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A ADDITIONAL METHOD DETAILS
A.1 Implementation details
Data preprocessing.We downloaded the NSD dataset from the

official website and used Takagi’s code to extract nsdgenal fMRI vox-

els, while Takagi extracted the stream region of the NSD dataset. We

noticed thatMindEye scaled the fMRI voxel values in advance, while

we did not. The difference in fMRI voxels input data is shown in the

example in Figure 6. NSD image files come from nsd-stimuli.hdf5

file and have a unified size of 425 × 425. We did not perform any

data augmentation on the image and straightly extracted the hidden

layer representation (size of 257 × 768) of the image through CLIP

ViT-L/14 for training.

Hyper-parameters. On the NSD dataset, during training DFT

Backbone, the weight decay is set to 7, 𝜏 is 1/𝑒8, 𝛼 = 1, and CLIP’s

contrastive loss is unidirectional for image retrieval and fMRI re-

trieval. Owning to the lightweight nature of Lite-Mind, the batch

size is set to 500, the learning rate is 1e-3, patch size is set to 480,

and Filter library size is 4. Filter block layers are the same for all

subjects.

About LAION-5B retrieval, for DFT Backbone, the weight decay

is set to 7, 𝜏 is 1/𝑒8, while the weight decay is 6.02e-2 for diffu-

sion projector. CLIP’s contrastive loss is unidirectional for image

retrieval, 𝛼 = 0.5, the batch size is set to 80 and the learning rate is

1.16e-3 for DFT Backbone while 1.1e-4 for diffusion projector. Note

that hyper-parameters in Diffusion Projector are the value of the

open-source DALLE·2 from https://github.com/lucidrains/DALLE2-

pytorch.

On the GOD dataset, the hyperparameters are the same as those

on the NSD dataset, except for the batch size and patch size which

are set to 1200 and 8 for all 5 subjects on the GOD dataset, respec-

tively.

B ADDITIONAL EXPERIMENT RESULTS
B.1 Additional Results of Retrieval
To demonstrate the applicability of our method, we also conducted

experiments on three other Subjects, i.e., Subject 2, Subject 5, and

Subject 7, on the NSD dataset, and the experimental results are

shown in Table 7. In order to control model size similarity, we did

notmakemore targetedmodel adjustments for subjects with shorter

voxel lengths. It can be seen that the retrieval accuracies of Subjects

1 and 2 are greater than 90%, and the retrieval accuracies of Subjects

5 and 7 are also above 80%. The results prove that DFT Backbone

can efficiently work on different subjects. Note that MindEye only

includes the results of the overall model in Subjects 2, 5, and 7 in

its Appendix, and it does not evaluate the effect of individual MLP

Backbone. As a result, Table 7 does not present any evaluation

results for MindEye.

(a) MindEye

(b) Lite-Mind

Figure 6: The fMRI averaged activities of MindEye and Lite-
Mind responding to the same image, respectively. The figures
only visualize the activities of the first 1000 voxels for illus-
tration.

Method Voxel Length Parameters

Retrieval

Image↑ Brain↑
Lite-Mind(Subj 1) 15724 12.51M 94.6% 97.4%

Lite-Mind(Subj 2) 14278 12.49M 94.1% 98.2%

Lite-Mind(Subj 5) 13039 12.47M 80.5% 86.3%

Lite-Mind(Subj 7) 12682 12.47M 81.7% 82.3%

Table 7: Addtional retrieval performance for individual sub-
jects on 982 test images of the NSD dataset.

https://github.com/lucidrains/DALLE2-pytorch
https://github.com/lucidrains/DALLE2-pytorch
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Method

Low-Level High-Level

PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓
Lite-Mind(Subject 1) .134 .332 78.8% 88.9% 88.5% 88.8% .730 .451

Lite-Mind(Subject 2) .120 .328 78.0% 89.4% 86.3% 87.4% .730 .446

Lite-Mind(Subject 5) .123 .332 79.4% 90.0% 88.8% 89.9% .712 .440

Lite-Mind(Subject 7) .121 .331 78.7% 88.8% 87.8% 88.5% .723 .448

Table 8: LAION-5B retrieval alternative reconstruction performance for the specific subject.

