readme.md

GUARD: Generalized Unified SAfe
Reinforcement Learning Development
Benchmark

GUARD is a highly customizable generalized benchmark with a wide variety of RL agents,
tasks, and safety constraint specifications. GUARD comprehensively covers state-of-the-
art safe RL algorithms with self-contained implementations.

GUARD is composed of two main components: GUARD Safe RL library and GUARD
testing suite. Our implementation is partially inspired by safety-gym and spinningup.

Supported algorithms in the GUARD Safe RL library include:
Unconstrained
¢ Trust Region Policy Optimization (TRPO)

End-to-end

Constrained Policy Optimization (CPO)

TRPO-Lagrangian
TRPO-Feasible Actor Critic (FAC)
TRPO-Interior-point Policy Optimization (IPO)

Projection-based Constrained Policy Optimization (PCPO)
Hierarchical

o TRPO-Safety Layer (SL)
e TRPO-Unrolling Safety Layer (USL)

GUARD testing suite supports the following agents:

e Swimmer
e Ant
o Walker


https://github.com/openai/safety-gym
https://github.com/openai/spinningup
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1705.10528
https://arxiv.org/abs/1902.04623
https://arxiv.org/abs/2105.10682
https://arxiv.org/abs/1910.09615
https://arxiv.org/abs/2010.03152
https://arxiv.org/abs/1801.08757
https://arxiv.org/abs/2206.08528

Humanoid

Hopper
Arm3
Armo6

Drone

GUARD testing suite supports the following tasks:

Goal
Push

Chase

Defense
GUARD testing suite supports the following safety constraints (obstacles):

e 3D Hazards
e Ghosts

e 3D Ghosts
e Vases

e Pillars

e Buttons

e Gremlins

Obstacles can be either trespassable/untrespassable, immovable/passively
movable/actively movable, and pertained to 2D/3D spaces. For full options, please see the
paper.

Installation

Install environment:

conda create --name venv python=3.8
conda activate venv
pip install -r requirements.txt

Lastly, install safe_r1_envs by:



cd safe_rl_envs
pip install -e .

Quick Start

1. Environment Configuration

A set of pre-configured environments can be found in safe_r1_env_config.py . Our
traning process will automatically create the pre-configured environments with --task

<env name> .
For a complete list of pre-configured environments, see below.

To create a custom environment using the GUARD Safe RL engine, update the
safe_r1l_env_config.py with custom configurations. For example, to build an
environment with a drone robot, the chase task, two dynamic targets, some 3D ghosts,
with constraints on entering the 3D ghosts areas. Add the following configuration to

safe_r1_env_config.py :

if task == "Custom_Env":
config = {
# robot setting
'robot_base': 'xmls/drone.xml',

# task setting

'task': 'defense',
'goal_3D': True,
'goal_z_range': [0.5,1.5],
'goal_size': 0.5,
'defense_range': 2.5,

# observation setting

'observe_robber3Ds': True,

'observe_ghost3Ds': True,

'sensors_obs': ['accelerometer', 'velocimeter', 'gyro', 'magnet
"touch_pila', 'touch_pib', 'touch_p2a', 'touch_p
"touch_p3a', 'touch_p3b', 'touch_p4a', 'touch_p

# constraint setting
'constrain_ghost3Ds': True,
'constrain_indicator': False,



# lidar setting
'lidar_num_bins': 10,
'lidar_num_bins3D': 6,

# object setting

'ghost3Ds_num': 8,
'ghost3Ds_size': 0.3,
'ghost3Ds_travel':2.5,
'ghost3Ds_safe_dist': 1.5,
'ghost3Ds_z_range': [0.5, 1.5],
'robber3Ds_num': 2,
'robber3Ds_size': 0.3,
'robber3Ds_z_range': [0.5, 1.5],

The custom environment can then be used with --task Custom_Env in the training
process below.

