ν(xn)p(y|x, θ)ν(x).

Risk functions

Rl(Y |X,ZN ) A test error defined as Eν(ZN )Eq(θ|ZN )Eν(Z)l(Y, fθ(X))

Eν(ZN )r
l(ZN ) A training error defined as

Eν(ZN )Eq(θ|ZN )

∑N
n=1 l(Yn, fθ(Xn))/N

ERl(Y |X,ZN , θ∗) The excess risk defined as Rl(Y |X,ZN )−Rl(Y |X, θ∗).
PRl(Y |X,ZN ) A prediction risk defined as

Eν(ZN )Eν(Z)l(Y,Eq(θ|ZN )fθ(X))

PERl(Y |X,ZN ) The prediction excess risk defined as PRl(Y |X,ZN ) −
infϕ:X→A Eν(Z)[l(Y, ϕ(X))]

BPRl(Y |X,ZN ) The Bayesian prediction risk defined as
Epq(θ,ZN ,Z)l(Y,Eq(θ′|ZN )fθ′(X))

BERl(Y |X,ZN ) The defined Baeysian excess risk as BPRl(Y |X,ZN ) −
infϕ:Θ×X→A Epq(θ,ZN ,Z)l(Y, ϕ(θ,X)).

MERl(Y |X,ZN ) A minimum excess risk used in Xu & Raginsky (2020)

B SUMMARY OF SETTINGS

Here we summarize the concepts and definitions of joint distributions and risks used in this work.

B.1 BAYESIAN LEARNING (SEC 2.3) [USED IN (XU & RAGINSKY, 2020) AND (JOSE ET AL.,
2021)]

• Joint distribution (All the data is conditinally i.i.d.):

pB(Z
N , Z, θ) := p(θ)

N∏
n=1

p(Yn|Xn, θ)ν(Xn)p(Y |X, θ)ν(X).

• Minimum excess risk:

MERl(Y |X,ZN ) := Rl(Y |X,ZN )−Rl(Y |X, θ)
Rl(Y |X,ZN ) := inf

ψ:ZN×X→A
EpB(ZN ,Z,θ)[l(Y, ψ(X,Z

N ))],

Rl(Y |X, θ) := inf
ϕ:Θ×X→A

EpB(ZN ,Z,θ)[l(Y, ϕ(θ,X)).
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B.2 THE SETTING USED IN THE PAC-BAYESIAN THEORY(SEC 2.1)

• Joint distribution of data and parameter θ (All the data is i.i.d.):

ν(ZN )q(θ|ZN )ν(Z).

• Prediction excess risk:
PERl(Y |X,ZN ) := PRl(Y |X,ZN )− inf

ϕ:X→A
Eν(Z)[l(Y, ϕ(X))],

PRl(Y |X,ZN ) := Eν(ZN )Eν(Z)l(Y,Eq(θ|ZN )fθ(X)).

B.3 OUR SETTING DEFINED IN SEC 3.1)

• Joint distribution (The training data is i.i.d. The test data follows the model):

pq(θ,ZN , Z) := ν(ZN )q(θ|ZN )ν(X)p(Y |X, θ)
• Bayesian excess risk:

BERl(Y |X,ZN ) := BPRl(Y |X,ZN )− inf
ϕ:Θ×X→A

Epq(θ,ZN ,Z)l(Y, ϕ(θ,X)),

BPRl(Y |X,ZN ) := Epq(θ,ZN ,Z)l(Y,Eq(θ′|ZN )fθ′(X)).

C FURTHER PRELIMINARIES

C.1 ADDITIONAL FACTS ABOUT BAYESIAN LEARNING

Here we introduce the preliminary results (Xu & Raginsky, 2020) about the MER in a Bayesian setting.
Besides the log loss, we can upper bound MER by conditional mutual information. First, we can
upper bound MER by the plug-in decision rule. Consider an optimal decision rule Ψ∗ : Z ×Θ→ A
and this satisfies Rl(Y |X, θ) = infϕ:Θ×X→A Epg(ZN ,Z,θ)[l(Y, ϕ(θ,X)) = El(Y,Ψ∗(X, θ)). Then
we express θ′ is drawn from a posterior distribution p(θ|ZN ). Then we have

MERl(Y |X,ZN ) ≤ El(Y,Ψ∗(X, θ′))− l(Y,Ψ∗(X, θ)), (22)
where Ψ∗(X, θ′) is a plug-in decision rule, first we draw θ′ from posterior distribution and substitute
it to Ψ∗. Then if the moment generating function of l(Y,Ψ∗(X, θ′)) under P (Y, θ′|X,ZN ) satisfies
regularity conditions, we can upper bound MER. For example, a loss function satisfies σ2-subGaussian
conditioned on (X, zN ) = (x, zN ) for all (x, zN ), then

MERl(Y |X,ZN ) =
√
2σ2I(θ;Y |X,ZN ). (23)

Thus, we can treat zero-one loss and some squared loss.

Thus, CMI plays a central role in the Bayesian excess risk analysis. Then existing work (Xu &
Raginsky, 2020) shows that

I(θ;Y |X,ZN ) ≤ 1

N
I(θ;ZN ). (24)

This is because the mutual information is upper-bounded by O(lnN) for many practical settings.
Thus, the excess risk converges to 0 as N →∞.

C.2 PRELIMINARIES OF THE PAC-BAYESIAN THEORY

We briefly introduce the PAC-Bayesian theory. The typical PAC-Bayesian bound provides us the
high-probability guarantee about the gap between the test error R̃(θ) := Eν(Z)l(Y, fθ(X)) and
r̃(θ) := 1

N

∑N
n=1 l(Yn, fθ(Xn)) (Here we do not take the expectation over ZN );

Theorem 4. (Alquier et al., 2016) Given a data generating distribution ν, for any prior distribution
p(θ) over Θ independent of ZN and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over
the choice of training data ν(ZN ), for all probability distributions q(θ|zN ) over Θ, we have

EqR̃(θ) ≤ Eq r̃(θ) +
KL(q|p) + ln ξ−1 +Ωp,ν(c,N)

cN
, (25)

where Ωp,ν(c,N) := lnEp(θ)Eν(ZN )exp[cN(R̃(θ)− r̃(θ))].
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This constant Ψp,ν depends on the property of the loss function and the data generating distribution
and prior. For example, when l(y, fθ(x))− Eν l(Y, fθ(X)) satisfies the σ2 sub-Gaussian property,
and by setting c = 1/

√
N , we have

EqR̃(θ) ≤ Eq r̃(θ) +
KL(q|p) + ln ξ−1 + σ2/2√

N
. (26)

On the other hand, we introduced the bound in expectation in the main paper (Alquier, 2021). For
example, under the similar setting as Eq. (26), when we assume the σ2 sub-Gaussian property and
c = λ, we have

Rl(Y |X,ZN ) ≤ r(θ) + KL(q(θ|ZN )|p(θ))
λ

+
λσ2

2N
, (27)

see Alquier (2021) for the proof and other settings.

Next, we introduce the PAC-Bayesian bound Eq. (2). When r(θ) satisfies the L-lipschitz property
and setting the prior as N(θ|0, β2Id) and λ = 1/

√
N , we have

Rl(Y |X,ZN )−Rl(Y |X, θ∗) ≤ Lβ
√

d

N
+

σ2

2
√
N

+

∥θ∗∥2

2β2 + d
2 logN√
N

. (28)

See (Alquier, 2021) for the proof and other settings.

