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This supplementary is organized as follows:

S.1

e Sec. S.1 contains a synthetic overview of various works in interpretability w.r.t FLINT.

e Sec. S.2 contains details and additional experiments regarding interpretability by-design

models.

e Sec. S.3 contains details and additional experiments regarding post-hoc interpretations

generated using FLINT.

e Sec. S.4 discusses the limitations of our proposed method.

e Sec. S.5 discusses the potential negative societal impact.

Overview of related works

To recap the properties of the methods exposed in Sec. 2 (main paper), we provide in Tab. [T|a synthetic
view of the major properties of interpretable methods along three aspects. Type denotes if the method
implements post-hoc interpretations for a trained model or interpretable models by-design). Scope
reflects the ability of the approach to provide interpretation of decisions for individual samples (Local)
or to understand the model as a whole (Global). Means denotes the units in which the interpretations
are generated. Categories include raw input features, a simplified representation of input, logical
rules, prototypes, high-level concepts.

System Means Type Scope
LIME, SHAP Simplified input Post-hoc  Local+Global
Gradient based Raw input Post-hoc Local
VIBI, L2X Raw input Post-hoc Local
Anchors Logical rules Post-hoc Local
ICNN Raw input By-design Local
INVASE Raw input By-design Local
CEN, GAME Simplified input By-design Local
PrototypeDNN Prototypes By-design Local
CAV-based Concepts (External)  Post-hoc  Local+Global
SENN Concepts (Learnt)  By-design Local
FLINT Concepts (Learnt) Both Local+Global

Table 1: Various interpretability systems and their properties.

o LIME, SHAP: Local Interpretable Model-agnostic Explanations [17]], SHapley Additive

exPlanations [[14].

e VIBI, L2X: Variational Information Bottleneck for Interpretation [3]], Learning to Explain

[4].

o ICNN: Interpretable CNN [23]].

o INVASE: Instance-Wise Variable Selection using Neural Networks [22].

e CEN, GAME: Contextual Explanation Networks [1l], Game-theoretic transparency|[/12]].

e PrototypeDNN: [13].

e Anchors: [18].

o CAV-based: Testing with Concept Activation Vectors (TCAV) [8], Towards Automatic

Concept-based Explanations (ACE) [3]], ConceptSHAP [21]].

o SENN: Self Explaining Neural Networks [2].

S.2 Interpretability by design: Additional information and experiments

We cover all the implementation details in Sec. [S.2.1] including network architectures, choice of
hyperparameters, optimization procedures, resource consumption. Experiments on CIFAR100 and
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Figure 1: Architecture of networks based on LeNet [11]]. Conv (a, b, ¢, d) and TrConv (a, b, c, d)
denote a convolutional, transposed convolutional layer respectively with number of input maps a,
number of output maps b, kernel size ¢ x c and stride size d. FC(a, b) denotes a fully-connected layer
with number of input neurons a and output neurons b. MaxPool(a, a) denotes window size a x a for
the max operation. AvgPool(a, a) denotes the output shape a x a for each input map

CUB-200 are detailed in Sec.[S.2.2| Additional analysis including ablation studies and visualizations
for attributes are available in We also present other useful tools for analysis in Sec.[S.2.4]
Baseline implementations are discussed in Sec. [S.2.5] Details about the subjective evaluation,
including the form link are available in Sec. [S.2.6] Note that the experiments with ACE are deferred

to Sec.[S.3.3]

S.2.1 Implementation details

S.2.1.1 Network architectures

Predictor Fig.[T] and [2] depict the architectures used for experiments with predictor architecture
based on LeNet [[11] (on MNIST, Fashion-MNIST) and ResNet18 (on CIFAR10, QuickDraw) [7]]
respectively.

Interpreter The architecture of interpreter g = h o ® and decoder d for MNIST, FashionMNIST
are shown in Fig. [T} Corresponding architectures for QuickDraw are in Fig. 2] For CIFAR-10,
the interpreter architecture is almost exactly the same as QuickDraw, with only difference being
output layer for ®(z), which contains 36 attributes instead of 24. The decoder d also contains
corresponding changes to input and output FC layers, with 36 dimensional input in first FC layer and
3072 dimensional output in last FC layer.

The choice of selection of intermediate layers is an interesting part of designing the interpreter. In
case of LeNet, we select the output of final convolutional layer. For ResNet, while we tend to select
the intermediate layers from the latter convolutional layers, we do not select the last convolutional
block (CBlock 8) output. This is mainly because empirically, when selecting the output of CBlock 8,
the attributes were trivially learnt, with only one attribute activating for any sample and attributes
exclusively activating for a single class. The hyperparameters are much harder to tune to avoid
this scenario. Thus we selected two outputs from CBlock 6, CBlock 7 as intermediate layers. The
layers in the interpreter itself were chosen fairly straightforwardly with 1-2 conv layers followed by a
pooling and fully-connected layer.
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Figure 2: Architecture of networks for experiments on QuickDraw with network based on ResNet
[7]. Conv (a, b, c, d) and TrConv (a, b, ¢, d) denote a convolutional, transposed convolutional layer
respectively with number of input maps a, number of output maps b, kernel size ¢ x c and stride size
d. FC(a, b) denotes a fully-connected layer with number of input neurons a and output neurons b.
AvgPool(a, a) denotes the output shape a x a for each input map. Notation for CBlock is explained
in the figure.