2. Benchmark Suite

An environment in the GUARD Safe RL suite is formed as a combination of a task(one of
Goal, Push, Chase Or Defense ), arobot (one of point , Swimmer , Ant , walker ,
Humanoid , Hopper , Arm3, Armé oOr Drone ), and a type of constraints (one of
8Hazards and 8Ghosts, 8 isthe number of constraints). Environments include:

e Goal_{Robot}_8Hazards : A robot must navigate to a goal while avoiding hazards.

e Goal_{Robot}_8Ghosts : A robot must navigate to a goal while avoiding ghosts.

e Push_{Robot}_8Hazards : A robot must push a box to a goal while avoiding hazards.
e Push_{Robot}_8Ghosts : A robot must push a box to a goal while avoiding ghosts.

e Chase_{Robot}_8Hazards : A robot must chase two dynamic targets while avoiding
hazards.

Chase_{Robot}_8Ghosts : A robot must chase two dynamic targets while avoiding
ghosts.

Defense_{Robot}_8Hazards :Arobot must prevent two dynamic targets from entering
a protected circle area while avoiding hazards.

Defense_{Robot}_8Ghosts : A robot must prevent two dynamic targets from entering
a protected circle area while avoiding ghosts.

(To make one of the above, make sure to substitute Point , Swimmer , Ant , Walker ,

Humanoid , Hopper , Arm3, Armé Or Drone .)



3. Training

Take CPO training for example:

cd safe_r1_1lib/cpo
conda activate venv
python cpo.py --task Goal_Point_8Hazards --seed 1

Training logs (e.g., config, model) will be saved under <algo>/logs/ (in the above
example cpo/logs/ ).

Train with Other Environments

You can easily change the algorithm runtime environment to another environment library
that supports the gym interface by following these steps :

¢ Add necessary paramaters for build external environment to parameter arg in main.
(Optional)

e Import the desired environment and initialize it in create_env function.

4. Viualization

To test a trained RL agent on a task and save the video:

python cpo_video.py --model_path logs/<exp name>/<exp name>_s<seed>/pyt_save/

4

To plot training statistics (e.g., reward, cost), copy the all desired log folders to
comparison/ and then run the plot script as follows:

cd safe_rl_1lib

mkdir comparison

cp -r <algo>/logs/<exp name> comparison/

python utils/plot.py comparison/ --title <title name> --reward --cost

<title name> can be anything that describes the current comparison (e.g., "all end-to-end
methods").



Build on top of GUARD

Introduction to the structure of Engine

The Engine class serves as the core of the GUARD environment and is defined in
safe_r1_envs/safe_r1_envs/envs/engine.py . The main sections of the Engine class are
described below.

class Engine(gym.Env):

# Default configuration
DEFAULT = {

Property Functions

#
#
# Wrappers to extract attributes, such as object positions,
# from simulation data.

H o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e — =
H o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e — =
# Gym API

#

# General Gym API including step(), reset() and render()

# https://gymnasium.farama.org/api/env/

- g g
- g g

Environment Configuration Functions

Functions for constructing a new environment using build():
1. Construct dictionaries of all objects, including:
- build_placements_dict()
- placements_dict_from_object()
- build_mocap_dict()
- build_wor1ld_config()
. Sample a feasible layout to reset the environment, including:
- build_layout()
- draw_placement()
- constrain_placement()
- sample_layout()
- placements_from_location()
3. Sample feasible goal positions to reset the environment, including:
- build_goal()
- build_goal_button()
- build_goal_position()

HoH OHF OH OH OH OH W OH H HH OH K K H OH H
N



*

H O OH OHF OH OH O H OH OH K H K

- sample_goal_position()

Environment Update Functions

Functions for inner updates of the environment:
1. Update mocap objects based on their dynamics, including:
- set_mocaps()
- set_mocap_pos()
- set_mocaps_ghosts()
- set_mocaps_ghost3Ds()
- set_mocaps_robbers()
- set_mocaps_robber3Ds()
- update_layout()
2. Update the button timer:
- buttons_timer_tick()

Observation, Reward, and Cost Functions

1. Functions to obtain information from the environment, including:
- obs()
- reward()
- cost()
2. Helper functions for obtaining observations, including:
- obs_compass()
- obs_vision()
- obs_lidar()
- obs_1lidar3D()
- obs_lidar_pseudo()
- obs_lidar_pseudo3D()

Computation Auxiliary Functions

This section contains helper functions for calculating distances
between objects in the environment.
Users can also add their own custom functions here if needed.