In the main paper, we considered the squared loss. For the squared loss, above Lipschitz bound
cannot be used. Here we introduce different PAC-Bayesian bound. In stead of Lipschitz property, we
assume that for asny θ, θ′ ∈ Θ, there exists a measurable function M(x) such that

fθ(x)− fθ′(x) ≤M(x)∥θ − θ′∥2, (29)

and assume Eν(X)M(X) < L <∞. From the almost identical derivation of Example 2.2 in Alquier
(2021), we have

Rl(Y |X,ZN )−Rl(Y |X, θ∗) ≤ Lβ2 d

N
+

σ2

2
√
N

+

∥θ∗∥2

2β2 + d
2 logN√
N

. (30)

D PROOFS OF THEOREMS IN SECTION 3

Here we present the proofs of Section 3.

D.1 CONDITIONAL EXPECTATION OF EXCESS RISKS

In this section, we define the conditional version of the excess risks. Note that PER and BER was
defined as

PERl(Y |X,ZN ) := PRl(Y |X,ZN )− inf
ϕ̃:X→A

Eν(Z)[l(Y, ϕ̃(X))],

BERl(Y |X,ZN ) := BPRl(Y |X,ZN )− inf
ϕ:Θ×X→A

Epq(θ,ZN ,Z)l(Y, ϕ(θ,X)). (31)

We define the conditional excess risk as

PERl(Y |x, zN ) := PRl(Y |x, zN )− inf
ϕ̃:X→A

Eν(Y |x)[l(Y, ϕ̃(x))], (32)

BERl(Y |x, zN ) := BPRl(Y |x, zN )− inf
ϕ:Θ×X→A

Eq(θ|zN )p(Y |x,θ)l(Y, ϕ(θ, x)). (33)

It has been proved in Lemma 3.4 in Steinwart & Christmann (2008) that if the action space is R
following relation holds

Eν(ZN=zN )ν(X=x)PER
l(Y |x, zN ) = PERl(Y |X,ZN ), (34)

Eν(ZN=zN )ν(X=x)BER
l(Y |x, zN ) = BERl(Y |X,ZN ). (35)
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Moreover, for the log loss, from Theorem 3 in Brown & Purves (1973), above relation holds. Thus,
we can naturally connect the conditional and unconditional definitions of PER and BER for the
squared loss and log-loss.

In the following, we explicitly calculate how relations Eqs. (34) and (35) holds. The first terms in
(32) and (33) can easily be expressed as

PRl(Y |X,ZN ) = Eν(ZN )Eν(Z)l(Y,Eq(θ|ZN )fθ(X))

= Eν(ZN=zN )ν(X=x)Eν(Y |X=x)l(Y,Eq(θ|zN )fθ(x))

= Eν(ZN=zN )ν(X=x)PR
l(Y |x, zN ), (36)

and

BPRl(Y |X,ZN ) = Eν(ZN )Eν(X)q(θ|ZN )p(Y |X,θ)l(Y,Eq(θ′|ZN )fθ′(X))

= Eν(ZN=zN )ν(X=x)Eq(θ|ZN=zN )p(Y |X=x,θ)l(Y,Eq(θ|zN )fθ(x))

= Eν(ZN=zN )ν(X=x)BPR
l(Y |x, zN ). (37)

Next we calculate the Bayes risks in the second terms. First, for the squared loss, we have

Eν(Z)[l(Y, ϕ̃(X))] = Eν(Z)(Y − ϕ̃(X))2

= Eν(Z)(Y − Eν(Y ′|X)Y
′|X)2 + Eν(X)(Eν(Y ′|X)Y

′|X − ϕ̃(X))2, (38)

where Eν(Y ′|X)Y
′|X is the conditional expectation. Thus, infimum is achieved by setting

Eν(Y ′|X)Y
′|X = ϕ̃(X). Thus, we have

inf
ϕ̃:X→A

Eν(Z)[l(Y, ϕ̃(X))] = Eν(Z)(Y − Eν(Y ′|X)Y
′|X)2

= Eν(X=x)Eν(Y |X=x)(Y − Eν(Y ′|x)Y
′|x)2

= Eν(X=x) inf
ϕ̃:X→A

Eν(Y |x)[l(Y, ϕ̃(x))]. (39)

We can show the same statement as

inf
ϕ:Θ×X→A

Epq(θ,ZN ,Z)l(Y, ϕ(θ,X)) = Eν(ZN=zN )ν(X=x) inf
ϕ:Θ×X→A

Eq(θ|zN )p(Y |x,θ)l(Y, ϕ(θ, x)).

(40)

Combined these relations, we get Eqs. (34).

Next, we discuss the conditional Bayes risk for the log-loss. We can proceed the calculation in the
same way as the squared loss. Then we have

inf
ϕ̃:X→A

Eν(Z)[l(Y, ϕ̃(X))] = −Eν(Y |X)ν(X) log ν(Y |X) = Eν(X=x) inf
ϕ̃:X→A

Eν(Y |x)[l(Y, ϕ̃(x))].

(41)

The Bayes risk in BPR has the similar relation. Thus, it is clear that the relations shown in Eqs. (34)
and (35) hold.

D.2 PROOF OF BERl(Y |X,ZN ) ≥ 0

We remark that for the squared loss and log-loss, BPR can be written as

Epf (θ,ZN ,Z)l(Y,Eq(θ′|ZN )fθ′(X)) = inf
ψ:ZN×X→A

Epq(ZN ,Z,θ)[l(Y, ψ(X,Z
N ))]. (42)

This expression is similar to the definition of the first term in MER. Then, applying the same technique
in Lemma 1 (Xu & Raginsky, 2020), we can show that BPRl(Y |X,ZN ) satisfies the data processing
inequality. Then given a Markov chain, for example, (X,ZN ) − (X,ZN+1) − Y , then we have
BPRl(Y |X,ZN ) ≥ BPRl(Y |X,ZN+1). Consider a Markov chain (X,ZN )−(X, θ)−Y . Then by
the data processing inequality, we have BPRl(Y |X,ZN ) ≥ infϕ:Θ×X→A Epq(θ,ZN ,Z)l(Y, ϕ(θ,X))

since the Bayes error uses the parameter of pq(zN , θ, z) directly. This concludes the proof.
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D.3 PROOF OF LEMMA 1

By definition,
Eq(θ|zN )∥y − fθ(x)∥2 = y2 − 2yEq(θ|zN )fθ(x) + Eq(θ|zN )[fθ(x)

2]

= (y − Eq(θ|zN )fθ(x))
2 + Eq(θ|zN )[fθ(x)

2]− [Eq(θ|zN )fθ(x)]
2

= (y − Eq(θ|zN )fθ(x))
2 + Eq(θ|zN )[fθ(x)− Eq(θ|zN )fθ(x)]

2

= (y − Eq(θ|zN )fθ(x))
2 +Varfθ(x). (43)

This concludes the proof.

D.4 PROOF OF THEOREM 1

Here we consider the conditional quantities of them. The formal definitions of conditional fundamen-
tal limit of learning and total risk are given in Appendix D.1.