B.2 Additional Results of LAION-5B Retrieval
In order to better reflect the retrieval performance of Lite-Mind on

LAION-5B, we presented the performance indicators of LAION-5B

retrieval substitution reconstruction for other subjects, i.e., Subject

2, Subject 5, and Subject 7, in Table 8, corresponding to the average

performance of subjects in Table 1. Similarly, the visualization

results of the other subjects in Figure 7 correspond to the image

samples of Subject 1 in Figure 4. Based on the comprehensive table

and graph, it can be found that Lite-Mind has good generalization

on all four subjects, verifying the LAION-5B retrieval ability of

Lite-Mind on different subjects. Meanwhile, as shown in Figure

7, the retrieval performance of LAION-5B completely depends on

the retrieval accuracy of the CLS model in the test set, such that

images retrieved incorrectly in the test set may also have retrieval

bias on LAION-5B, for example treating a teddy bear as an image

of a cat or dog as shown in Figure 7. However, both MindEye and

Lite-Mind exhibit relatively low retrieval accuracy with aligned CLS

embedding models. In the future, it would be beneficial to explore

models that improve the alignment of CLS embeddings or employ

more efficient methods to directly perform retrieval through hidden

layers in LAION-5B.

B.3 Additional Results of Zero-shot
Classification

In the main body of the paper, we only demonstrated the zero-

shot classification effect of Lite-Mind on the GOD dataset. The

corresponding retrieval results of each Subject are shown in the

Table 9 below.

Method Voxel Length Parameters

Image Retrieval↑
top1 top5

Lite-Mind(Subj 1) 4466 15.50M 30.0% 60.0%

Lite-Mind(Subj 2) 4404 15.46M 38.0% 58.0%

Lite-Mind(Subj 3) 4643 15.64M 38.0% 72.0%

Lite-Mind(Subj 4) 4133 15.24M 42.0% 62.0%

Lite-Mind(Subj 5) 4370 15.43M 26.0% 54.0%

Table 9: Retrieval performance on the GOD dataset.

B.4 Hyper-parameters Experiment
In this section, we explore the influence of some hyperparameters

on the model, including patch size and number of filters𝑀 , to verify

the parameter sensitivity of the model. All the experimental results

on the NSD dataset are from Subject 1, with a retrieving pool size

of 300.

Patch size. We conducted experiments by varying the patch size

as presented in Table 10. The results exhibit stable retrieval accuracy

above 90%, which indicates that our DFT Backbone is not sensitive

to part size. Since we found patch size has less effect on retrieval

accuracy, we chose a relatively large patch size (i.e., 480) to ensure

fewer parameters and faster convergence.

Patch size Parameters

Retrieval

Image↑ Brain↑
50 14.0M 91.6% 96.4%

200 12.7M 92.9% 96.9%

480 12.5M 94.6% 97.1%

600 12.3M 94.2% 97.3%

900 11.9M 92.1% 95.5%

Table 10: Retrieval performance for different patch size on
the NSD dataset.

Filter library size. We conducted experiments by varying the

Filter library size as presented in Table 11. Specifically, there is a

significant performance improvement from𝑀 = 1 to𝑀 = 4, while

a slight fluctuation is observed for 𝑀 = 4/8. By setting 𝑀 = 4,

the model has the ability to acquire diverse and distinct feature

patterns from various dimensions of the frequency response while

still maintaining an appropriate computational cost. Therefore, we

determine that𝑀 = 4 is the optimal choice on the NSD dataset.

Filters Parameters

Retrieval

Image↑ Brain↑
1 9.0M 89.8% 96.4%

2 10.2M 93.5% 97.4%

4 12.5M 94.6% 97.1%

8 17.2M 94.4% 96.7%

Table 11: Retrieval performance for different Filter library
size on the NSD dataset.

C ADDITIONAL VISUALIZATION
C.1 Training Curve
We visualized the training process of all four subjects on the NSD

dataset in Figure 8. As the training epochs increased, the loss of the

training set rapidly decreased, while the accuracy of the test set
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Figure 7: Addtional retrieval results corresponding to Figure 4. The left column marked by a red box in every two columns
represents the original image seen by the subject, and the right column represents the image retrieved on LAION-5B.
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Figure 8: Lite-Mind’s training loss curve and testing accuracy curve for Suject 1, 2, 5, 7 on the NSD dataset. The testing accuracy
is calculated based on a retrieval pool of size 982.

Figure 9: Lite-Mind’s retrieval heatmap on the NSD dataset
for Subject 1. The larger figure on the right represents 982 ×
982’s heatmap, and the smaller figure on the left represents
the 50 × 50 subgraph.

rapidly increased and then showed a slow upward trend. Accuracy

refers to the hit rate of correct retrieval from 982 test set images.

C.2 Retrieval Heatmap
We visualized the retrieval heatmap for Subject 1 on all 982 test

images of the NSD dataset in Figure 9. It can be observed that the

similarity is highest on the diagonal, and the color of the retrieved

heat map is darker. It shows that Lite-Mind has effectively retrieved

corresponding images, even if there are many similar images in the

test set, which verifies the fine-grained ability of Lite-Mind.

