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A ADDITIONAL METHOD DETAILS

A.1 Implementation details

Data preprocessing. We downloaded the NSD dataset from the
official website and used Takagi’s code to extract nsdgenal fMRI vox-
els, while Takagi extracted the stream region of the NSD dataset. We
noticed that MindEye scaled the fMRI voxel values in advance, while
we did not. The difference in fMRI voxels input data is shown in the
example in Figure 6. NSD image files come from nsd-stimuli.hdf5
file and have a unified size of 425 X 425. We did not perform any
data augmentation on the image and straightly extracted the hidden
layer representation (size of 257 X 768) of the image through CLIP
ViT-L/14 for training.

Hyper-parameters. On the NSD dataset, during training DFT
Backbone, the weight decay is set to 7, 7 is 1/e8, a =1, and CLIP’s
contrastive loss is unidirectional for image retrieval and fMRI re-
trieval. Owning to the lightweight nature of Lite-Mind, the batch
size is set to 500, the learning rate is le-3, patch size is set to 480,
and Filter library size is 4. Filter block layers are the same for all
subjects.

About LAION-5B retrieval, for DFT Backbone, the weight decay
is set to 7, 7 is 1/€®, while the weight decay is 6.02e-2 for diffu-
sion projector. CLIP’s contrastive loss is unidirectional for image
retrieval, @ = 0.5, the batch size is set to 80 and the learning rate is
1.16e-3 for DFT Backbone while 1.1e-4 for diffusion projector. Note
that hyper-parameters in Diffusion Projector are the value of the
open-source DALLE-2 from https://github.com/lucidrains/DALLE2-
pytorch.

On the GOD dataset, the hyperparameters are the same as those
on the NSD dataset, except for the batch size and patch size which
are set to 1200 and 8 for all 5 subjects on the GOD dataset, respec-
tively.

B ADDITIONAL EXPERIMENT RESULTS
B.1 Additional Results of Retrieval

To demonstrate the applicability of our method, we also conducted
experiments on three other Subjects, i.e., Subject 2, Subject 5, and
Subject 7, on the NSD dataset, and the experimental results are
shown in Table 7. In order to control model size similarity, we did
not make more targeted model adjustments for subjects with shorter
voxel lengths. It can be seen that the retrieval accuracies of Subjects
1 and 2 are greater than 90%, and the retrieval accuracies of Subjects
5 and 7 are also above 80%. The results prove that DFT Backbone
can efficiently work on different subjects. Note that MindEye only
includes the results of the overall model in Subjects 2, 5, and 7 in
its Appendix, and it does not evaluate the effect of individual MLP
Backbone. As a result, Table 7 does not present any evaluation
results for MindEye.
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Figure 6: The fMRI averaged activities of MindEye and Lite-
Mind responding to the same image, respectively. The figures
only visualize the activities of the first 1000 voxels for illus-
tration.

Method Voxel Length ~ Parameters ___ Retrieval __ -
ImageT Brainl

LitefMind(Subj 1) 15724 12.51M 94.6% 97.4%
Lite-Mind(Subj 2) 14278 1249M  941%  98.2%
Lite-Mind(Subj 5) 13039 12.47TM 80.5% 86.3%
Lite-Mind(Subj 7) 12682 1247M  817%  82.3%

Table 7: Addtional retrieval performance for individual sub-
jects on 982 test images of the NSD dataset.
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Method Low-Level High-Level
PixCorrT SSIMT Alex(2)T Alex(5)7 IncepT CLIPT Eff] SwAV|
Lite-Mind(Subject 1) 134 332 78.8% 88.9% 88.5%  88.8% .730 451
Lite-Mind(Subject 2) 120 328 78.0% 89.4% 86.3% 87.4% .730 446
Lite-Mind(Subject 5) 123 332 79.4% 90.0% 88.8% 89.9% .712 440
Lite-Mind(Subject 7) 121 331 78.7% 88.8% 87.8%  88.5% .723 448

Table 8: LAION-5B retrieval alternative reconstruction performance for the specific subject.

B.2 Additional Results of LAION-5B Retrieval

In order to better reflect the retrieval performance of Lite-Mind on
LAION-5B, we presented the performance indicators of LAION-5B
retrieval substitution reconstruction for other subjects, i.e., Subject
2, Subject 5, and Subject 7, in Table 8, corresponding to the average
performance of subjects in Table 1. Similarly, the visualization
results of the other subjects in Figure 7 correspond to the image
samples of Subject 1 in Figure 4. Based on the comprehensive table
and graph, it can be found that Lite-Mind has good generalization
on all four subjects, verifying the LAION-5B retrieval ability of
Lite-Mind on different subjects. Meanwhile, as shown in Figure
7, the retrieval performance of LAION-5B completely depends on
the retrieval accuracy of the CLS model in the test set, such that
images retrieved incorrectly in the test set may also have retrieval
bias on LAION-5B, for example treating a teddy bear as an image
of a cat or dog as shown in Figure 7. However, both MindEye and
Lite-Mind exhibit relatively low retrieval accuracy with aligned CLS
embedding models. In the future, it would be beneficial to explore
models that improve the alignment of CLS embeddings or employ
more efficient methods to directly perform retrieval through hidden
layers in LAION-5B.