For the log loss, we use the property of the entropy. For any probability distributions p and q, the
entropy satisfies H[p] := −Ep ln p = − infq Ep ln q . Then, by definition, it is clear that

BPRlog(Y |x, zN ) = −Eq(θ|zN )Ep(Y |x,θ) lnEq(θ′|zN )p(Y |x, θ′) = H[pq(Y |x, zN )], (44)

where pq(Y |x, zN ) = Eq(θ|zN )p(Y |x, θ) is the conditional predictive distribution. Also, by definition,
the Bayes risk for the log loss is given as

inf
ϕ:Θ×X→A

Eq(θ|zN )p(Y |x,θ)l(Y, ϕ(θ, x)) = − inf
p′

Eq(θ|zN )p(Y |x,θ)[ln p
′(Y |x, θ)]

= −Eq(θ|zN )Ep(Y |x,θ) [ln p(Y |x, θ)]
= Eq(θ|zN )H[p(Y |x, θ)]. (45)

Thus,
BERlog(Y |x, zN ) = BPRlog(Y |x, zN )− inf

ϕ:Θ×X→A
Eq(θ|zN )p(Y |x,θ)l(Y, ϕ(θ, x)) = Iν(θ;Y |x, zN ).

(46)

Next, for the squared loss, recall that for any random variable Y with distribution p, we have
inf
a
Ep|Y − a|2 = Ep|Y − Ep(Y ′)Y

′|2 = Var(Y ). (47)

Using this relation, we have
BER(2)(Y |x, zN )

= BPR(2)(Y |x, zN )− inf
ϕ:Θ×X→A

Eq(θ|zN )p(Y |x,θ)l(Y, ϕ(θ, x))

= Eq(θ|zN )Ep(Y |x,θ)∥Y − Eq(θ′|zN )fθ′(x)∥2 − Eq(θ|zN )Ep(Y |x,θ)∥Y − fθ(x)∥2

= −2Eq(θ|zN )fθ(x)Eq(θ′|zN )fθ′(x) + (Eq(θ′|zN )fθ′(x))
2 + 2Eq(θ|zN )(fθ(x))

2 − Eq(θ|zN )(fθ(x))
2

= Eq(θ|zN )(fθ(x))
2 − (Eq(θ′|zN )fθ′(x))

2

= Eq(θ|zN )∥fθ(x)− Eq(θ′|zN )fθ′(x)∥2

= Varθ|zN fθ(x). (48)
This concludes the proof.

D.5 PROOF OF THEOREM 2

First, we prove Eq. (12). This is directly obtained by taking the expectation of ν(Y |x) for Lemma 1.
We can prove Eq. (12) by the direct calculation. By definition

ER(2)(Y |x, zN , θ∗) := R(2)(Y |x, zN )−R(2)(Y |x, θ∗)
= Eν(Y |x)q(θ|zN )∥Y − fθ(x)∥2 − Eν(Y |x)∥Y − Eν(Y |x)[Y |x]∥2

= −2fθ∗(x)Eq(θ|zN )fθ(x) + Eq(θ|zN )[fθ(x)
2] + fθ∗(x)

2

= ∥fθ∗(x)− Eq(θ|zN )fθ(x)∥2 +Varθ|zN fθ(x)

= PER(2)(Y |x, zN ) + BER(2)(Y |x, zN ), (49)
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where we used the relation Eν(Y |x)[Y |x] = fθ∗(x). By definition,

ER(2)(Y |x, zN , θ∗) = R(2)(Y |x, zN )−R(2)(Y |x, θ∗) ≥ 0, (50)

and for the squared loss for any action a, we have l(y, a) ≥ 0. Combined these, we have

ER(2)(Y |x, zN , θ∗) ≤ R(2)(Y |x, zN ). (51)

This concludes the proof of Eq. (12).

The unconditional relation is derived by using relations in Eqs. (34) and (35). Finally, we get Eq. (13)
by the PAC-Bayesian bound Eq. (2).

D.6 DISCUSSION ABOUT Y = Rd

For Y = Rd, Lemma 1 and Theorem 1 hold since we can proceed the proof in the same way for
Y = R. Thus, we can proceed the proof of Theorem 2 for Y = Rd in the same way as Y = R. Thus
Theorem 2 holds in Y = Rd.

As for Theorem 3, we consider p(Y |x, θ) = N(y|fθ(x),diag(v2)), where v2 ∈ Rd, where diag(v2)
is the diagonal matrix with each entry is v2i . Then Theorem 3 still holds.

D.7 PROOF OF THEOREM 3

First, we show Eq. (17). Recall the definition L(y, x, θ, θ∗) = ln p(y|x, θ∗) − ln p(y|x, θ). We
express this L(Y, x, θ) = L(y, x, θ, θ∗) for simplicity.

We use the following change-of-measure inequality, which is also known as the transportation lemma
Boucheron et al. (2013); Xu & Raginsky (2020); Xu (2020).

Lemma 2. Let W be a real-valued integrable random variable with probability distribution p.
Let h be a convex and continuously differentiable function on a interval (0, b] and assume h(0) =
h′(0) = 0. Define for every x ≥ 0, h∗(x) = sup0≤ρ<b{ρx − h(ρ)} and let for every y ≥ 0,
h∗−1(y) := sup{x ∈ R : h∗(x) ≤ y}. Then if

lnEp(W )e
ρ(W−Ep(W )W ) ≤ h(ρ), (52)

is satisfied, for any probability distribution q, which is absolutely continuous with respect to p such
that KL(q|p) ≤ ∞, we have

Eq(W )W − Ep(W )W ≤ h∗−1(KL(q|p)). (53)

The proof of this lemma is shown in Xu & Raginsky (2020) as Theorem 4. Also, this lemma
previously appeared in Boucheron et al. (2013) as Lemma 4.14.

When h(ρ) = ρ2σ2/2 and b =∞, this assumption is σ2 sub-Gaussian property and h∗−1(x) =
√
2x.

Then under the assumption, from the Lemma 2, given θ and x and zN , we have

Ep(Y |x,θ∗)L(Y, x, θ)− Ep(Y |x,θ)L(Y, x, θ) ≤ h∗−1(KL(p(Y |x, θ∗)|p(Y |x, θ))). (54)

When we focus on a sub-Gaussian property, we have,

Ep(Y |x,θ∗)L(Y, x, θ)− Ep(Y |x,θ)L(Y, x, θ) ≤
√

2σ2KL(p(Y |x, θ∗)|p(Y |x, θ))). (55)

By taking the expectation Eq(θ|zN ), we have

Eq(θ|zN )Ep(Y |x,θ∗)L(Y, x, θ)

≤ Eq(θ|zN )Ep(Y |x,θ)L(Y, x, θ) + Eq(θ|zN )

√
2σ2KL(p(Y |x, θ∗)|p(Y |x, θ)))

≤ Eq(θ|zN )Ep(Y |x,θ)L(Y, x, θ)+√
Eq(θ|zN )2σ2

√
Eq(θ|zN )KL(p(Y |x, θ∗)|p(Y |x, θ))), (56)
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where we used the Holder inequality in the last line. From the definition of L,

Eq(θ|zN )Ep(Y |x,θ∗)L(Y, x, θ)

= Eq(θ|zN )Ep(Y |x,θ∗)[− ln p(Y |x, θ) + ln p(Y |x, θ∗)]
≥ Ep(Y |x,θ∗)[− lnEq(θ|zN )p(Y |x, θ) + ln p(Y |x, θ∗)]
= PERlog(Y |x, zN ), (57)

where we used the assumption that p(y|x, θ∗) = ν(y|x) and used the Jensen inequality for the
logarithmic function.