S.2.1.2 QuickDraw subset and pre-processing

QuickDraw. We created a subset of QuickDraw from the original dataset [6]], by selecting 10000
random images from each of 10 classes: *Ant’, *’Apple’, Banana’, *Carrot’, ’Cat’, ’Cow’, "Dog’,
’Frog’, *Grapes’, ’Lion’. We randomly divide each class into 8000 training and 2000 test images.

Input pre-processing. For MNIST, FashionMNIST and QuickDraw, we use the default images
with pixel values in range [0, 1]. No data augmentation is performed. For CIFAR-10 we apply the
most common mean and standard deviation normalization. The training data is generated by randomly
cropping a 32 x 32 x 3 image after padding the original images by zeros (size of padding is 2).

S.2.1.3 Hyperparameter settings

Variable MNIST FashionM CIFARIO QuickDraw
Nepocn — Number of training epochs 12 12 25 12
B — Weight for L, s 0.5 0.5 0.6 0.1
~ — Weight for L; ¢ 0.8 0.8 2.0 5.0
0 — Weight for L.q 0.2 0.2 0.2 0.1
7 — Relative strength of ¢1-regularization 0.5 0.5 1.0 3.0

Table 2: Hyperparameters for FLINT
Tab. 2| reports the setting of our hyperparameters for different datasets. We briefly discuss here our
method to tune the different weights.

We varied v between 0.8 to 20 for all datasets, and stopped at a value for which the £,y loss seemed to
optimize well (value dropped by at least 50% compared to the start). For MNIST and FashionMNIST,



n=1 n=2 n=3 n=>5
no entropy 92.7 90.4 91.2 84.2

with entropy ~ 91.2 90.7 90.8 82.9
Table 3: Fidelity (in %) variation for 5 and entropy losses for QuickDraw. § = 0.1 is fixed

the first value, 0.8 worked well. For the others, v needed to be increased so that the autoencoder
worked well. Too high « might result in failed optimization due to exploding gradients.

The variation of 3 was based on two indicators: (i) The system achieves high fidelity, for eg. at least
90%, so too small 3 can’t be chosen, (ii) For high 3, the attributes become class-exclusive with only
one attribute activating for a sample and result in high £;;. Thus, 3 was varied to get high fidelity
and avoiding second scenario. 3 = 0.5 worked well for MNIST, FashionMNIST. For QuickDraw, we
needed to decrease 3 because of second scenario.

The system is fairly robust to choice of §, 7. Too high ¢; regularization results in loss of fidelity
(Tab. [3). These values were mostly heuristically chosen, and small changes to them do not cause
much difference to training. We kept the effect of entropy low for ResNet because of its very deep
architecture and high computational capacity of intermediate layers which can easily sway attributes
to be class-exclusive.

S.2.1.4 AM-+PI procedure
In our case this optimization problem for an attribute j is:

arg max Ap0; () — Ay TV(2) — ApoBo(x)

where TV (x) denotes total variation of « and Bo(z) promotes boundedness of « in a range. We fix
parameters for AM+PI for MNIST, FashionMNIST, QuickDraw as Ay = 2, Ay, = 6, Ay, = 10 and
Ap = 2, Aty = 20, Apo = 20 for CIFAR10. For each sample x¢ to be analyzed, we analyze input for
this optimization as 0.3x( for MNIST, FashionMNIST, QuickDraw and as 0.4z for CIFAR10. For
optimization, we use Adam with learning rate 0.05 for 300 iterations, halving learning rate every 50
iterations.

S.2.1.5 Optimization and Runs

The models are trained for 12 epochs on MNIST, FashionMNIST and QuickDrawm and for 25 epochs
on CIFAR-10. We use Adam [9] as the optimizer with fixed learning rate 0.0001 and train on a single
NVIDIA-Tesla P100 GPU. Implementations are done using PyTorch [[16].

Number of runs: For the accuracy and fidelity results in the main paper, we have reported mean
and standard deviation for 4 runs with different seeds for each system. The conciseness results are
computed by averaging conciseness of 3 models for each reported system.

S.2.1.6 Resource consumption

Compared to f, U, h and d have fewer parameters. For networks shown in Fig.|I} the LeNet based
predictor has around 800,000 trainable parameters, interpreter g contains 70,000 parameters, decoder
d contains 3000 parameters. For networks in Fig. [2] ResNet based predictor contains 11 million
parameters, interpreter g contains 530,000 parameters, and decoder d contains 4.9 million parameters
(almost all of them in the last FC layer). In terms of space, FLINT occupies more storage space
according to the decoder, but is still of comparable size to that of only storing predictor.

Training time In terms of training time consumption there is lesser difference when f is a very
deep network, due to all networks W, h, d being much shallower (lesser number of layers) than f.
For eg. on both CIFAR-10, QuickDraw, FLINT consumes just around 10% more time for training
compared to training just the predictor (BASE-f). The difference is more pronounced on with
shallower f where U, h, d also have comparable number of layers to f. Training BASE-f on MNIST
consumes 50% less time compared to FLINT.



