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Figure 1: IoU of our DCSS model with a different number of channels and standard or separable
convolution. (a) shows the achieved IoU while (b) compares models’ size. The Blue cross shows the
chosen setting for DCSS.

A Ablation study

Head size We tested a range of configurations to choose an optimal size and configuration for the
HEAD. In particular, DCSS with a HEAD with 256, 1024, 2048 or 4096 channels, with or without the
depthwise separable convolution. Figure [A]shows a plotted graph of the results. The larger number
of channels increases the performance, with the gains diminishing with more than 2048 channels.
HEAD with a separable convolution achieves worse results across all sizes, conforming that we lose
some performance when compressing convolution blocks. The model parameter count in Figure [A]
tells the other side of the story. Increasing the number of channels increases the size exponentially,
undermining the use of a very large HEAD. However, we can recuperate some of the performance
with the separable convolution. DCSS with 2048 channels and separable convolution, marked with a
blue cross in the figures, achieves the best ratio of performance and efficiency and thus was used for
all remaining experiments.

Dropout probability We have also experimented with the Dropout probability during the continual
steps. Since regularisation helps us learn better and more reliable feature representation, its importance
is lessened with frozen parameters. Results in Table[I] prove that we can achieve better results with no
Dropout at steps ¢ > 1. By training just one final classifier layer at ¢, we are essentially learning the
mapping of features to final probabilities, which in our understanding, does not benefit from Dropout.
Therefore, all results reported for DCSS use DROPOUT1D with p = 0.3 at step ¢ = 1 and probability
p = 0 in continual steps ¢ > 1.

Table 1: Comparison of the Dropout strategies. (left) Removing Dropout for continual steps
improves the performance of new tasks. (right) ScheduledDropout helps to learn better features while
eventually still offering the benefits of Dropout.

Dropout p at step ¢ VOC 15-1 (6 tasks) VOC 15-1 (6 tasks)

t=1 t>1 0-15 16-20 all ScheduledDropout 0-15 16-20 all
0.3 0.3 76.90 40.92 68.31 v 77.66 42.69 69.33
0.3 0.1 77.14 4145 68.65 X 77.54 39.60 68.50
0.3 0.0 77.66 42.69 69.33 - - - -

Scheduled Dropout Although Dropout maintains more features for online learning, the increased
entropy of the output features can cause problems with proper learning. Therefore, we have tested
the use of ScheduledDropout [4], where the probability increases linearly from 0 to p during training.
Table|l|proves that ScheduledDropout improves the IoU by almost 1%, despite using the simplest,
linear scheduling of the Dropout. Therefore we conclude that the optimal introduction of the
regularisation can have a decisive effect on its success.
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Table 2: Ablation study for the weight decay and weight transfer. (left) Increasing the weight
decay decreases performance for new classes. (right) Impact of the weight transfer for the new
classifier’s parameters at step .

VOC 15-1 (6 tasks) VOC 15-1 (6 tasks)
Decay A 0-15 16-20 all Weight transfer 0-15 16-20 all
Lo 0.0001 77.66 42.69 69.33 Random — ¢! 77.66 42.69 69.33
lo 0.0005 77.43 38.74 68.21 fu_l — ¢t 77.58 40.89 68.84
1) 0.001 75.72 33.66 65.70 - - - -

Weight decay DCSS uses a standard SGD optimiser with a momentum of 0.9 and ¢» weight decay
of 0.0001, as in DeepLabV3 [2]]. Inspired by Dropout’s promising regularisation results, we tested an
increase in the weight decay A parameter. Results in Table [2) show that any increase from the original
value of 0.0001 used in most semantic segmentation models decreases performance, especially in
the ability to learn new classes, while old classes learned in the offline step were mainly unaffected.
Therefore, we must wisely choose the regularisation technique to achieve a sparse and feature-rich
representation.

Weight transfer SSUL relies heavily on the weight transfer from the unknown class c;, ¢~ to each
of current classes C*. Weight initialisation to the foreground predictor’s weights assumes that the
classifier is more or less ready from the get-go to recognise new classes. In the context of the reduced
set of trainable parameters in DCSS, we found that weight transfer is unnecessary and might prevent
the model from finding an optimal solution. Table [2] shows that random initialisation outperforms
weight transfer from both the background class and the unknown class.

B Additional experimental results

We have also carried additional experiments as introduced by Cha et al. [I]], shown in Table[3] DCSS
performs slightly worse in 2-1 and 2-2 scenario. The shared HEAD module of DCSS means that we
only have a single 1 x 1 trainable vector per class. In these extreme scenarios, the frozen encoder
does not contain enough information and can benefit from the additional trainable layer of SSUL.
We conclude that the number of initial classes used for offline training plays a crucial role in further
offline training.

Table 3: IoU results on the more extreme scenarios with low initial number of classes. DCSS
struggles if the frozen model was trained only on a few classes.

VOC 10-1 (11 tasks) VOC 5-1 (16 tasks) VOC 2-1 (19 tasks) VOC 2-2 (10 tasks)

Method 0-10  11-20 all 0-5 6-20 all 0-2 3-20 all 0-2 3-20 all
PLOP [3] | 44.03 1551 3045 | 0.12 9.00 6.46 0.01 5.22 447 | 2405 1192 13.66
SSUL [1] | 71.31 4598 59.25 | 69.32 4038 48.65 | 62.35 34.32 3832 | 6238 4246 45.31
DCSS (ours) | 73.34  50.20 62.32 | 70.22 4059 49.05 | 61.06 32.60 36.67 | 56.94 4136 43.59

B.1 Per-class performance

Table @] shows the summarized results of DCSS model on the PASCAL VOC dataset by each class.

Table 4: IoU performance per task per class of our DCSS model on the PASCAL VOC dataset.

bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike personplant sheep sofa train tv all

10-1 (11 tasks) | 88.76 83.91 38.36 88.48 65.01 79.16 87.63 88.08 85.94 33.34 68.05 29.83 70.31 46.79 73.45 79.43 27.85 53.63 24.66 47.80 48.22|62.32
15-1 (6 tasks) | 90.54 88.97 37.15 89.05 70.35 81.02 86.78 88.38 94.17 35.71 80.14 56.00 89.86 84.27 84.66 85.41 30.98 58.78 25.15 55.97 42.59|69.33
5-3 (6 tasks) |87.75 76.87 32.98 83.85 54.33 72.79 53.00 71.94 73.18 10.94 49.95 24.15 65.78 47.90 67.00 77.42 24.84 54.23 21.15 48.31 42.76|54.34
19-1 (2 tasks) |92.63 89.36 39.67 89.05 73.74 80.75 92.23 87.17 92.01 40.42 84.27 57.49 90.49 83.64 85.65 84.82 58.85 83.04 51.11 87.99 36.85|75.30
15-5 (2 tasks) | 91.01 86.45 39.14 88.22 68.61 79.07 93.03 86.97 92.31 34.85 79.66 57.84 89.49 83.01 85.46 84.81 35.14 64.54 30.73 74.29 52.74|71.30
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