By definition, we have

Eq(θ|zN )KL(p(Y |x, θ∗)|p(Y |x, θ))) = ERlog(Y |x, zN , θ∗). (58)

From the definition of L, and since we are considering log loss, we have

− Eq(θ|zN )Ep(Y |x,θ)L(Y, x, θ)

= Eq(θ|zN )Ep(Y |x,θ)[− ln p(Y |x, θ∗) + ln p(Y |x, θ)]
≥ Eq(θ|zN )Ep(Y |x,θ)[− lnEq(θ|zN )p(Y |x, θ) + ln p(Y |x, θ)]
= BERlog(Y |x, zN ). (59)

Combined these, we have

PERlog(Y |x, zN ) + BERlog(Y |x, zN ) ≤
√
Eq(θ|zN )2σ2

√
ERlog(Y |x, zN , θ∗). (60)

Then by applying the assumption of the PAC-Bayesian bound, we can obtain Eq. (17)

As for Eq. (18), we can proceed the calculation by taking the expectation Eν(ZN )q(θ|ZN )ν(X=x)

instead of Eq(θ|zN ) after Eq. (55). Then we get the result of Eq. (18).

D.8 THE CASE OF GAUSSIAN LIKELIHOOD

Here we show that we can apply the theorem to the Gaussian likelihood. We define p(y|x, θ) =
N(y|fθ(x), v2). From the definition, we have

Eν(ZN )q(θ|ZN )ν(X=x)Ep(Y |x,θ∗)L(Y, x, θ) = PERlog(Y |X,ZN ). (61)

We also have

Eν(ZN )q(θ|ZN )ν(X=x)KL(p(Y |x, θ∗)|p(Y |x, θ))) = 1

2v2
Eν(ZN )q(θ|ZN )ν(X=x)∥fθ(x)− fθ∗(x)∥2.

(62)

Moreover, by directly calculating the definition of the exponential moment, we have

lnEp(Y |x,θ)e
ρ(L(Y,x,θ)−Ep(Y |x,θ)L(Y,x,θ)) =

ρ2

2v2
∥fθ(x)− fθ∗(x)∥2. (63)

Then by applying the Lemma 2, we have

Ep(Y |x,θ∗)L(Y, x, θ)− Ep(Y |x,θ)L(Y, x, θ) ≤
1

v2
∥fθ(x)− fθ∗(x)∥2. (64)

This implies that

Eν(ZN )q(θ|ZN )ν(X)σ
2(X, θ) ≤ Eν(ZN )q(θ|ZN )ν(X)

1

v2
|fθ(X)−fθ∗(X)|2=2ERlog(Y |X,ZN , θ∗)≤ 2C1 lnN

Nα
:= σ2

q

(65)

Summarizing above, for the Gaussian likelihood, we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤ 2ERlog(Y |X,ZN , θ∗). (66)
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D.9 RELAXATION OF ASSUMPTION IN THEOREM 3

We assumed that ν(y|x) = p(y|x, θ∗) holds for Theorem 3. We can relax this assumption for specific
models. In the proof of Theorem 3, we used assumption ν(y|x) = p(y|x, θ∗) for connecting the KL
divergence with ER (excess risk) as

Eq(θ|zN )KL(p(Y |x, θ∗)|p(Y |x, θ))) = Eq(θ|zN )KL(ν(Y |x)|p(Y |x, θ))) = ERlog(Y |x, zN , θ∗),
(67)

where the first equality comes from the assumption and the second equality comes from the definition
of the excess risk of the log-loss.

It has been proved in Proposition 2 of Heide et al. (2020) that if the model p(y|x, θ) is the generalized
linear model the assumption can be relaxed. To state that condition, we introduce the definitions of a
GLM:

p(y|x, θ) := exp
(
x⊤θy − F (θ) + r(y)

)
. (68)

Here, given x ∈ X ⊂ Rd and the mean value parameter is given by g−1(x⊤θ) where g is the link
function. F is the normalizing constant and r is the reference measure. With this setting, if the GLM
model satisfies

Eν(Y |x)[Y |x] = g−1(x⊤θ). (69)

Then we have

KL(p(Y |x, θ∗)|p(Y |x, θ)) = KL(ν(Y |x)|p(Y |x, θ)). (70)

This can be proved by the direct calculation. This relation implies that even if ν(y|x) ̸= p(y|x, θ∗)
and Eq. (69) is satisfied, then we have

Eq(θ|zN )KL(p(Y |x, θ∗)|p(Y |x, θ))) = Eq(θ|zN )KL(ν(Y |x)|p(Y |x, θ))) = ERlog(Y |x, zN , θ∗).
(71)

Then following the proof of Theorem 3 in Appendix D.7, Theorem 3 holds even for ν(y|x) ̸=
p(y|x, θ∗).
The condition Eq. (69) implies that the mean function is well specified. This

D.10 ENTROPY CONVERGENCE RATE

Corollary 1. Under the same assumption as Theorem 3, assume that ln p(y|x, θ) satisfies the σ2

sub-Gaussian property similary to Assumption 1. Conditioned on (x, zN ), we have

H[pq(Y |x, zN )] ≤ Rlog(Y |x, zN ) + 2
√
2σ2

pER
log(Y |x, zN , θ∗), (72)

and if the excess risk bound of the PAC-Bayesian theory Eq. (2) holds, we have

H[pq(Y |X,ZN )] = H[p(Y |X, θ∗)] +O(
√

lnN/Nα). (73)

Proof. If the log loss− ln p(Y |x, θ) satisfies the σ2 sub-Gaussian property similarly to Assumption 1,
conditioned on (x, θ, zN ), we have

Ep(Y |x,θ∗) ln p(Y |x, θ)− Ep(Y |x,θ) ln p(Y |x, θ) ≤
√

2σ2KL(p(Y |x, θ∗)|p(Y |x, θ))). (74)

Thus, by taking the expectation about q(θ|zN ), we have

Eq(θ|zN )H[p(Y |x, θ)] ≤ Rlog(Y |x, zN ) +
√

Eq(θ|zN )2σ2

√
ERlog(Y |x, zN , θ∗). (75)

From Eq. (17)

PERlog(Y |x, zN ) + BERlog(Y |x, zN ) ≤
√
2σ2

pER
log(Y |x, zN , θ∗), (76)
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and note that PERlog(Y |x, zN ) ≥ 0 and BERlog(Y |x, zN ) = H[pq(Y |x, zN )] −
Eq(θ|zN )H[p(Y |x, θ)]. Combined these inequalities, we have

H[pq(Y |x, zN )] ≤ Rlog(Y |x, zN ) + 2
√
2Eq(θ|zN )σ2

√
ERlog(Y |x, zN , θ∗). (77)

Next, we take the expectation over ν(ZN )q(θ|ZN )ν(X) in Eq. (75) instead of q(θ|zN ), we have

H[pq(Y |X,ZN )]−H[p(Y |X, θ∗)]

≤ Rlog(Y |X,ZN )−H[p(Y |X, θ∗)] + 2
√

2Eν(ZN )q(θ|ZN )ν(X)σ2

√
ERlog(Y |X,ZN , θ∗)

= ERlog(Y |X,ZN , θ∗) + 2
√
2Eν(ZN )q(θ|ZN )ν(X)σ2

√
ERlog(Y |X,ZN , θ∗). (78)

Then from the excess risk bound of the PAC-Bayesian theory Eq. (2), we have ERlog(Y |X,ZN , θ∗) =
O(lnN/Nα), we get the bound.

D.11 DISCUSSION ABOUT THE LOGISTIC REGRESSION

Here we discuss the relation among Bayesian excess risk, frequentist excess risk, and the gen-
eralization ability for the logistic regression. For logistic regression, we define the model as
p(Y = 1|x, θ) = sig(θ⊤ϕ(x)) where sig = 1/(1 + e−x) is the sigmoid function and ϕ(x) is
the feature vector.