We compare the average training times (for four runs) for SENN and FLINT in Tab. 4] Each model
is trained for the same number of epochs, on the same computing machine (1 NVIDIA Tesla P100
GPU). It is clear that SENN requires significantly more time to train. This is primarily because of
gradient of output w.r.t input being part of their loss function. Thus the computational graph for a
forward pass is twice as big as their model architecture and followed by a backward pass through the
bigger graph.

Dataset SENN FLINT
MNIST 2311 518
FashionMNIST 2333 519
CIFAR-10 10210 1548
QuickDraw 10548 1207

Table 4: Training times for FLINT and SENN (in seconds)

S.2.2 Experiments on CIFAR-100 and CUB-200

We also demonstrate the ability of the system to handle more complex datasets by experimenting
with CIFAR100 [10] and Caltech-UCSD-200 (CUB-200) fine-grained Bird Classification dataset
[20]. CIFAR100 contains 100 classes with 500 training and 100 testing samples per class (image size
32 x 32 x 3). CUB-200 contains 11,788 images of 200 categories of birds, 5,994 for training and
5,794 for testing. We scale each sample in CUB-200 to size 224 x 224 x 3. We also don’t crop using
the bounding boxes and use the full images for training and testing.

Compared to our earlier experiments, we make two key changes to the framework, (i) Increase size
of dictionary of attribute functions to accommodate larger images/number of classes, (ii) Modify
architecture of decoder d with more upsampling and convolutional layers. For CIFAR100, the same
architectures for f and g as on CIFARI1O0 is used, but with J = 72. We apply random horizontal
flip as additional augmentation and train for 51 epochs. For CUB-200, we use the ResNet18 [[7]
for large-scale images as predictor architecture. We use J = 180, and apply random horizontal flip
and random cropping of zero-padded image as data augmentation. The predictor is initialized with
network pretrained on ImageNet and trained for 50 epochs. For both datasets, we do not vary the
other hyperparameters much compared to experiments on CIFAR10. The hidden layers accessed are
same for both. The hyperparameters of the interpretability loss remain unchanged for CIFAR100 and
for CUB-200 we increase 3 and y to 1.0 and 3.0, respectively.

We report the accuracy of BASE- f, FLINT- f and FLINT-g models (single run) and fidelity of FLINT-
g to FLINT- f in Tab. [5]and conciseness below in Fig. [3] It should be noted that due to high number
of classes, the disagreements between f and g are more common. The generated interpretations
for the class predicted by f can still be useful if it is among top classes predicted by g (for a more
detailed discussion, see Sec. [S.2.3.2). Thus we report below top-k fidelity of g to f for k = 1,5
(the default fidelity of interpreter metric corresponds to & = 1). We also illustrate visualizations of
sample relevant class-attribute pairs with global relevance r; . > 0.5 in Fig. for CIFAR100, and for

CUB-200 in Figs. B}[7,[6.[8

Key observations: FLINT- f achieves almost the same accuracy as BASE- f model for both datasets,
competitive for models of this size. Given the large number of classes, it achieves high fidelity of
interpretations with top-1 fidelity of more than 80% and top-5 fidelity around 97% for both datasets.
The effect of increased number of classes and complexity of datasets is also seen in comparatively
higher conciseness of FLINT. However, relative to the total number of attributes, the interpretations
still utilize small fraction of them, similar to results on other datasets. We also showcase the ability of

Accuracy (in %) Fidelity (in %)
Dataset BASE-f ‘ FLINT-f FLINT-g Top-1 Top-5
CIFAR100 70.7 70.8 69.9 85.2 97.3
CUB-200 71.3 71.0 68.7 80.0 96.7

Table 5: Results for accuracy (in %) and fidelity to FLINT-f on CIFAR100, CUB-200.



attributes learnt in FLINT to capture interesting concepts. For eg. on CUB-200, we visualize various
attributes which encode concepts like "yellow-headed birds’ (Fig. [3)), 'red-headed birds’ (Fig. [7)),
"blue-faced birds’ (Fig. [6) and "long orange/red legs’ (Fig. [§).
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Figure 3: Conciseness curve of FLINT-g interpretations on CIFAR100 and CUB-200

S.2.3 Ablation Studies and Analysis
S.2.3.1 Shuffling experiment

By structure, for both FLINT-g and SENN, the output are generated by combining high level attributes
and weights. To test how crucial the learnt attributes are to their predictions, we shuffle the attribute
values ®(x) for each sample x (this corresponds to shuffling i (x) for SENN with their notations).
This is an extreme test: we therefore expect an important drop in accuracy. Tab. [|reports the results
for the experiments for our method and SENN. More precisely, we calculate the drop in prediction
accuracy of FLINT-g (and SENN), compared to their mean accuracies. For SENN, the very small
drop in accuracy indicates its robustness to this shuffling, which highlights the fact that in this model,
the activation of a given subset of attributes is not crucial for the prediction. In contrast FLINT-g
relies strongly on its attributes for its prediction.