B.3 Additional Results of Zero-shot
Classification

In the main body of the paper, we only demonstrated the zero-

shot classification effect of Lite-Mind on the GOD dataset. The

corresponding retrieval results of each Subject are shown in the
Table 9 below.

Image Retrievall

Method Voxel Length ~ Parameters
topl top5
Lite-Mind(Subj 1) 4466 1550M  30.0%  60.0%
Lite-Mind(Subj 2) 4404 15.46M 38.0% 58.0%
Lite-Mind(Subj 3) 4643 1564M  38.0%  72.0%
Lite-Mind(Subj 4) 4133 15.24M 42.0% 62.0%
Lite-Mind(Subj 5) 4370 1543M  260%  54.0%

Table 9: Retrieval performance on the GOD dataset.

B.4 Hyper-parameters Experiment

In this section, we explore the influence of some hyperparameters
on the model, including patch size and number of filters M, to verify
the parameter sensitivity of the model. All the experimental results
on the NSD dataset are from Subject 1, with a retrieving pool size
of 300.

Patch size. We conducted experiments by varying the patch size
as presented in Table 10. The results exhibit stable retrieval accuracy
above 90%, which indicates that our DFT Backbone is not sensitive
to part size. Since we found patch size has less effect on retrieval
accuracy, we chose a relatively large patch size (i.e., 480) to ensure
fewer parameters and faster convergence.

. Retrieval
Patch size Parameters —— —————

ImageT Brainf
50 14.0M 91.6% 96.4%
200 12.7M 92.9% 96.9%
480 12.5M 94.6% 97.1%
600 12.3M 94.2% 97.3%
900 11.9M 92.1% 95.5%

Table 10: Retrieval performance for different patch size on
the NSD dataset.

Filter library size. We conducted experiments by varying the
Filter library size as presented in Table 11. Specifically, there is a
significant performance improvement from M = 1 to M = 4, while
a slight fluctuation is observed for M = 4/8. By setting M = 4,
the model has the ability to acquire diverse and distinct feature
patterns from various dimensions of the frequency response while
still maintaining an appropriate computational cost. Therefore, we
determine that M = 4 is the optimal choice on the NSD dataset.

. Retrieval
Filters Parameters -
ImageT Brainf
1 9.0M 89.8% 96.4%
2 10.2M 93.5% 97.4%
4 12.5M 94.6% 97.1%
8 17.2M 94.4% 96.7%

Table 11: Retrieval performance for different Filter library
size on the NSD dataset.

C ADDITIONAL VISUALIZATION

C.1 Training Curve

We visualized the training process of all four subjects on the NSD
dataset in Figure 8. As the training epochs increased, the loss of the
training set rapidly decreased, while the accuracy of the test set
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Subject 7

Figure 7: Addtional retrieval results corresponding to Figure 4. The left column marked by a red box in every two columns
represents the original image seen by the subject, and the right column represents the image retrieved on LAION-5B.
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Figure 8: Lite-Mind’s training loss curve and testing accuracy curve for Suject 1, 2, 5, 7 on the NSD dataset. The testing accuracy

is calculated based on a retrieval pool of size 982.
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Figure 9: Lite-Mind’s retrieval heatmap on the NSD dataset
for Subject 1. The larger figure on the right represents 982 x
982’s heatmap, and the smaller figure on the left represents
the 50 x 50 subgraph.

rapidly increased and then showed a slow upward trend. Accuracy
refers to the hit rate of correct retrieval from 982 test set images.

C.2 Retrieval Heatmap

We visualized the retrieval heatmap for Subject 1 on all 982 test
images of the NSD dataset in Figure 9. It can be observed that the
similarity is highest on the diagonal, and the color of the retrieved
heat map is darker. It shows that Lite-Mind has effectively retrieved
corresponding images, even if there are many similar images in the
test set, which verifies the fine-grained ability of Lite-Mind.

C.3 Information Alignment

We visualized the T-SNE plot between the voxel embeddings output
by DFT Backbone and the image embeddings of frozen CLIP as the
accuracy of the test set improved, as shown in Figure 13. We can
observe that as the training progresses, the retrieval accuracy of the
test set improves, and the shape of voxel embeddings tends to be
closer to image embeddings, indicating the success of contrastive
learning.

C.4 More Retrieval Cases

In this section, we visualize retrieval failure cases in Figure 10,
although only dozens of images are not in the Top 1. From the left
half of the Figure, it can be seen that though not in Top 1, Lite-
Mind still retrieved ground-truth in Top 2, and images in Top 4
are similar(either semantically similar or structurally similar, eg.
animals in the wild or an airplane on the runway). On the contrary,
a smaller proportion of ground-truth did not appear within the Top
4, as shown in the right half of the Figure. From the perspective of
the images themselves, most of the scenes are too complex, even
abstract (as shown in the second image), which may be the reason
for the retrieval failure.