We consider applying the following change-of-measure inequality; let W be a real-valued integrable
random variable. If

lnEp(W )e
(W−EW ) <∞, (79)

is satisfied, then, for any probability distribution Q, which is absolutely continuous with respect to P
such that KL(Q|P ) ≤ ∞, we have

Eq(W )W − Ep(W )W ≤ ln
Ep(W )e

ρ(W−Ep(W )W ) +KL(q|p)
ρ

. (80)

Here we assume that q := p(Y |x, θ∗)dy, p := p(Y |x, θ)dy, and W = L(Y, x, θ, θ∗) conditioned on
(x, θ, zN ). Here L(y, x, θ, θ∗) = − ln p(y|x, θ) + ln p(y|x, θ∗).
Conditioned on (x, θ, zN ), for ρ ≤ 1, we have

lnEp(Y |x,θ)e
ρ(L(Y,x,θ,θ∗)−Ep(Y |x,θ)L(Y,x,θ,θ

∗))

= lnEp(Y |x,θ)e
ρ(− ln p(Y |x,θ)+ln p(Y |x,θ∗)) + Ep(Y |x,θ)(ln p(Y |x, θ)− ln p(Y |x, θ∗))

= ln

∫
p(Y |x, θ)1−ρp(Y |x, θ∗)ρdy + ρKL(p(Y |x, θ)|p(Y |x, θ∗))

= (ρ− 1)Dρ(p(Y |x, θ∗)|p(Y |x, θ)) + ρKL(p(Y |x, θ)|p(Y |x, θ∗))
≤ ρKL(p(Y |x, θ)|p(Y |x, θ∗)), (81)

where we used the definition

Dα(P |Q) :=
1

α− 1
ln

∫ (
dP

dQ

)α−1

dP ≥ 0. (82)

Under this definition, we have

KL(p(Y |x, θ)|p(Y |x, θ∗))
≤ sup
x∈X ,θ∈Θ

(− lnmin{sig(θ⊤ϕ(x)), 1− sig(θ⊤ϕ(x))})TV(p(Y |x, θ)|p(Y |x, θ∗))

≤ sup
x∈X ,θ∈Θ

(− lnmin{sig(θ⊤ϕ(x)), 1− sig(θ⊤ϕ(x))})
√

1

2
KL(p(Y |x, θ∗)|p(Y |x, θ))

≤ sup
x∈X ,θ∈Θ

(− lnmin{sig(θ⊤ϕ(x)), 1− sig(θ⊤ϕ(x))})
√

ERlog(Y |X, zN , θ∗), (83)
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where we used the Pinsker inequality and used the assumption that the model is well-specified. For
simplicity, we express the coefficient as ρ := supx∈X ,θ∈Θ(− lnmin{sig(θ⊤ϕ(x)), 1−sig(θ⊤ϕ(x))})
Then, by the transportation lemma using ρ = 1, we have

PERlog(Y |x,ZN ) + BERlog(Y |X,ZN ) ≤ ρ
√
ERlog(Y |X,ZN , θ∗)) + ERlog(Y |X,ZN , θ∗).

(84)

Then by taking the expectation with respect to ν(ZN )ν(X), we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤ ρ
√

ERlog(Y |X,ZN , θ∗)) + ERlog(Y |X,ZN , θ∗),
(85)

where we used the Jensen inequality. For the logistic model, the PAC-Bayesian bound Eq. (2) holds
(Alquier, 2021), we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤ ρ
√
C1

(
lnN

Nα

)
+ C1

(
lnN

Nα

)
. (86)

Since BERlog(Y |X, zN ) = Iν(θ;Y |X,ZN ), thus the mutual information converges O
(√

lnN
Nα

)
.

Moreover using Collorary 1, we can derive the convergence of the entropy. Considering the same
calculation in the proof of Collorary 1, we have

Eq(θ|zN )H[p(Y |x, θ)] ≤ Rlog(Y |x, zN ) + ρ

√
ERlog(Y |X, zN , θ∗)) + ERlog(Y |x, zN , θ∗). (87)

Note that PERlog(Y |x, zN ) ≥ 0 and BERlog(Y |x, zN ) = H[pq(Y |x, zN )]−Eq(θ|zN )H[p(Y |x, θ)],
we have

H[pq(Y |x, zN )] ≤ Rlog(Y |x, zN ) + 2ρ

√
ERlog(Y |X, zN , θ∗)) + 2ERlog(Y |X, zN , θ∗). (88)

Thus, the entropy is bounded by the test loss. Then by taking the expectation with respect to
ν(ZN )ν(X), and using the PAC-Bayesian bound Eq. (2). Then we have

H[p(Y |X,ZN )] ≤ H[p(Y |X, θ∗)] + 2ρ

√
C1

(
lnN

Nα

)
+ 3C1

(
lnN

Nα

)
. (89)

Thus, we have

H[p(Y |X,ZN )] ≤ H[p(Y |X, θ∗)] +O
(√

lnN

Nα

)
. (90)

D.12 DISCUSSION OF ENTROPIC RISK

Before showing the relation between posterior variance and mutual information, we introduce an
important lemma used in the analysis.
Lemma 3 (Lemma 1 in (Haussler & Opper, 1997)). Let P (w) be a measure on a set W and Q(v)
be a measure on a set V . For any real-valued function u(w, v), we have

−
∫
V

dQ(v) ln

∫
W

dP (w)eu(w,v) ≤ − ln

∫
W

dP (w)e
∫
V
dQ(v)u(w,v). (91)

For completeness, we show the proof.

Proof. For any real valued functions u1 and u2 and 0 ≤ α ≤ 1, we have∫
W

dP (w)eαu1(w)+(1−α)u2(w) =

∫
W

dP (w)
(
eu1(w)

)α (
eu2(w)

)1−α
≤
(∫

W

dP (w)eu1(w)

)α(∫
W

dP (w)eu2(w)

)1−α

, (92)

where we used Hölder’s inequality. Taking logarithmic function, this shows that ln dP (w)eu(w,v) is
convex in u. Thus, the result follows by using the Jensen inequality.
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Thus, this theorem is not restricted to probability distributions.

We first show the relation between posterior variance and the mutual information (BERlog(Y |x, zN )).
Lemma 4. For the Gaussian likelihood p(y|x, θ) = N(y|fθ(x), v2), we have

BERlog(Y |x, zN ) ≤ Varfθ(x)

v2
. (93)

Proof.

BERlog(Y |x, zN ) = Iν(θ;Y |x, zN )

= Eq(θ|zN )Ep(Y |x,θ)
[
− lnEq(θ′|zN )p(Y |x, θ′) + ln p(Y |x, θ)

]
= −Eq(θ|zN )Ep(Y |x,θ) lnEq(θ′|zN )e

ln p(Y |x,θ′)−ln p(Y |x,θ). (94)

Then, applying Lemma 3, we have

BERlog(Y |x, zN ) ≤ − lnEq(θ′|zN )e
Eq(θ|zN )Ep(Y |x,θ) ln p(Y |x,θ′)−ln p(Y |x,θ)

≤ − lnEq(θ′|zN )e
− 1

2v2 Eq(θ|zN )p(Y |x,θ)(Y−fθ′ (x))
2−(Y−fθ(x))2

≤ − lnEq(θ′|zN )e
− 1

2v2 Eq(θ|zN )(v
2+f2

θ (x)−2fθ′ (x)fθ(x)+f
2
θ′ (x)−(v2+f2

θ (x)+f
2
θ (x)−2f2

θ (x)))

= − lnEq(θ′|zN )e
− 1

2v2 (Eq(θ|zN )f
2
θ (x)−2Eq(θ|zN )fθ(x)fθ′ (x)+f

2
θ′ (x))