Dataset SENN FLINT-g
MNIST 0.5 87.6
FashionMNIST 10.9 76.6
CIFAR-10 17.5 74.4
QuickDraw 0.3 74.9

Table 6: FLINT and SENN accuracy drop for shuffled attributes (in %)

S.2.3.2 Disagreeement analysis

In this part, we analyse in detail the “disagreement” between the predictor f and the interpreter g.
Note that we already achieve very high fidelity to predictor for all datasets. We limit our analysis to
QuickDraw, our dataset with least fidelity. Understanding disagreement can help us improving our
framework as well as providing a measure of reliability about predictors output.

For a given sample with disagreement, if the class predicted by f is among the top predicted classes
of g, the disagreement is acceptable to some extent as the attributes can still potentially interpret the
prediction of f. The worse kind of samples for disagreement are the ones where class predicted by f
is not among the top predicted classes of g, and even worse are where, in addition to this, f predicts
the true label. We thus compute the top-k fidelity (for £ = 2, 3, 4) on QuickDraw with ResNet, which
for the default parameters described in the main paper, achieves a top-2 fidelity of 94.7%, top-3
fidelity 96.9%, and top-4 fidelity 98.2%. Only on 141 (i.e. 0.7%) samples the class predicted by f,
same as true class, is not in top-3 predicted by g classes.
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Figure 4: Sample class-attribute visualizations for CIFAR100. Three MAS and their corresponding
AM-+PI outputs are shown.
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Figure 5: Relevant class-attribute pairs on CUB-200 with attribute ¢o6. Each row gives visualization
for a relevant class of the attribute with three MAS and corresponding AM+PI outputs.

For eg., for the *Apple’ class (in QuickDraw), there only three disagreement samples for which
f delivers correct prediction (plotted in Fig. [9) are not resembling apples at all. We propose an

oo
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Figure 6: Relevant class-attribute pairs on CUB-200 with attribute ¢129. Each row gives visualization
for a relevant class of the attribute with three MAS and corresponding AM+PI outputs.

original analysis approach that consists in calculating a robust centrality measure—the projection
depth—of these three samples as well as of another 100 training samples w.r.t. the 8000 training
’Apple’ samples, plotted in Fig. To that purpose, we use the notion of projection depth [24]
for a sample € R? w.r.t. a dataset X which is defined as follows:

M

(s o L) medip X))
D(le>—<l+peS£1 MAD((p, X)) ) |

with (-, -} denoting scalar product (and thus (p, X') being a vector of projection of X on p) and med
and MAD being the univariate median and the median absolute deviation form the median. Fig. [I0]
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Figure 7: Relevant class-attribute pairs on CUB-200 with attribute ¢¢. Each row gives visualization
for a relevant class of the attribute with three MAS and corresponding AM+PI outputs.

confirms the visual impression that these 3 disagreement samples are outliers (since their depth in the
training class is low).

Fig. [IT]depicts 26 such cases for *Cat’ class to illustrate their logical dissimilarity. Being a complex
model, the ResNet-based predictor f still manages to learn to distinguish these cases (while g does
not), but in a way g does not manage at all to explain. Eventually, exploiting disagreement of f and g
could be used as a means to measure trustworthiness. Deepening this issue is left for future works.

S.2.3.3 Effect of autoencoder loss

Although the effect of £, ¢, L.q can be objectively assessed to some extent, the effect of £; can
only be seen subjectively. If the model is trained with v = 0, the attributes still demonstrate high
overlap, nice conciseness. However, it becomes much harder to understand concepts encoded by them.
For majority of attributes, MAS and the outputs of the analysis tools do not show any consistency
of detected pattern. Some such attributes are depicted in Fig. [T2] Such attributes are present even
for the model trained with autoencoder, but are very few. We thus believe that autoencoder loss
enforces a consistency in detected patterns for attributes. It does not necessarily guarantee semantic
meaningfulness in attributes, however it’s still beneficial for improving their understandability.

10
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Figure 8: Relevant class-attribute pairs on CUB-200 with attribute ¢29. Each row gives visualization
for a relevant class of the attribute with three MAS and corresponding AM+PI outputs.

Figure 9: The three ’Apple’ class samples classified correctly by f but not by g.

S.2.3.4 Effect of hidden layer selection

We already discussed the empirical rationale behind our choice of hidden layers in Sec. [S.2.1.1} In
general for any predictor architecture or dataset, the most obvious choice is to select last convolutional
layer output. This also helps achieving high fidelity for g. The only problem that might arise when
selecting layer(s) very close to the output is that the attribute might be learnt trivially. This is
indicated by extremely low entropy and high input fidelity loss. While tuning hyperparameters
of interpretability loss could be helpful in tackling this issue (reducing 3, increasing <), choosing
an earlier hidden layer can also prove to be very useful. We study the effect of choice of hidden
layers with ResNet18 on QuickDraw. We make 3 different choices of single hidden layers (9th, 13th,
16th conv layers). For each choice we tabulate resulting metrics (accuracy, fidelity of interpreter,
reconstruction loss, conciseness for threshold 1 /7 = 0.2) in Tab. m All other hyperparameters remain
same.