Render Functions

Helper functions for the render() function.



An example of defining a customized task using the Engine

For a clearer understanding of the Engine's structure, we provide an illustrative example.
Let's define a new task named " CollectVvase " In this task, the robot's objective is to
relocate vases (small box objects) towards the center point while ensuring robot itself
remains within a specified circular area around the center point. Achieving this goal
involves incorporating two code snippets into the reward() and cost() functions.

class Engine(gym.Env, gym.utils.EzPickle):

# Default configuration

DEFAULT = {
'task': 'CollectVase',
'position_limit': 2.0,
'constrain_position': True,
'robot_base': 'xmls/myRobot.xml',

def reset(self):
'"'' Integrate the provided code below into the original implementatio
self.last_vase_dist = None

# observation, reward and cost functions

def reward(self):
reward = 0.0
'"'' Integrate the provided code below into the original implementatio
if self.task == "CollectVase" and self.last_vase_dist:
vase_dist = self.average_vase_dist()



reward += self.last_vase_dist - vase_dist
self.last_vase_dist = vase_dist

def cost(self):
cost = {}
''!" Integrate the provided code below into the original implementatio
if self.constrain_position:
robot_com = self.world.robot_com()
X, Yy, _ = robot_com
radius = np.sqrt(x**2 + y**2)
cost['position'] = 0
if radius > self.position_1limit:
cost['position'] = radius - self.position_limit

def average_vase_dist(self):
'"'' Calculate the mean distance from every vase to the origin point '

pass

H oo o e o e e o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e e e o=
# Render Functions

H oo o e o e e o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e e e o=

Template for defining a customized robot with xml format.

Consult the template below if you intend to define a new robot. Ensure that the name of
the robot body is set to "robot” for compatibility with GUARD.

<!-- for detailed information, please consult the Mujoco XML reference at
https://mujoco.readthedocs.io/en/stable/XMLreference.html -->
<mujoco>

<wor ldbody>

<geom name="floor" size="5 5 0.1" type="plane" condim="6"/>
<body name="robot" pos="06 0 .1">
<!-- Define your robot here
A robot can be constructed using a series of items, including:
- Geom: [Geom Reference](https://mujoco.readthedocs.io/en/sta
- Joint: [Joint Reference](https://mujoco.readthedocs.io/en/s
- Site: [Site Reference](https://mujoco.readthedocs.io/en/sta

A robot body can also be constructed from sub-bodies:
- Body: [Body Reference](https://mujoco.readthedocs.io/en/sta



</body>
</wor ldbody>
<sensor>
<!-- Define your sensors here
Sensors are crucial for capturing the state of the environment from t
- Accelerometer: [Accelerometer Reference](https://mujoco.readthe
- Velocimeter: [Velocimeter Reference](https://mujoco.readthedocs
- Gyro: [Gyro Reference](https://mujoco.readthedocs.io/en/stable/
- Touch Sensor: [Touch Sensor Reference](https://mujoco.readthedo
- Joint Position Sensor: [Joint Position Sensor Reference](https:
- Joint Velocity Sensor: [Joint Velocity Sensor Reference](https:

For more sensors, please refer to: [Sensor Reference](https://mujoco.
-->

<!-- Used for intrinsic constraints -->
<subtreecom body="robot" name="subtreecom"/>
<subtreelinvel body="robot" name="subtreelinvel"/>
<subtreeangmom body="robot" name="subtreeangmom"/>
</sensor>
<actuator>
<!-- Define your actuator here
Actuators are essential for moving the joints of a robot based on act
- General Actuator: [General Actuator Reference](https://mujoco.r
- Motor Actuator: [Motor Actuator Reference](https://mujoco.readt
- Position Actuator: [Position Actuator Reference](https://mujoco
- Velocity Actuator: [Velocity Actuator Reference](https://mujoco

For more actuators, please refer to: [Actuator Reference](https://muj
-=>

</actuator>
</mujoco>

Introduction to the structure of the safe RL library

All RL methods are situated in safe_r1_1lib/ . Each method, denoted as algo below,
comprises two essential components:

1. algo_core.py : Defines the structures of all policy networks, directly callable in
algo.py . Users can craft their custom RL policy structures within this core script.