≤ Varfθ(x)

v2
. (95)

Next we show Eq. (20). We use the transportation inequality Eq. (80). Similarly to the derivation of
Eq. (66), we have

− Eq(θ|zN )Eν(Y |x) ln
p(Y |x, θ)
ν(Y |x) + BERlog(Y |x, zN )

≤ Eq(θ|zN )KL(ν(Y |x)|p(Y |x, θ)) + 1

2v2
Eq(θ|zN )∥fθ(x)− fθ∗(x)∥2. (96)

Thus, we have

− Eν(Y |x) lnEq(θ|zN )N(Y |fθ(x), v2) + Eν(Y |x) ln ν(Y |x)

≤ Eq(θ|zN )
1

2v2
∥fθ(x)− fθ∗(x)∥2 − Eν(Y |x)Eq(θ|zN ) lnN(Y |fθ(x), v2)

− BERlog(Y |x, zN ) + Eν(Y |x) ln ν(Y |x)

≤ Eν(Y |x)q(θ|zN )
1

2v2
∥Y − fθ(x)∥ − Eν(Y |x)

1

2v2
∥Y − fθ∗(x)∥2 − BERlog(Y |x, zN )

− Eν(Y |x)Eq(θ|zN ) lnN(Y |fθ(x), v2) + Eν(Y |x) ln ν(Y |x). (97)

Then, we have

− Eν(Y |x) lnEq(θ|zN )N(Y |fθ(x), v2)

≤ Eν(Y |x)q(θ|zN )
1

2v2
∥Y − fθ(x)∥2 − BERlog(Y |x, zN )− Eν(Y |x)Eq(θ|zN ) lnN(Y |fθ(x), v2)

≤ Eν(Y |x)q(θ|zN )
1

v2
∥Y − fθ(x)∥2 +

1

2
ln 2πv2 − BERlog(Y |x, zN )

≤ Eν(Y |x)
1

v2
∥Y − Eq(θ|zN )fθ(x)∥2 +

1

v2
Varfθ(x)− BERlog(Y |x, zN ) +

1

2
ln 2πv2. (98)

This concludes the proof of Eq. (20).

Next, we discuss the entropic risk for the general log-likelihood other than the Gaussian distribution.
Note that

Eν(Y |x)Ent
log
α=1(Y, x) = −Eν(Y |x) lnEq(θ|zN )p(Y |x, θ). (99)
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Then from Eq. (18), we have

PERlog(Y |x, zN ) ≤
√

2σ2
pER

log(Y |x, zN , θ∗)− BERlog(Y |x, zN ). (100)

Then by using the Cauchy-Schwartz inequality and since we assumed that the model well-specified,
we have

−Eν(Y |x) lnEq(θ|zN )p(Y |x, θ) ≤ −EνEq(θ|zN ) ln p(Y |x, θ)− BERlog(Y |x, zN ) +
σ2
p

2
. (101)

Thus, the entropic risk has small regularization about BER.

E DISCUSSION OF SUB-EXPONENTIAL AND SUB-GAMMA ASSUMPTION

In the main paper, we have shown Theorem 3 and Collorary 1 when the sub-Gaussian property holds.
Here we present the results for sub-exponential and sub-Gamma property. Conditioned on θ, x, and
zN , by using Lemma 2 we have

Ep(Y |x,θ∗)L(Y, x, θ)− Ep(Y |x,θ)L(Y, x, θ) ≤ h∗−1(KL(p(Y |x, θ∗)|p(Y |x, θ))). (102)

Then by proceeding the calculation in the same way as the proof of Theorem 3, we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤ Eν(ZN )q(θ|ZN )ν(X=x)h
∗−1(KL(p(Y |x, θ∗)|p(Y |x, θ))),

(103)

and since h∗−1 is concave, we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤ h∗−1(Eν(ZN )q(θ|ZN )ν(X=x)KL(p(Y |x, θ∗)|p(Y |x, θ))),
(104)

We need to derive h∗−1. For example in Lemma 2, if h(λ) = σ2λ2

2 for 0 ≤ λ ≤ 1/b, then we have

h∗−1(y) =

{√
2σ2y if y ≤ σ2

2b

by + σ2

2b otherwise.
(105)

This is called as sub-exponential property. Thus, if Eν(ZN )q(θ|ZN )ν(X=x)KL(p(Y |x, θ∗)|p(Y |x, θ)) =
ERlog(Y |X,ZN , θ∗) ≤ σ2

2b , for some constant b and σ2, we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤
√
2σ2ERlog(Y |X,ZN , θ∗), (106)

and otherwise we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤ bERlog(Y |X,ZN , θ∗) + σ2

2b
. (107)

Next, in Lemma 2, if h(λ) = σ2λ2

2(1−c|λ|) for 0 ≤ λ ≤ 1/c and c > 0, then we have

h∗−1(y) =
√
2σ2y + cy. (108)

This is called as sub-gamma property. If σ2 and c are upper bounded by positive constants σ2 <
σ2
0 <∞ and c < c0 <∞, then we have

PERlog(Y |X,ZN ) + BERlog(Y |X,ZN ) ≤
√

2σ2
0ER

log(Y |X,ZN , θ∗) + c0ER
log(Y |X,ZN , θ∗).

(109)

F DETAILED DESCRIPTION OF THE PROPOSED METHOD

First, we show the PAC-Bayesian bound for our proposed method. Following the high-probability
bound of Theorem 4, given a distribution ν(Z), for any prior distribution p(θ) over Θ independent of
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zN and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over the choice of training data
zN , for all probability distributions q(θ|zN ) over Θ, we have

Eν(Z)

[ |Y − Eq(θ|zN )fθ(X)|2
2v2

+ λ
Varθ|zN fθ(X)

2v2

]
+

ln 2πv2

2

≤ 1

N

N∑
i=1

[Eq(θ|zN )|yi−Eq(θ|zN )fθ(xi)|2
2v2

+λ
Varθ|zN fθ(xi)

2v2

]
+
ln 2πv2

2
+
KL(q|p)+ 1

2 ln
1
ξ+

1
2Ωp,ν(c,N)

cN
,

(110)

where

Ωp,ν(c,N) := lnEp(θ)p(θ′)Eν(Z)N exp[cN(Eν(Z)L(Z, θ, θ
′)− 1

N

N∑
n=1

L(Zn, θ, θ
′))], (111)

L(z, θ, θ′) := Eq(θ|zN )
|y − fθ(x)|2

2v2
+ (λ− 1)

Eq(θ|zN )f
2
θ (x)− Eq(θ|zN )Eq(θ′|zN )fθ(x)fθ′(x)

2v2
.

(112)

Proof. The proof is similar to Masegosa et al. (2020). First note that

|y − Eq(θ|zN )fθ(x)|2
2v2

+ λ
Varθ|zN fθ(x)

2v2

= Eq(θ|zN )
|y − fθ(x)|2

2v2
+ (λ− 1)

Varθ|zN fθ(x)

2v2

= Eq(θ|zN )
|y − fθ(x)|2

2v2
+ (λ− 1)

Eq(θ|zN )f
2
θ (x)− Eq(θ|zN )Eq(θ′|zN )fθ(x)fθ′(x)

2v2
. (113)

Based on this, we define the tandem loss as

L(z, θ, θ′) := Eq(θ|zN )
|y − fθ(x)|2

2v2
+ (λ− 1)

Eq(θ|zN )f
2
θ (x)− Eq(θ|zN )Eq(θ′|zN )fθ(x)fθ′(x)

2v2
.