Layer Accuracy (in %)  Fidelity (in %) Lif Conciseness 1/7 = 0.2
9th conv 85.2 78.0 0.074 1.873
13th conv 85.6 85.6 0.073 1.905
16th conv 86.5 96.0 0.081 1.562

Table 7: Effect of different hidden layers for Resnet18 on QuickDraw.
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Figure 10: Projection data depth calculated with (I) w.r.t. the 8000 *Apple’ training sample for 100
"Apple’ test samples and for the three (observation indices 101-103) *Apple’ class samples classified
correctly by f but not by g.

Figure 11: 26 samples from *Cat’ class which are not in top3 f-predicted classes.

Key observations: (a) Compared to average BASE- f accuracy of 85.3% for ResNet18 on QuickDraw,
accuracy of all models are comparable or slightly better. Thus, choice of hidden layers does
not strongly affect predictor accuracy. (b) The interpreter fidelity gets considerably better if the
layer chosen is closer to the output. (c) The input fidelity/reconstruction loss does not behave as
monotonously, but it is not surprising that layers close to the output result in worse input reconstruction.
(d) Interpretations are expected to be more concise when chosen layer is very close to the output in
the sense that conciseness is an indicator of abstraction level of the interpretation. Thus, a standard
choice is to start with a layer close to the output. A small revision may be needed depending upon
optimization of input fidelity loss.

S.2.3.5 Effect of number of attributes J

Effect of / We study the effect of choosing small values for number of attributes J (keeping all
other hyperparameters same). Tab. |§|tabulates the values of input fidelity loss L; ¢, output fidelity loss
L, on the training data by the end of training for MNIST and the fidelity of g to f on MNIST test
data for different .J values. Tab. [Jtabulates same values for QuickDraw. The two tables clearly show
that using small J can harm the autoencoder and the fidelity of interpreter. Moreover, the system
packs more information in each attribute and this makes it hard to understand them, specially for very
small J. This is illustrated in Figs. [[3]and[T4] which depict part of global interpretations generated
on MNIST for J = 4 (all the parameters take default values). Fig. [I3|shows global class-attribute
relevances and Fig. |14{shows generated interpretation for a sample attribute ¢-. It can be clearly seen
that the attributes start encoding concepts for too many classes (high number of bright spots). This
also causes their AM+PI outputs to be muddled with two many patterns. This adds a lot of difficulty
in understandability of these attributes.

Ly (train) L,y (train)  Fidelity (test) (%)

J=4 0.058 0.57 87.4
J=38 0.053 0.23 97.5
J=25 0.029 0.16 98.8

Table 8: Effect of J on losses and fidelity for MNIST with LeNet.
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Figure 12: Sample class-attribute pair visualizations learnt without autoencoder loss £, ;. GBP stands
for Guided Backpropagation.
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Figure 13: Global class attribute relevances for model with J = 4 on MNIST.

How to choose the number of attributes Assuming a suitable architecture for decoder d, simply
tracking L; ¢, L5 on training data can help rule out very small values of .J as they result in poorly
trained decoder and relatively poor fidelity of g. One can also qualitatively analyze the generated
explanations from the training data to tune .J to a certain extent. Too small values of .J can result in
attributes encoding concepts for too many classes, which affects negatively their understandability. It
is more tricky and subjective to tune J once it becomes large enough so that £, ¢, £, are optimized
well. The upper threshold of choosing J is subjective and highly affected by how many attributes the
user can keep a tab on or what fidelity user considers reasonable enough. It is possible that due to
enforcement of conciseness, even for high value of J, only a small subset of attributes are relevant for
interpretations. Nevertheless, for high J value, there is a risk of ending up with too many attributes
or class-attribute pairs to analyze.

Ly (train) L,y (train)  Fidelity (test) (%)

J=4 0.094 2.08 19.5
J=38 0.079 1.48 57.6
J=24 0.069 0.34 90.8

Table 9: Effect of J on losses and fidelity for QuickDraw with ResNet.
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Figure 14: Interpretation for attribute ¢ for model learn on MNIST with J = 4.

It is important to notice that it is possible to select J from the training set only by using a cross-
validation strategy. In practise, it seems reasonable to agree on smallest value of J for which the
increase of the cross-validation fidelity estimate drops dramatically, since further increase of J would
generate less understandable attributes with very little gain in fidelity.

S.2.3.6 Effect of loss scheduling

We also study the effect of introduction of different schedules for output fidelity and conciseness
loss with ResNet18 on CIFAR10. We introduce £, at different points of time during training
(indicated by first column of Tab. [T0} Lq is introduced 1 epoch later. The first row corresponds
to current setting proposed in the main paper. Total training time constitutes 25 epochs. All other
hyperparameters remain same.

Time of introduction  Accuracy (in %)  Fidelity (in %) Lif Conciseness 1/7 = 0.2

Epoch 3 (current) 84.6 93.5 0.421 2.612
Epoch 4 84.8 93.4 0.427 2.501
Epoch 5 84.3 94.2 0.426 2.351
Epoch 6 85.0 93.1 0.426 2.376
Epoch 8 84.5 93.7 0.432 2.642
Epoch 10 84.6 93.9 0.422 1.944
Epoch 14 84.2 92.1 0.445 2.274
Epoch 21 84.6 91.2 0.450 3.710
Epoch 24 84.4 86.3 0.524 4.533

Table 10: Effect of loss scheduling for Resnet18 on CIFAR10.