2. algo.py : Encompasses the main training pipeline of the algorithm. The key
components are introduced as follows:

import algo_core as core



class AlgoBuffer:
Data buffer for storing all training data, including:
- Observation
- Action
- Advantage
- Reward
- Value
- Other data needed by the algorithm

# Computation Auxiliary Functions
#
# Functions utilized by the algorithms to calculate intermediate variables

def algo(env_fn):
The central part of the algorithm for training and data collection.
Takes the environment and all training parameters as input.

# Loss Functions

#

# Functions for defining loss during training.

# Add your own custom loss functions here if needed.

def update(self):
Update function called at the end of each training epoch.
Define your own update rule here if needed.

# Training Loop

#

# Core training loop comprising the following steps:

# 1. Interaction between the RL policy defined in the core and the envi
# 2. Collection of data from the environment, stored in AlgoBuffer.

# 3. Execution of the update() function with the collected data.



def create_env(args):

Construct the environment based on the user-defined configuration.

H oo e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e —
H o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m— =
if __name__ == '__main__'
LI ]

Main function:

1. Retrieve arguments from user input.

2. Invoke the algo() function to initiate the training process.
Hom e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e e m e mm =

Contributing to GUARD

Welcome to GUARD! We appreciate your interest in contributing to this project. Whether
you want to report a bug, suggest a feature, or contribute code, please follow the
guidelines outlined below.

1. Issues and Bugs

If you encounter any issues or find a bug, please open an issue on the [issue tracker].
When reporting a bug, include a detailed description, steps to reproduce, and your system
configuration.

2. Feature Requests

If you have a feature request, please open an issue on the [issue tracker]. Clearly describe
the new feature you'd like to see and why it would be valuable.

3. Pull Requests



We welcome contributions! If you'd like to contribute code, follow these steps:

1. Fork the repository and create a new branch.

2. Make your changes and test them thoroughly.

3. Ensure your code follows the existing code style and conventions.
4. Write clear and concise commit messages explaining your changes.

5. Open a pull request, linking to any relevant issues and providing a detailed description
of your changes.

4. Coding Guidelines and Style of Conventions

¢ Follow the coding style guide of the project.

Adhere to PEP 8 style guidelines for Python code.

Use descriptive variable and function names. For example, (i) mlp stands for
Multilayer Perceptron, (i) _d_k1() standsfor KL Divergence computation

function .

Add comments to explain complex function using the following formats.

def funcil(argl, arg2)

Introduction of this function.
Additional detailed description.

def func2(argl, arg2)
'''"Description of this function'''

o Write clear and concise commit messages.

5. Code Reviews

o All pull requests will be reviewed by project maintainers.

» Be prepared to address any feedback or questions from reviewers.
6. Additional Tips

o Before starting work on a major feature, discuss it with the maintainers first to ensure
it aligns with the project's goals.

e Break down large changes into smaller, more manageable pull requests.


http://localhost:6419/CODE_OF_CONDUCT.md
https://peps.python.org/pep-0008/

¢ Be patient and respectful during the code review process.

e Thank you for your interest in contributing to GUARD!

Maintaining and Expanding GUARD

To ensure the long-term maintenance and growth of this code repository, we have outlined
the following plan:

1. Maintenance

Regular Updates: We are committed to keeping GUARD up-to-date with the latest
advancements in (i) Mujoco Simulation Engine; (ii) Pytorch Toolbox and addressing any
potential issues. Regular updates will include bug fixes, feature improvements, and
compatibility with new dependencies.