C.5 Visualization in Frequency Domain

We visualized the weights of Filter library of Filter Blocks, as shown
in Figure 11 and 12. Visualization is divided into the real part (left)
and imaginary part (right) of filter weights. It can be observed
that different filters have varying degrees of attention to different
tokens, and the frequency domain better captures this characteristic.
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Figure 10: Partial failure retrieval results of Lite-Mind on all 982 test images for Subject 1. The number below each image

represents the similarity score.

Interestingly, the weight of the imaginary part for the first and last
tokens is almost always 0, indicating that the noise is distributed in
these two tokens.

D THEORETICAL ANALYSIS.
D.1 Complex Multiplication.

For two complex number values Z; = (a + jb) and Zy = (¢ +
jd), where a and c is the real part of Z; and Z; respectively, b
and d is the imaginary part of Z; and Z, respectively. Then the
multiplication of Z; and Z is calculated by:

Z1Z2 = (a+ jb)(c+ jd)
= ac + j*bd + jad + jbc (1)
(ac — bd) + j(ad + bc)

D.2 Theorem Proof.

Theorem 1. Suppose that H is the representation of raw fMRI
voxel tokens and H is the corresponding frequency components of
the spectrum, then the energy of voxel tokens in the spatial domain
is equal to the energy of its representation in the frequency domain.
Formally, we can express this with the above notations:

/_ (o) [? do = / H(F)? df @

(e8]

Where H(f) = f_ozo [H(v)|e=/27/? o, v is the token dimension, f
is the frequency dimension.

Proor. Given the representation of raw voxel token series H €
REXN et us consider performing integration in the N dimension
(spatial dimension), denoted as the integral over v, then

[:mwﬁ®=[:mmm@mu 3)

where H*(v) is the conjugate of H(v). According to IDFT, H* (v) =
/_o:o H* (f)e_jz”f” df, we can obtain
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(b) The real part and imaginary of another filter weights
from the same Filter Library.

Figure 11: Weights visualization for DFT Backbone of 257x768
embedding length.
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Figure 12: Weights visualization for DFT Backbone of 768
CLS embedding length.

/ " IHEO)P do = / T H)[ / e (e P af) do

- / H ()] / (o) e =727 do] df
s - (4)
- / H(PH(F) df

- / H(f) 2 df
Proved. O

Therefore, the energy of a voxel token series in the spatial domain
is equal to the energy of its representation in the frequency domain.

Theorem 2. Given the voxel token series input H and its cor-
responding frequency domain conversion H, the operations of
frequency-domain MLP on H can be represented as global convo-
lutions on H in the spatial domain. This can be given by:

HW +8B=FH=W +B) (5)

Anonymous Authors

Where ¥ is DFT, * is a circular convolution, ‘W and B are the
complex number weight and bias, and W and B are the weight and
bias in the spatial domain.

ProoF. Suppose that we conduct operations in the N (i.e., token
dimension), then

F(H(0) « W(0)) = /

—00

[

(H(v) * W(0))e 72 ?dy  (6)

According to convolution theorem, H(v) * W (v) = /_o; (H(t)W (v—
7)) dr, then

F(H(v) * W(0)) = /_ ” /_ M(H(T)W(U—T))e_jz”f Ydrdo

) /_: /_ : W (o - 1)e /27 QoH(7) dr )

Let x = v — r,then

F (H(v) * W(v))

/ / W (x)e /27 (X+7) 4xH(7) dr

/ / W (x)e /27 *e=127fT 4xH (1) dr

B /oo (H(z)%)e /21T dT_/oo (W (x)#)e /2% dx

=H(OHW(S)

®)
Accordingly, H(v)*W (v) in the spatial domain is equal to H () W (f)
in the frequency domain. Therefore, the operations of FreMLP
(HW + B) in the token dimension (i.e., v = N ) are equal to the
operations (¥ (H * W + B)) in the spatial domain. This implies that
frequency-domain MLPs can be viewed as global convolutions in
the spatial domain. Proved. O

D.3 Complexity Analysis

For a fMRI voxel with a length of I, we divide it into n patches.
Assuming L; and Ly are the layer depths of MLP Backbone and
DFT Backbone respectively, the middle layer dimension of MLP
Backbone is D, and the alignment embedding dimension is n” x D’,
where n’ is the the number of tokens of CLIP. The time complexity
of MLP Backbone is O(ID + L1D? + n’DD’). For DFT Backobone,
the time complexity of patchify and tokenization is O(ID’), and
the time complexity of DFT, IDFT, and filtering for each layer is
O(2nD’ log n+nD’). The time complexity of FreMLP is O(2nD’ log n+
2nn’D’ + 2n’D’). Thus the time complexity of the entire DFT Back-
bone is:
O(4nD’ logn + (n+2nn" +2n")D’)
=O((nlogn+nn" +n")D’") ©)

Quantitative analysis algorithm complexity for DFT Backbone

has been shown in Table 3.
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Acc = 0.0% Acc = 8.8% Acc = 16.8%

Figure 13: T-SNE visualization between the voxel embeddings output by DFT Backbone and the image embedding of frozen
CLIP. Accuracy in the title refers to the hit rate of correct retrieval from 982 test set images and the blue dots represent voxel
embeddings.
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