Key Observations: (a) As soon as the system receives reasonable time to train with all three losses
(note that input fidelity loss is always present), small changes to introduction of losses have little to
no impact on the metrics. (b) By contrast, when we introduce the losses extremely late (for eg. see
the last two rows), the interpretability losses/metrics get noticeably worse.

S.2.3.7 Additional visualizations

For completeness, we show some additional visualizations of global interpretations (relevances,
class-attribute pairs) and local interpretations.

Fig. [T5]contains global relevances generated for MNIST and FashionMNIST. Global relevances for
QuickDraw and CIFARI1O0 are in main paper.

Figs. [T6] [I7] [I8] [T9] show some additional class-attribute pairs and their visualizations for all 4
datasets. Local interpretations on some test samples from these datasets are depicted in Figs. 20] 21}

22323

S.2.4 Other tools for analysis

Although we consider AM+PI as the primary tool for analyzing concepts encoded by attributes (for
MAS of each class-attribute), other tools can also be helpful in deeper understanding of the attributes.
We introduce two such tools:
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Figure 15: Global class-attribute relevances r; . for MNIST (Left) and FashionMNIST (Right). 14
class-attribute pairs for MNIST and 26 pairs for FashionMNIST have relevance r; . > 0.2.

MAS1 AM+PI1 MAS2 AM+PI2 MAS3 AM+PI3

- HSBECNG

- BB

- HeRELY
GG

N
- Bk
|
>
Three -- 21 .?
- EI5E

Figure 16: Additional class-attribute visualizations for MNIST. Three MAS and their corresponding
AM-+PI outputs are shown.

o [nput attribution: This is a natural choice to understand an attribute’s action for a sample.
Any algorithms ranging from black-box local explainers to saliency maps can be employed.
These maps are less noisy (compared to AM+PI) and very general choice, applicable to
almost all domains.

e Decoder: Since we also train a decoder d that uses the attributes as input. Thus, for an
attribute j and =, we can compare the reconstructed samples d(®(z)) and d(®(x)\j) where
®(z)\j denotes attribute vector with ¢;(x) = 0, i.e., removing the effect of attribute j.
While, the above comparison can be helpful in revealing information encoded in attribute 7,
it is not guaranteed to do so as the attributes can be entangled.
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Figure 17: Additional class-attribute visualizations for Fashion-MNIST. Three MAS and their
corresponding AM+PI outputs are shown.

We illustrate the use of these tools for certain example class-attribute pairs on QuickDraw in Fig.
and 23] Note that as discussed in the main paper, these tools are not guaranteed to be always
insightful, but their use can help in some cases.

Fig. [24]depicts example class-attribute pairs where decoder d contributes in understanding of attributes.
The with ¢; column denotes the reconstructed sample d(®(x)) for the maximum activating sample =
under consideration. The without ¢; column is the reconstructed sample d(®(z))\j) with the effect
of attribute ¢; removed for the sample under consideration (¢, (x) = 0). For eg. ¢1, ¢23, strongly
relevant for Cat class, detect similar patterns, primarily related to the face and ears of a cat. The
decoder images suggest that ¢, very likely is more responsible for detecting the left ear of cat and ¢o3,
the right ear. Similarly analyzing decoder images for ¢95 in the third row reveals that it is likely has a
preference for detecting heads present towards the right side of the image. This is certainly not the
primary concept ¢oo detects as it mainly detects blotted textures, but it certainly carries information
about head location to the decoder.

Fig. 25| depicts example class-attribute pairs where input attribution contributes in understanding of
attributes. We use Guided Backpropagation [19] (GBP) as input attribution method for ResNet on
QuickDraw. It mainly assists in adding more support to our previously developed understanding of
attributes. For eg., analyzing ¢5 (relevant for Dog, Lion) based on AM+PI outputs suggested that it
mainly detects curves similar to dog ears. The GBP output support this understanding as the most
salient regions of the map correspond to curves similar to dog ears.

S.2.5 Baseline implementations

We cover the implementation details of various baselines used in this work (Tab 2, 3, 4 from main
paper). As stated in the main paper, implementation of our method is available on Github ﬂThe
accuracy of FLINT-f is compared against BASE- f, PrototypeDNN, SENN. Fidelity of FLINT-g is
compared against VIBI and LIME.

'https://github.com/jayneelparekh/FLINT
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Figure 18: Additional class-attribute visualizations for QuickDraw. Three MAS and their correspond-
ing AM+PI outputs are shown.

BASE-f We compare accuracy of FLINT-f with BASE-f. The BASE-f model has the same
architecture as FLINT- f but is trained with 3,~,d = 0, that is, only with the loss L,,.q4 and not
interpretability loss term. All the experimental settings while training this model are same as FLINT.