(114)

Then by considering the prior p(θ, θ′) = p(θ)p(θ′), using Theorem 4, we have

Eν(Z)q(θ|zN )q(θ′|zN )L(Z, θ, θ
′) ≤ 1

N

N∑
n=1

Eq(θ|zN )q(θ′|zN )L(zn, θ, θ
′)

+
KL(q(θ|zN )q(θ′|zN )|p(θ)p(θ′)) + ln ξ−1 +Ωp,ν(c,N)

cN
,

(115)

where

Ωp,ν(c,N) := lnEp(θ)p(θ′)Eν(Z)N exp[cN(Eν(Z)L(Z, θ, θ
′)− 1

N

N∑
n=1

L(Zn, θ, θ
′))]. (116)

Since KL(q(θ|zN )q(θ′|zN )|p(θ)p(θ′)) = 2KL(q(θ|zN )|p(θ)), by setting c=2c’, we get the result.

Thus, the constant Ωp,ν depends only on the setting of the problem. We optimize the right-hand side
of Eq. (110) as the objective function.

Next, we discuss the relation between rBER and standard VI. The objective function of standard VI is

−Eq(θ|zN ) lnN(y|fθ(x), v2) =
|y − Eq(θ|zN )fθ(x)|2 +Varθ|zN fθ(x)

2v2
+

1

2
ln 2πv2. (117)

Thus, we can interpret that the log loss of the Gaussian likelihood corresponds to the prediction risk
and Bayesian excess risk. Since the prediction risk corresponds to the prediction performance, the
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standard VI implicitly controls the prediction performance and the Bayesian excess risk. Our rBER
can be regarded as

rBER(λ) =
1

2v2
1

N

N∑
n=1

(
PR(2)(yn|xn, zN ) + λBER(2)(yn|xn, zN )

)
+

1

2
ln 2πv2 +

1

N
KL(q|p).

(118)

Thus, BER has a flexible weight for regularizing the uncertainty. Numerically, when λ = 0, this
corresponds to the setting where we simply optimize PR(2)(y|x, zN ). This means we only consider
the fitting performance. We numerically found that λ = 0 results in large uncertainty due to the lack
of regularization. When λ = 1, we found that the uncertainty is underestimated.

Finally, we remark the relation between Bayesian excess risk and Varfθ(x). Since we focus on the
log loss, thus we can consider the following type of objective function.

1

N

N∑
n=1

[EQ|yn−Eq(θ|zN )fθ(xn)|2
2v2

+λBERlog(yn|xn, zN )

]
+
ln 2πv2

2
+

1

N
KL(q|p), (119)

where we use the Bayesian excess risk directly, instead of Varfθ(x). Note that from Appendix D.12,
BERlog(Y |x, zN ) ≤ Varfθ(x)/v

2 holds for the Gaussian likelihood. Thus, Eq. (119) and our BER
behaves in a similar way. From the numerical point of view, implementing Varfθ(x) is easier than
Eq. (119) since we simply calculate the variance of the prediction.

G NUMERICAL EXPERIMENTS

In this section, we describe the detailed settings of the experiments. We also present the additional
experimental results.

G.1 PARTICLE VARIATIONAL INFERENCE

Since we applied our BER to particle variational inference (PVI), we briefly introduce the PVI and
existing methods. In PVI, we use the empirical distribution ρ(θ) = 1

M

∑M
i=1 δθi(θ) as the posterior

distribution. Here δθi(θ) is the Dirac distribution that has a mass at θi. We refer to theseM samples as
particles. PVI Liu & Wang (2016); Wang et al. (2019) approximates the posterior through iteratively
updating the empirical distribution by interacting them with each other:

θnewi ←− θoldi + ηvi({θoldi′ }Mi′=1), (120)

where v({θ}) is the update direction. Basically, v is composed of the gradient term and the repulsion
term to enhance the divesity of the posterior distribution since we are often interested in the multi-
modal information of the posterior distribution. For the update direction about v, see f-SVGD in
Wang et al. (2019) and VAR in Futami et al. (2021) for details.

We follow the approach in VAR in Futami et al. (2021). They proposed using the gradient of the
PAC-Bayesian bound for the update direction v in Eq. (120). For example, VAR uses

vi = ∂iF({θi}Ni=1), (121)

F({θi}Ni=1) := −
1

NM

M∑
i=1

N∑
n=1

[ln p(yn|xn, θi)+R(yn, xn)] +
1

N
KL(ρE|π), (122)

where R is the repulsion term to enhance the diversity. See Futami et al. (2021) for details. Following
their setting, we consider using the following update direction

vi = ∂irBER(λ) (123)

rBER(λ) =
1

N

N∑
n=1

|yn−Eρ(θ)fθ(xn)|2
2v′2

+ λ
Varfθ(xn)

2v′2
+

ln 2πv
′2

2
+

1

N
KL(ρ(θ)|p(θ)), (124)

where ρ(θ) = 1
M

∑M
i=1 δθi(θ). We optimize v′ by gradient descent.
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G.2 TOY DATA EXPERIMENTS AND DEPTH ESTIMATION

For these experiments, we used the implementation in the previous work Amini et al. (2020). For the
toy data experiments, we used the Adam optimizer with the stepsize 0.0001 in the implementation of
Amini et al. (2020). The number of ensembles is 5. We set other hyperparameters as the same as in
Amini et al. (2020).

As for the depth estimation experiments, we used the same hyperparameter setting in Amini et al.
(2020). Here, the number of ensembles is 5.

G.3 BNN REGRESSION FOR UCI DATASET

We used the same setting as the previous work Wang et al. (2019); Futami et al. (2021). We used the
Adam optimizer with a learning rate of 0.004. We used a batch size of 100 and ran 500 epochs for the
dataset size to be smaller than 1000. For a larger dataset, we used a batch size of 1000 and ran 3000
epochs.

To calculate the PICP, we first calculate the 95% prediction interval. We then calculate the number of
the test data points included inside the prediction interval.

To calculate the MPIW, we calculated the mean of the prediction interval and normalized it by the
maximum length of the test data point; max ytest −min ytest.

We show the additional results here. We show the result of PAC2
E and the negative log-likelihood.

We also show the result of the α-divergence minimization. Following the previous work Li & Gal
(2017), we considered the entropic loss for α-divergence minimization. In the definition of Li & Gal
(2017), α = 0 corresponds to the standard (exclusive) KL divergence, α = 0.5 corresponds to the
Hellinger divergence, and α = 1.0 corresponds to the (inclusive) KL divergence, which is used in
expectation propagation algorithm. We test on α = 0.5, 1.0 and 2.0. The results are shown in Table 3
to 6.

First, we found that α-divergence minimization show similar behaviors to f-SVGD in RMSE and
negative test log-likelihood. However, we found that α-divergence minimization shows very large
uncertainties since their PICP are much larger than 0.95 and their MPIW are larger than f-SVGD.

We found that PAC2
E shows the similar to BER(0) measured in the negative log-likelihood, MPIW,

and PICP. However, the prediction performance of PAC2
E in RMSE is significantly worse than

BER(0). This is because the objective function of PAC2
E is the negative log-likelihood of the

predictive distribution; thus, the performance in RMSE is not guaranteed. On the other hand, the
objective function of BER(0) is based on the squared loss. Thus, it can show performance in RMSE.

Next, we evaluated how the RMSE, PICP, MPIW, and negative log-likelihood behave by changing λ
in BER. We show the results in Fig.3 and 4. We confirmed that the prediction performance measured
in RMSE does not depend on the choice of λ. On the other hand, other measures depend on λ
significantly. The ideal PICP is 0.95. Thus, we should choose λ by cross-validation. We also found
that even λ = 1. correspond to the standard VI. It underestimates the PICP.