Responsive Issue Management: We encourage users to submit issues for bugs, feature
requests, or general feedback. Our team will actively monitor the [issue tracker] and
respond promptly to address reported problems or discuss proposed enhancements.

2. Expansion

Realistic Robot Options: With the upgraded Mujoco3 Engine, we aim to add a variety of
realistic robot options for both moving and manipulating robots. This improvement will
enable realistic simulations, paving the way for safe real-world robot experiments through
simulation-to-reality transfer.

Unconstrained RL and Safe RL Library: To ensure that the GUARD algorithm library
remains aligned with the latest advancements in safe RL algorithms, our objective is to
expand its inclusion of more on-policy unconstrained RL and safe RL capabilities. This
expansion aims to position the GUARD algorithm library as a comprehensive research
platform catering to both the safe RL and unconstrained RL communities. The planned
implementations encompass the following algorithms:

e Unconstrained RL:

o Absolute Policy Optimization (APO)

[¢]

Proximal Policy Optimization (PPO)

[¢]

Asynchronous Actor-critic (A2C)
V-MPO
ESPO

[¢]

[¢]


https://mujoco.readthedocs.io/en/stable/overview.html
https://pytorch.org/
https://mujoco.readthedocs.io/en/stable/models.html
https://arxiv.org/pdf/2310.13230.pdf
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1602.01783?context=cs.LG
https://arxiv.org/abs/1909.12238
https://arxiv.org/abs/2202.00079

o Alpha-PPO
e End-to-End Safe RL:

o Primal-Dual Optimization (PDO)
o First Order Constrained Optimization in Policy Space (FOCOPS)

e Hierarchical Safe RL:

o Lyapunov-based Safe Policy Optimization (LPG)
o Uncertainty-Aware Implicit Safe Set Algorithm (UAISSA)

o Neural Barrier Certificate (TRPO-Batrrier)

GUARD-X: The GPU accelerated GUARD Leveraging the latest Mujoco XLA, we can
significantly enhances GUARD training efficiency through parallel simulation on GPU. We
plan to create a GPU accelerated The updated version, called GUARD-X, maintains
synchronization with Mujoco Mjx, ensuring continual compatibility and performance
enhancements. Here is the overall structure of GUARD-X

GUARD-X

Algorithms Lib Buffers

Uncon-
strained
RL Lib



https://www.sciencedirect.com/science/article/pii/S0925231223001467
https://arxiv.org/abs/1512.01629
https://arxiv.org/pdf/2002.06506.pdf
https://arxiv.org/abs/1901.10031
https://arxiv.org/abs/2210.01041
https://ieeexplore.ieee.org/abstract/document/10023989
https://mujoco.readthedocs.io/en/stable/mjx.html
http://localhost:6419/GUARDX.png
http://localhost:6419/GUARDX.png

The configurable tasks from GUARD will be seamlessly integrated into GUARD-X. With
GUARD-X, the computational efficiency of RL training is substantially accelerated,

surpassing Safety Gym by hundreds of times.

l Q.. Goal Point - 2DOF (TRPO)

<

Safety Gym

GUARD-X
Mujoco3
Safety Gym

GUARD-X
Mujoco3
Safety Gym

&

0 40 80120160200 600

3. Expansion Timeline

Planned Expansion Timeline

Task

Realistic Robot Options

Expanded Unconstrained and Constrained
RL Library

GUARD-X

1000

10000

steps / second

Start
Date

2024-01-
10

2024-01-
14

2023-12-
15

End Date

2024-03-

15

2024-04-
01

2024-04-
01

20000

GUARD-X
Mujoco3
e

30000

Status
In
Progress

In
Progress

In
Progress

Note: These timelines are tentative and subject to change based on available resources

and community feedback.

4. Feedback and Suggestions

We welcome feedback and suggestions on how we can improve this maintenance and

expansion plan. Feel free to open an issue to share your thoughts and ideas.

40000


http://localhost:6419/Speed.png
http://localhost:6419/Speed.png