PrototypeDNN  We directly report the accuracy of PrototypeDNN on MNIST, FashionMNIST (Tab
2 main paper) from the results mentioned in their paper [13]]. Note that we do not report any results of
PrototypeDNN on CIFAR10 and QuickDraw. This is because for processing more complex images
and achieving higher accuracy, one would need to non-trivially modify architecture of their proposed
model. Thus to avoid any unfair comparison, we did not report this result. The results of BASE- f
and SENN on CIFAR, QuickDraw help validate performance of FLINT- f on QuickDraw.

SENN We compare the accuracy as well as conciseness curve for FLINT with Self-Explaining
Neural Networks (SENN) [2]]. We implemented it with the help of their official implementation
available on GitHubEl SENN employs a LeNet styled network for MNIST in their paper. We use the
same architecture for MNIST and FashionMNIST. For QuickDraw and CIFAR10 we use the VGG
based architecture proposed for SENN in their paper to process more complex images. However, to
maintain fairness, the number of attributes used in all the experiments for SENN are same as those
for FLINT, that is, 25 for MNIST & FashionMNIST, 24 for QuickDraw and 36 for CIFAR10, and
also train for the same number of epochs. We use the default choices in their implementation for all
hyperparameters and other settings. Another notable point is that although interpretations of SENN
are worse than FLINT in conciseness (even when compared non-entropy version of FLINT), the

https://github.com/dmelis/SENN
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Figure 19: Additional class-attribute visualizations for CIFAR-10. Three MAS and their correspond-
ing AM+PI outputs are shown.

RELEVANT
INPUT ATTRIBUTES AM+PI OUTPUTS

Figure 20: Local interpretations on test samples for MNIST. True labels are: ’Six’, "Five’, ’One’ and
’One’. Top 3 most relevant attributes and their corresponding AM+PI outputs are shown.

strength of ¢; regularization in SENN is 2.56 times our strength (for identical L;.cq, i.€, cross-entropy
loss with weight 1.0).
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Figure 21: Local interpretations on test samples for Fashion-MNIST. True labels are: *Bag’, ’Sneaker,
"Coat’, "Trousers’. Top 3 most relevant attributes and their corresponding AM+PI outputs are shown.

RELEVANT
ATTRIBUTES

1

) I

00 e
16 10

10/

INPUT

AM+PI OUTPUTS

Figure 22: Local interpretations on test samples for QuickDraw. True labels are: ’Banana’, ’Ant’,
’Lion’, ’Cow’ and ’Grapes’. Top 3 most relevant attributes and their corresponding AM+PI outputs
are shown.

VIBI & LIME We benchmark the fidelity of interpretations of FLINT-g for both by-design and post-
hoc interpretation applications against a state-of-the-art black box explainer variational information
bottleneck for interpretation (VIBI) [3]] and traditional explainer LIME [17]. Note that VIBI also
possesses a model approximating the predictor for all samples. Both methods are implemented using
the official repository for VIBI[}| We compute the "Approximator Fidelity" metric as described in
their paper, for both systems. In the case of VIBI, this metric exactly coincides with our definition
of fidelity. We set the hyperparameters to the setting that yielded best fidelity for datasets reported
in their paper. For VIBI, chunk size 4 x 4, number of chunks £ = 20, for LIME, chunk size 2 x 2,
number of chunks k£ = 40. The other hyperparameters were the default parameters in their code.

*https://github.com/SeojinBang/VIBI
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Figure 23: Local interpretations on test samples for CIFAR-10. True labels are: *Ship’, Deer’,
"Truck’ and ’Ship’. Top 3 most relevant attributes and their corresponding AM+PI outputs are shown.
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Figure 24: Examples of class-attribute pairs on QuickDraw, where decoder assists in understanding
of encoded concept for the attribute.

S.2.6 Subjective evaluation details

The form taken by the participants can be accessed here El 17 of the 20 respondents were in the
age range 24-31 and at least 16 had completed a minimum of masters level of education in fields
strongly related to computer science, electrical engineering or statistics. The form consists of a
description where the participants are briefly explained through an example the various information
(class-attribute pair visualizations and textual description) they are shown and the response they
are supposed to report for each attribute, which is the level of agreement/disagreement with the
statement: “The patterns depicted in AM + PI outputs can be meaningfully associated to the textual
description”. As mentioned in the main paper, four descriptions (questions #2, #5, #8, #9 in the form)
were manually corrupted to better ensure that participants are informed about their responses. The
corruption mainly consisted of referring to other parts or concepts regarding the relevant class which
are not emphasized in the AM+PI outputs.

S.3 Post-hoc interpretations

S.3.1 Implementation details

The network architecture, the optimization procedures and hyperparameters are set to exactly the
same values they were for their *by-design’, with one small change, 3 for CIFAR10 is used as 0.3, and
not 0.6, this is because for 3 = 0.6, the system was running into scenario discussed in Sec.[S.2.1.3]
thus 3 was lowered.

“https://forms.gle/PWEDEPZSmXbAGLNvY
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Figure 25: Examples of class-attribute pairs on QuickDraw, where input attribution (GBP) assists in
understanding of encoded concept for the attribute. GBP stands for Guided Backpropagation.