G.4 CONTEXTUAL BANDIT TASKS

Here we explain the setting of the task. Our experiments follow the setting in Wang et al. (2019);
Futami et al. (2021). Denote the context set as S. For each time step t, an agent recieves context
st ∈ S from the environment. The agent choose action at ∈ {1, . . . , A} based on the context st and
get a reward rat,t. We would like to minimize the pseudo regret

RT = max
ϕ:S→{1,...,A}

E

[
T∑
t=1

rg(st),t −
T∑
t=1

rat,t

]
, (125)

where ϕ maps the context to the action. We consider a prior µs,i,0 over a reward of context s and
action i. Then, we update the prior to a posterior distribution using the observed reward. Following
the previous work, we use Thompson sampling to select the action as

rt ∈ argmax
i={1,...,K}

r̂i,t, r̂i,t ∼ µs,i,t. (126)
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Table 3: Benchmark results on test RMSE
Dataset Avg. Test RMSE

f-SVGD α = 0.5 α = 1.0 α = 2.0 VAR PAC2
E rBER(0.05) f-SVGD

Concrete 4.33±0.8 4.51±0.8 4.67±0.7 4.98±0.6 4.30±0.7 5.49±0.5 4.47±0.6 4.48±0.7
Boston 2.54±0.50 2.81±0.88 2.87±0.80 2.98±0.90 2.53±0.50 4.41±0.45 2.53±0.50 2.53±0.51
Wine 0.61±0.04 0.61±0.04 0.61±0.04 0.61±0.03 0.61±0.04 1.02±0.11 0.64±0.04 0.63±0.02
Power 3.78±0.14 3.78±0.11 3.78±0.13 3.80±0.11 3.75±0.13 5.24±0.45 3.66±0.15 3.69±0.12
Yacht 0.64±0.28 0.56±0.26 0.88±0.34 0.99±0.68 0.60±0.28 0.71±0.41 0.75±0.41 0.78±0.48

Protein 3.98±0.54 4.05±0.13 3.97±0.04 4.02±0.09 3.92±0.05 7.96±0.10 3.83±0.10 3.85±0.05

Table 4: Benchmark results on test PICP and MPIW.
Dataset Avg. Test PICP and MPIW in parenthesis

f-SVGD VAR PAC2
E rBER(0) rBER(0.05)

Concrete 0.82±0.03 (0.13±0.00) 0.87±0.04 (0.16±0.01) 0.97±0.02 (0.57±0.04) 0.99±0.02 (0.50±0.04) 0.95±0.02 (0.25±0.02)
Boston 0.63±0.07 (0.10±0.02) 0.76±0.05 (0.14±0.01) 0.94±0.04 (0.40±0.04) 0.97±0.01 (0.33±0.04) 0.92±0.04 (0.22±0.02)
Wine 0.79±0.03 (0.32±0.05) 0.85±0.02 (0.39±0.06) 0.98±0.01 (1.06±0.01) 0.99±0.00 (1.61±0.00) 0.95±0.03 (0.32±0.15)
Power 0.43±0.01 (0.07±0.00) 0.82±0.01 (0.15±0.00) 0.99±0.00 (0.57±0.02) 0.99±0.01 (0.81±0.01) 0.96±0.01 (0.37±0.01)
Yacht 0.92±0.04 (0.02±0.01) 0.93±0.04 (0.04±0.01) 0.97±0.03 (0.07±0.00) 0.96±0.03 (0.10±0.01) 0.94±0.04 (0.08±0.01)

Protein 0.53±0.01 (0.24±0.01) 0.83±0.00 (0.58±0.01) 0.98 ±0.00 (1.44±0.06) 1.0 ±0.00 (5.04±0.01) 0.96±0.01 (0.86±0.00)

Table 5: Benchmark results on test PICP and MPIW for α-divergence minimization.

Dataset Avg. Test PICP and MPIW in parenthesis
α = 0.5 α = 1.0 α = 2.0

Concrete 0.97±0.01 (0.41±0.03) 0.99±0.01 (0.46±0.03) 0.99±0.01 (0.52±0.04)
Boston 0.98±0.01 (0.51±0.08) 0.99±0.01 (0.54±0.08) 0.99±0.01 (0.57±0.09)
Wine 0.94±0.02 (0.54±0.08) 0.95±0.02 (0.58±0.09) 0.96±0.01 (0.63±0.09)
Power 0.98±0.00 (0.45±0.01) 0.99±0.00 (0.47±0.01) 1.00±0.00 (0.50±0.01)
Yacht 0.99±0.01 (0.16±0.01) 1.00±0.00 (0.30±0.04) 1.00±0.00 (0.60±0.06)

Protein 0.99 ±0.00 (1.13±0.02) 0.99 ±0.00 (1.12±0.03) 0.99±0.01 (1.15±0.04)

Table 6: Benchmark results on negative test log-likelihood
Dataset Avg. negative test log likelihood

f-SVGD α = 0.5 α = 1.0 α = 2.0 VAR PAC2
E rBER(0) rBER(0.05)

Concrete -2.85±0.15 -2.79±0.17 -2.82±0.08 -2.95±0.05 -2.81±0.06 -3.16±0.03 -3.50±0.03 -3.06±0.05
Boston -2.34±0.31 -2.39±0.16 -2.43±0.12 -2.47±0.09 -2.34±0.24 -2.61±0.08 -2.55±0.05 -2.38±0.16
Wine -0.89±0.08 -0.87±0.07 -0.88±0.05 -0.93±0.03 -0.90±0.06 -1.26±0.02 -1.84±0.03 -1.08±0.03
Power -2.75±0.03 -2.73±0.02 -2.74±0.01 -2.80±0.03 -2.80±0.03 -3.17±0.03 -3.95±0.04 -2.86±0.01
Yacht -0.81±0.67 -0.92±0.27 -0.77±0.17 -1.58±0.17 -0.87±0.38 -0.81±0.11 -1.62±0.17 -1.46±0.30

Protein -2.70±0.00 -2.98±0.02 -2.90±0.01 -2.95±0.02 -2.84±0.00 -3.30±0.00 -4.45±0.02 -2.94±0.00
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Figure 3: Concrete data in UCI dataset.
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Figure 4: Wine data in UCI dataset.

We consider a neural network regression model following the previous work Wang et al. (2019);
Futami et al. (2021), where the input is the context, and the output is the K-dimensional action.
We place a prior distribution over the parameters of the network. We approximate the posterior
distribution of the neural network parameters by PVI. All the hyperparameters are precisely the same
as in the previous work Wang et al. (2019).

In Table 7, we additionally show performances of baseline methods, including Bayes by backprop-
agation (BBB), dropout, and black-box alpha divergence minimization (BBα). These results are
adapted from (Riquelme et al., 2018). As we can see, our proposed rBER(0.01) and rBER(0.05)
outperformed these baseline methods.
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Table 7: Cumulative regret relative to that of the uniform sampling with some existing methods.
Dataset BBB Dropout BBα(= 1.0) BBα(= 0.5)

Mushroom 0.036±0.002 0.056±0.012 0.543±0.000 0.539±0.000
Financial 0.23±0.013 0.17±0.007 0.40±0.007 0.70±0.035
Statlog 0.126 ±0.015 0.025±0.006 0.194±0.017 0.211±0.014

CoverType 0.582±0.022 0.306±0.002 0.394±0.005 0.605±0.000
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