C.3 Information Alignment
We visualized the T-SNE plot between the voxel embeddings output

by DFT Backbone and the image embeddings of frozen CLIP as the

accuracy of the test set improved, as shown in Figure 13. We can

observe that as the training progresses, the retrieval accuracy of the

test set improves, and the shape of voxel embeddings tends to be

closer to image embeddings, indicating the success of contrastive

learning.

C.4 More Retrieval Cases
In this section, we visualize retrieval failure cases in Figure 10,

although only dozens of images are not in the Top 1. From the left

half of the Figure, it can be seen that though not in Top 1, Lite-

Mind still retrieved ground-truth in Top 2, and images in Top 4

are similar(either semantically similar or structurally similar, eg.

animals in the wild or an airplane on the runway). On the contrary,

a smaller proportion of ground-truth did not appear within the Top

4, as shown in the right half of the Figure. From the perspective of

the images themselves, most of the scenes are too complex, even

abstract (as shown in the second image), which may be the reason

for the retrieval failure.

C.5 Visualization in Frequency Domain
We visualized the weights of Filter library of Filter Blocks, as shown

in Figure 11 and 12. Visualization is divided into the real part (left)

and imaginary part (right) of filter weights. It can be observed

that different filters have varying degrees of attention to different

tokens, and the frequency domain better captures this characteristic.



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Lite-Mind: Towards Efficient and Robust Brain Representation Learning ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 10: Partial failure retrieval results of Lite-Mind on all 982 test images for Subject 1. The number below each image
represents the similarity score.

Interestingly, the weight of the imaginary part for the first and last

tokens is almost always 0, indicating that the noise is distributed in

these two tokens.

D THEORETICAL ANALYSIS.
D.1 Complex Multiplication.
For two complex number values Z1 = (𝑎 + 𝑗𝑏) and Z2 = (𝑐 +
𝑗𝑑), where 𝑎 and 𝑐 is the real part of Z1 and Z2 respectively, 𝑏

and 𝑑 is the imaginary part of Z1 and Z2 respectively. Then the

multiplication of Z1 andZ2 is calculated by:

Z1Z2 = (𝑎 + 𝑗𝑏) (𝑐 + 𝑗𝑑)
= 𝑎𝑐 + 𝑗2𝑏𝑑 + 𝑗𝑎𝑑 + 𝑗𝑏𝑐

= (𝑎𝑐 − 𝑏𝑑) + 𝑗 (𝑎𝑑 + 𝑏𝑐)
(1)

D.2 Theorem Proof.
Theorem 1. Suppose that H is the representation of raw fMRI

voxel tokens andH is the corresponding frequency components of

the spectrum, then the energy of voxel tokens in the spatial domain

is equal to the energy of its representation in the frequency domain.

Formally, we can express this with the above notations:∫ ∞

−∞
|H(𝑣) |2 d𝑣 =

∫ ∞

−∞
|H (𝑓 ) |2 d𝑓 (2)

Where H(𝑓 ) =
∫ ∞
−∞ |H(𝑣) |𝑒− 𝑗2𝜋 𝑓 𝑣

d𝑣 , 𝑣 is the token dimension, 𝑓

is the frequency dimension.

Proof. Given the representation of raw voxel token series 𝐻 ∈
R𝐶×𝑁

, let us consider performing integration in the 𝑁 dimension

(spatial dimension), denoted as the integral over 𝑣 , then∫ ∞

−∞
|H(𝑣) |2 d𝑣 =

∫ ∞

−∞
H(𝑣)H∗ (𝑣) d𝑣 (3)

whereH∗ (𝑣) is the conjugate ofH(𝑣). According to IDFT,H∗ (𝑣) =∫ ∞
−∞H∗ (𝑓 )𝑒− 𝑗2𝜋 𝑓 𝑣

d𝑓 , we can obtain

(a) The real part and imaginary of a filter weights.

(b) The real part and imaginary of another filter weights
from the same Filter Library.

Figure 11:Weights visualization for DFTBackbone of 257×768
embedding length.
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(a) The real part and imaginary of a filter weights.

(b) The real part and imaginary of another filter weights
from the same Filter Library.

Figure 12: Weights visualization for DFT Backbone of 768
CLS embedding length.

∫ ∞

−∞
|H(𝑣) |2 d𝑣 =

∫ ∞

−∞
H(𝑣) [

∫ ∞

−∞
H∗ (𝑓 )𝑒− 𝑗2𝜋 𝑓 𝑣

d𝑓 ] d𝑣

=

∫ ∞

−∞
H∗ (𝑓 ) [

∫ ∞

−∞
|H(𝑣) |𝑒− 𝑗2𝜋 𝑓 𝑣

d𝑣] d𝑓

=

∫ ∞

−∞
H∗ (𝑓 )H (𝑓 ) d𝑓

=

∫ ∞

−∞
|H (𝑓 ) |2 d𝑓

(4)

Proved. □

Therefore, the energy of a voxel token series in the spatial domain

is equal to the energy of its representation in the frequency domain.