Dataset VIBI FLINT-g
MNIST 95.84+0.2  98.6+0.2
FashionMNIST 88.4+0.2 92.840.3
CIFAR10 642403 89.1+0.5
QuickDraw 78.0+0.4  90.5+0.3

Table 11: Fidelity for post-hoc interpretations of BASE-f (in %)

Results. Fidelity benchmarked against VIBI is tabulated in Tab. [TT]and conciseness curves for
post-hoc interpretations are shown in Fig. 26] They clearly indicate that FLINT can yield high fidelity
and highly concise post-hoc interpretations.
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Figure 26: Conciseness curve of post-hoc interpretations generated using FLINT

S.3.2 Additional visualizations

Class-attribute relevances
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Figure 27: Global class-attribute relevances ; . for post-hoc interpretations on MNIST (Left) and
FashionMNIST (Right). 15 class-attribute pairs for MNIST and 28 pairs for FashionMNIST have
relevance ;. > 0.2.

Flgs contain global relevances for post-hoc interpretations on all four datasets. Figs. 29
and illustrate some additional visualizations of class-attribute pairs on all datasets.
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Figure 28: Global class-attribute relevances 7; . for post-hoc interpretations on QuickDraw (Left) and
CIFAR10 (Right). 24 class-attribute pairs for QuickDraw and 26 pairs for CIFAR10 have relevance

Tjec > 0.2.

Figure 29: Sample class-attribute visualizations for post-hoc interpretations for MNIST.
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Figure 30: Sample class-attribute visualizations for post-hoc interpretations for Fashion-MNIST
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Figure 31: Sample class-attribute visualizations for post-hoc interpretations on QuickDraw
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Figure 32: Sample class-attribute visualizations for post-hoc interpretations on CIFAR-10

S.3.3 Experiments using ACE

We conducted additional experiments using ACE to interpret trained models from our experiments.
The key bottleneck for ACE’s application on our datasets and networks is the use of CNN as a
similarity metric (to automate human annotation) for image segments irrespective of their scale,
aspect ratio. This is a specialized property only been empirically shown for specific CNN'’s trained
on ImageNet (as discussed in their paper). The networks trained on our datasets thus very often
cluster unrelated segments, resulting in little to no consistency in any extracted concept. To illustrate
the above we describe the experimental settings and show extracted concepts for a few classes
from QuickDraw and CIFAR-10 on the BASE- f models. The quality of results is the same when

interpreting FLINT- f models although we only illustrate interpretations from BASE- f models.
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Experimental setting. We utilize the official open-sourced implementation of their method El Due
to the smaller sized images we perform segmentation at a single scale. We experimented with different
configurations for “number of segments" and “number of clusters/concepts”. The number of segments
were varied from 3 to 15. For higher values the segments were often too small for concepts to be
meaningful. We thus kept the number of segments 5 for each sample. For each class we chose 100
samples. The number of clusters were varied from 5 to 25. Due to the smaller number of segments
(compared to original experiments from ACE which used 25), we kept number of clusters at 12. We
access the deepest intermediate layer used in experiments with FLINT (shown in Fig. [2).

Results. The top 3 discovered concepts (according to the TCAV scores) are shown in Fig. The
segments for any concept on CIFAR show almost no consistency. This is mainly because the second
step pf ACE, requiring a CNN’s intermediate representations to replace a human subject for measuring
the similarity of superpixels/segments, is hard to expect for these networks not trained on ImageNet.
Thus, segments capturing background or any random part of the object, completely unrelated, end up
clustered together. For QuickDraw, the segmentation algorithm also suffers problems in extracting
meaningful segments due to sparse grayscale images. It generally extracts empty spaces or a big
chunk of the object itself. This, compounded with the earlier issue about segment similarity results in
mostly meaningless concepts. The only slight exception to this is concept 3 for *Ant’ for which two
segments capture a single flat blob with small tentacles.

S.4 Limitations

e The current design of attributes and their encoded concept visualization procedure is more
suited for classification tasks and image as input modality. Although multiple proposed
losses/visualization tools could be generalized to other input modalities (e.g. audio, video,
graphs etc.) or other machine learning tasks (regression), it requires work in that direction.

o The set of proposed properties is not exhaustive and can be further improved. It could be
desired that attributes encode concepts which are invariant to certain transformations, or
focus on specific spatial regions, or are robust to adversarial attacks / specific types of noise
or contamination.

e The choice of hidden layers requires some level of experience with neural architectures.

S.5 Potential negative societal impact

Interpretability becoming a frequently raised issue when training and exploiting neural network (NN)
architectures, the main expected societal impact of FLINT is improvement of their understandability
as well as providing explanations of the decisions made by NNs. Nevertheless, even this intrinsically
benevolent machinery can be used for harm when in malicious hands.

Potential misuse can be expected on two different levels: First, if incorrectly trained (e.g., wrong NN
design, insufficient number of training examples and/or or training epochs, in particular for FLINT- f),
due to lack of knowledge or on purpose, FLINT can provide misleading interpretations. Second, even
a well-trained explainable Al can serve evil purpose in hands of a maliciously destined user.

Clearly, the authors expect proper use of the developed FLINT methodology, although direct misuse-
protection mechanisms were not developed in this piece of research, not being the initial goal.
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