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A TRAINING DETAILS

For all models, we trained all models using Standard scaler, Adam optimizer Kingma & Ba (2015)
with β1 = 0.9 and β2 = 0.999, a batch size of 16, and a constant learning rate of 0.0001 for all settings.
We used the length of input sequence Lin as 100 for all settings. Also, we conducted experiments
varying the length of output sequence Lout from 100 to 400. Regarding the coefficients λF and λR,
we set them to 1.0 for all datasets. For λE and λC in the loss, we used 0.1 for MSL and 1.0 for
others. For Synthetic Anomaly Prompting, we adopted the length of anomaly prompts Lz and the
size of anomaly prompt pool 5 and 10 respectively as default. In the selection of top-N anomaly
prompts in anomaly prompt pool, we used N = 3. We trained the models for 5 epochs, with 3 layers
of transformer backbone, and the embedding dimension D is fixed to 256. Also, our experiments
were executed on single GPU (NVIDIA RTX 3090), implementation library (PyTorch Paszke et al.
(2019)) for fair and exhaustive comparison. Regarding the anomaly detection model for Anomaly
Prediction, we set the window size of 100, and used sliced predicted signals for obtaining the output
of anomaly detection for experiments including all comparing methods.

B ANALYSIS ON DETECTING FUTURE ANOMALIES

Figure 5: The anomaly score of the baseline, which is a naive
combination of Patch-TST and Anomaly Transformer (top), and
our proposed A2P (down) in MBA dataset.

To further investigate the effectiveness
of our proposed A2P, we examined the
anomaly scores of predicted signals,
in which the time steps with higher
anomaly scores are considered more
likely to be anomalies. As shown in
Figure 5, A2P exceeds in Anomaly
Prediction with much higher anomaly
scores in ground-truth anomaly time
points depicted as red area, while our
baseline, which is a naive combination
of Patch-TST and Anomaly Trans-
former fails at Anomaly Prediction.

C HYPERPARAMETERS.

Hyperparameter Sensitivity. To fig-
ure out the effect of various hyperpa-
rameters used in A2P, we examined
the F1-Scores varying each hyperpa-
rameters as shown in Figure 6 . We conducted experiments on various λ from 0.1 to 0.9 with
especially λIntra and λInter, which are used to weigh each loss term in the objective function.
Our proposed model A2P showed stable performance across various values of λ. Regarding the
hyperparameters of Synthetic Anomaly Prompting, we examined the effect of various values of N
for the number of anomaly pool, pool size, and Lz which is the length of a anomaly prompt. While
our proposed A2P achieved the stable performance for N and Lz for three datasets, pool size of
the anomaly prompt pool affects the performance. Specifically, the F1-Score on MBA degrades
with bigger pool size, indicating that the selection of appropriate pool size considering the size of
the dataset is needed to fully leverage the effectiveness of SAP. We also examined the influence of
nhAFFN which is the number of heads in Anomaly-Aware Forecasting Network. As shown in the
last plot of Figure 6, our proposed A2P performs robustly.
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Figure 6: The results on various hyperparameter values.
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