Theorem 2. Given the voxel token series input H and its cor-

responding frequency domain conversion H, the operations of

frequency-domain MLP on H can be represented as global convo-

lutions on H in the spatial domain. This can be given by:

HW + B = F (H ∗𝑊 + 𝐵) (5)

Where F is DFT, ∗ is a circular convolution, W and B are the

complex number weight and bias, and𝑊 and 𝐵 are the weight and

bias in the spatial domain.

Proof. Suppose that we conduct operations in the N (i.e., token

dimension), then

F (H(𝑣) ∗𝑊 (𝑣)) =
∫ ∞

−∞
(H(𝑣) ∗𝑊 (𝑣))𝑒− 𝑗2𝜋 𝑓 𝑣

d𝑣 (6)

According to convolution theorem,H(𝑣)∗𝑊 (𝑣) =
∫ ∞
−∞ (H(𝜏)𝑊 (𝑣−

𝜏)) d𝜏 , then

F (H(𝑣) ∗𝑊 (𝑣)) =
∫ ∞

−∞

∫ ∞

−∞
(H(𝜏)𝑊 (𝑣 − 𝜏))𝑒− 𝑗2𝜋 𝑓 𝑣

d𝜏 d𝑣

=

∫ ∞

−∞

∫ ∞

−∞
𝑊 (𝑣 − 𝜏)𝑒− 𝑗2𝜋 𝑓 𝑣

d𝑣H(𝜏) d𝜏
(7)

Let 𝑥 = 𝑣 − 𝜏 ,then

F (H(𝑣) ∗𝑊 (𝑣)) =
∫ ∞

−∞

∫ ∞

−∞
𝑊 (𝑥)𝑒− 𝑗2𝜋 𝑓 (𝑥+𝜏 )

d𝑥H(𝜏) d𝜏

=

∫ ∞

−∞

∫ ∞

−∞
𝑊 (𝑥)𝑒− 𝑗2𝜋 𝑓 𝑥𝑒− 𝑗2𝜋 𝑓 𝜏

d𝑥H(𝜏) d𝜏

=

∫ ∞

−∞
(H(𝜏)∗)𝑒− 𝑗2𝜋 𝑓 𝜏

d𝜏

∫ ∞

−∞
(W(𝑥)∗)𝑒− 𝑗2𝜋 𝑓 𝑥

d𝑥

= H(𝑓 )W(𝑓 )
(8)

Accordingly,H(𝑣)∗𝑊 (𝑣) in the spatial domain is equal toH(𝑓 )W(𝑓 )
in the frequency domain. Therefore, the operations of FreMLP

(HW + B) in the token dimension (i.e., v = N ) are equal to the

operations (F (H ∗𝑊 + 𝐵)) in the spatial domain. This implies that

frequency-domain MLPs can be viewed as global convolutions in

the spatial domain. Proved. □

D.3 Complexity Analysis
For a fMRI voxel with a length of 𝑙 , we divide it into 𝑛 patches.

Assuming 𝐿1 and 𝐿2 are the layer depths of MLP Backbone and

DFT Backbone respectively, the middle layer dimension of MLP

Backbone is 𝐷 , and the alignment embedding dimension is 𝑛′ ×𝐷′
,

where 𝑛′ is the the number of tokens of CLIP. The time complexity

of MLP Backbone is 𝑂 (𝑙𝐷 + 𝐿1𝐷
2 + 𝑛′𝐷𝐷′). For DFT Backobone,

the time complexity of patchify and tokenization is 𝑂 (𝑙𝐷′), and
the time complexity of DFT, IDFT, and filtering for each layer is

𝑂 (2𝑛𝐷′
log𝑛+𝑛𝐷′). The time complexity of FreMLP is𝑂 (2𝑛𝐷′

log𝑛+
2𝑛𝑛′𝐷′ + 2𝑛′𝐷′). Thus the time complexity of the entire DFT Back-

bone is:

𝑂 (4𝑛𝐷′
log𝑛 + (𝑛 + 2𝑛𝑛′ + 2𝑛′)𝐷′)
= 𝑂 ((𝑛 log𝑛 + 𝑛𝑛′ + 𝑛′)𝐷′)

(9)

Quantitative analysis algorithm complexity for DFT Backbone

has been shown in Table 3.
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Figure 13: T-SNE visualization between the voxel embeddings output by DFT Backbone and the image embedding of frozen
CLIP. Accuracy in the title refers to the hit rate of correct retrieval from 982 test set images and the blue dots represent voxel
embeddings.
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